
64-bit Assembly in Linux

Or 'Building a better penguin'.

Through a Unix, Darkly

This text will amke use of Linux as a platform for developing software using
assembly language. This includes Linux utilities and the Linux command-line or
shell. Some information could be used in other Unix based OS's like BSD or
MacOS. However you will need to be mindful of available cpu instructions and
the calling convention of available C libraries (not to mention the other API's of
any other libraries called).

For this reason lets start with the C Calling convention and then move on
to Linux System Calls.

Call to Order

There are two types of function calls in Linux, the C calling convention and
the System Call (which is also C style). The reason for the difference is that the
system and a C Library function use different registers for holding parameters or
arguments to a function. But this is a minor difference and the two calling
methods are just about identical.

Before calling a function, you must load the registers with the parameters
a function will operate on.

Loading sacred registers for functions

movb $value,%ah # Move 8-bit value into register ah
movw $value,%ax # Move 16-bit value into register ax
movl $value,%eax # Move 32-bit value into register eax
movq $value,%rax # Move 64-bit value into register rax

Call the function after loading parameters
call function

This example does not show the order of the arguments, while unchanged
between System Calls and C Calls, I will show the order in the next sections.
Here is shown that you need to specify the size of the parameters when storing
them in registers.

Note that in most cases you cannot push or pop an 8-bit value (byte) or
register from the stack, but you can move bytes into and out of registers and
variables. The above example is for completeness.

Calling Mr. Function, Mr. Function

When writing C library functions (or any functions) you have to preserve
the value in the registers used by the function. For the C library these registers
are : rbx, rsp, rbp, r12 through r15 ; when calling a C function these registers
must be pushed and rsp adjusted for the new position. The parameters or
arguments passed to a function are 'mov'ed to the appropriate register. All
examples assume a 64-bit value in a r- prefix register.

extern fName # Need to tell assembler that the function
 # is found elsewhere, externally

Moving data for functions arguments
Use as many as needed in the specified registers
Arguments after sixth, are passed on the stack.

movq $1stArg,%rdi # First Argument
movq $2ndArg,%rsi # Second Argument
movq $3rdArg,%rdx # Third Argument
movq $4thArg,%rcx # Fourth Argument; for syscall use %r10
movq $5thArg,%r8 # Fifth Argument
movq $6thArg,%r9 # Sixth Argument
pushq $10thArg # Tenth Arg; must be in reverse order
pushq $9thArg # Ninth Arg
pushq $8thArg # Eigth Arg
pushq $7thArg # Seventh Arg

Preserve sacred regs for C functions
What is otherwise called a function prolog
fName: # Function label, not needed for C library
 # calls.
pushq %rbp # Preserve old base pointer
movq %rsp,%rbp # Copy new address into pointer
pushq %rbx #
pushq %r12 # Preserve the registers used otherwise
pushq %r13 # preserve additional registers you need
pushq %r14 #
pushq %r15 #

Do function stuff here

Values are 'push'ed in reverse order with the last value first. Up to ten
arguments can be made with the first six stored in registers, the remaining four
must be passed in values that are push'ed to the stack.

Done with C function sacred regs
What is otherwise called a function epilog

Function stuff done here

popq %r15 #
popq %r14 # Pop in reverse order of push
popq %r13 #
popq %r12 #
popq %rbx #
movq %rbp,%rsp # Restore pointers
popq %rbp # Restore base pointer

Return to program that called the function
ret

Remove arguments pushed before function called
popq $7thArg # Pop in reverse order of push
popq $8thArg #
popq $9thArg #
popq $10thArg #

end # End of program

If you are going to use any other register for the function it must be added
to this list. You push them after %rdi and pop them before %rdi; in the correct
order. You can only pop/push 16-bit, 32-bit and 64-bit registers.

Floating values are stored in xmm0 (first arg or function result) to xmm7
(eigth arg) and not the general purpose registers.

In place of restoring the stack pointers yourself (%rsp and %rbp), you may
use the instruction ' leave ' before using ' ret ' instead. Arguments must still be
removed as normal.

Note that everything between the last argument pushed and the ret
instruction is used by the call instruction.

Store arguments for function

Function is called

call function
<--- Function returns here

Clean up after function is done, here

C Library calls reads parameters from the following order of registers.
Note that syscall uses rcx and therefore you replace rcx as an argument with r10
instead. RBX, RBP, RSP and R12 to R15 are used by the system, if they are
needed they must be preserved (Saved). C Library calls can take up to ten
parameters.

Assuming 64-bit CPU (match registers to argument size) :
64-bit 32-bit 16-bit 8-bit Saved Example Example

Call/Result rax eax ax ah No write ($1) exit ($60)

First Arg rdi edi di dil No Write location -

Second rsi esi si sil No String location -

Third/Result rdx edx dx dl No Amount to write -

Fourth rcx ecx cx cl No - -

Base rbx ebx bx bl Yes - -

Base rbp ebp bp - Yes - -

Stack rsp esp sp - Yes - -

Fifth r8 r8d r8w r8b No - -

Sixth r9 r9d r9w r9b No - -

Temp r10 r10d r10w r10b No - -

Temp r11 r11d r11w r11b No - -

r12 r12d r12w r12b Yes - -

r13 r13d r13w r13b Yes - -

r14 r14d r14w r14b Yes - -

r15 r15d r15w r15b Yes - -

1st/Return - xmm0 - - No - -

2nd/Return - xmm1 - - No - -

Float Arg - xmm2 - - No - -

Float Arg - xmm3 - - No - -

Float Arg - xmm4 - - No - -

Float Arg - xmm5 - - No - -

Float Arg - xmm6 - - No - -

Float Arg - xmm7 - - No - -

Temp - xmm8-15 - - No - -

Read Mr. Hyde's books, he explains the stack in greater detail than here
and more accurately; though I don't recall any mention of the C library. His text
is more dedicated to Assembly code and discusses C functions much later near
the end of his book (AoA).

Calling Mr. Linux, Mr. Linux ...

Linux System calls (syscall) reads parameters from the following order of
registers. Note that syscall uses rcx and therefore you replace rcx as an
argument with r10 instead. RBX, RBP, RSP and R12 to R15 are used by the
system, if they are needed they must be preserved (Saved). Syscalls can only
take six parameters.

Assuming 64-bit CPU (match registers to argument size) :
64-bit 32-bit 16-bit 8-bit Saved Example Example

Call/Result rax eax ax ah No write ($1) exit ($60)

First Arg rdi edi di dil No Write location -

Second rsi esi si sil No String location -

Third/Result rdx edx dx dl No Amount to write -

Fourth r10 r10d r10w r10b No - -

Base rbx ebx bx bl Yes - -

Base rbp ebp bp - Yes - -

Stack rsp esp sp - Yes - -

Fifth r8 r8d r8w r8b No - -

Sixth r9 r9d r9w r9b No - -

1st/Return - xmm0 - - No - -

2nd/Return - xmm1 - - No - -

Float Arg - xmm2 - - No - -

Float Arg - xmm3 - - No - -

Float Arg - xmm4 - - No - -

Float Arg - xmm5 - - No - -

Float Arg - xmm6 - - No - -

Float Arg - xmm7 - - No - -

Temp - xmm8-15 - - No - -

No need for function label or extern symbol
Unless you want to give your exit call a function
of its own.

Do not preserve registers before calling syscall
Unless you use a register used by syscall

movq $60, %rax # Load %rax with system call number
movq $0, %rdi # Load %rdi with exit status
syscall # Make the system call

No ret or leave instruction is used,
no clean up of registers.
Unless you used a register used by the syscall instruction

There are about 300 Linux System Calls. These calls use the C-style syntax
but are calls to functions built into the Linux kernel and not to a library file (' .so
' or shared object file).

As shown above there is no need to preserve or clean up registers or stack
unless you need to preserve registers used by the syscall. If so, then treat as a
normal call to a C library function.

For the System Call Table, the following abbreviations are used (? indicates
an optional value) :
addr – address or location of data (as in memory or descriptor)
start – address or location to start operation
len – length or duration of operation
path – location of file (as in directory paths)
flags – metadata or information on status of bits
ptr – pointer to structure, structure (like an array) will have to be parsed
count – number of fields in a structure or number of structures
time – time to wait or time-out duration
method – how to apply flags or offsets
code – device specific binary
arg – device specific arguments

For more information on any call see " $ man 2 call " where call is one of
the functions in the table.

Call rax rdi rsi rdx r10 r8 r9

read $0 addr start len

write $1 addr start len

open $2 path flags

close $3 addr

stat $4 path ptr

fstat $5 addr ptr

lstat $6 path ptr

poll $7 ptr count time

lseek $8 addr len method

mmap $9 addr len flags flags addr len

mprotect $10 addr len flags

munmap $11 addr len

brk $12 addr

sigaction $13 flag ptr ptr

sigprocmask $14 flag ptr ptr

sigreturn $15 - - - - - -

ioctl $16 addr code arg

pread $17 addr start len len

pwrite $18 addr start len len

readv $19 addr ptr count

writev $20 addr ptr count

access $21 addr path method flags

pipe $22 ptr

select $23 count ptr ptr ptr

sched_yield $24 - - - - - -

mremap $25 addr len len flags ?addr

msync $26

mincore $27

madvise $28

shmget $29

shmat $30

shmctl $31

dup $32

dup2 $33

pause $34

nanosleep $35

getitimer $36

alarm $37

setitimer $38

getpid $39

sendfile $40

socket $41

connect $42

accept $43

sendto $44

recvfrom $45

sendmsg $46

recvmsg $47

shutdown $48

bind $49

listen $50

getsockname $51

getpeername $52

socketpair $53

setsockopt $54

getsockopt $55

clone $56

fork $57

vfork $58

execve $59

exit $60 status

wait4 $61

kill $62

uname $63

semget $64

semop $65

semctl $66

shmdt $67

msgget $68

msgsnd $69

msgrcv $70

msgctl $71

fcntl $72

flock $73

fsync $74

fdatasync $75

truncate $76

ftruncate $77

getdents $78

getcwd $79

chdir $80

fchdir $81

rename $82

mkdir $83

rmdir $84

creat $85

link $86

unlink $87

symlink $88

readlink $89

chmod $90

fchmod $91

chown $92

fchown $93

lchown $94

umask $95

gettimeofday $96

getrlimit $97

getrusage $98

sysinfo $99

times $100

ptrace $101

getuid $102

syslog $103

getgid $104

setuid $105

setgid $106

geteuid $107

getegid $108

setpgid $109

getppid $110

getpgrp $111

setsid $112

setreuid $113

setregid $114

getgroups $115

setgroups $116

setresuid $117

getresuid $118

setresgid $119

getresgid $120

getpgid $121

setfsuid $122

setfsgid $123

getsid $124

capget $125

capset $126

rt_sigpending $127

rt_sigtimedwait $128

rt_sigqueuinfo $129

rt_sigsuspend $130

sigaltstack $131

utime $132

mknod $133

uselib $134

personality $135

ustat $136

statfs $137

fstatfs $138

sysfs $139

getpriority $140

setpriority $141

sched_setparam $142

sched_getparam $143

sched_setscheduler $144

sched_getscheduler $145

sched_get_priority_max $146

sched_get_priority_min $147

sched_rr_get_interval $148

mlock $149

munlock $150

mlockall $151

munlockall $152

vhangup $153

modify_ldt $154

pivot_root $155

_sysctl $156

prctl $157

arch_pctl $158

adjtimex $159

setrlimit $160

chroot $161

sync $162

acct $163

settimeofday $164

mount $165

umount $166

swapon $167

swapoff $168

reboot $169

sethostname $170

setdomainname $171

iopl $172

ioperm $173

create_module $174

init_module $175

delete_module $176

get_kern_syms $177

query_module $178

quotactl $179

nfsservctl $180

getpmsg $181

putpmsg $182

afs_syscall $183

tuxcall $184

security $185

gettid $186

readahead $187

setxattr $188

lsetxattr $189

fsetxattr $190

getxattr $191

lgetxattr $192

fgetxattr $193

listxattr $194

llistxattr $195

flistxattr $196

removexattr $197

lremovexattr $198

fremovexattr $199

tkill $200

time $201

futex $202

sched_setaffinity $203

sched_getaffinity $204

set_thread_area $205

io_setup $206

io_destroy $207

io_getevents $208

io_submit $209

io_cancel $210

get_thread_area $211

lookup_dcookie $212

epoll_create $213

epoll_ctl_old $214

epoll_wait_old $215

remap_file_pages $216

getdents64 $217

set_tid_address $218

restart_syscall $219

semtimedop $220

fadvise64 $221

timer_create $222

timer_settime $223

timer_gettime $224

timer_getoverrun $225

timer_delete $226

clock_settime $227

clock_gettime $228

clock_getres $229

clock_nanosleep $230

exit_group $231

epoll_wait $232

epoll_ctl $233

tgkill $234

utimes $235

vserver $236

mbind $237

set_mempolicy $238

get_mempolicy $239

mq_open $240

mq_unlink $241

mq_timedsend $242

mq_timedreceive $243

mq_notify $244

mq_getsetattr $245

kexec_load $246

waitid $247

add_key $248

request_key $249

keyctl $250

ioproi_set $251

ioprio_get $252

inotify_init $253

inotify_add_watch $254

inotify_rm_watch $255

migrate_pages $256

openat $257

mkdirat $258

mknodat $259

fchownat $260

futimesat $261

newfstatat $262

unlinkat $263

renameat $264

linkat $265

symlinkat $266

readlinkat $267

fchmodat $268

faccessat $269

pselect6 $270

ppoll $271

unshare $272

set_robust_list $273

get_robust_list $274

splice $275

tee $276

sync_file_range $277

vmsplice $278

move_pages $279

utimensat $280

epoll_pwait $281

signalfd $282

timerfd_create $283

eventfd $284

fallocate $285

timerfd_settime $286

timerfd_gettime $287

accept4 $288

signalfd4 $289

eventfd2 $290

epoll_create1 $291

dup3 $292

pipe2 $293

inotify_init1 $294

preadv $295

pwritev $296

rt_tgsigqueueinfo $297

perf_event_open $298

recvmmsg $299

fanotify_init $300

fanotify_mark $301

prlimit64 $302

name_to_handle_at $303

open_by_handle_at $304

clock_adjtime $305

syncfs $306

sendmmsg $307

setns $308

getcpu $309

process_vm_readv $310

process_vm_writev $311

kcmp $312

finit_module $313

sched_setattr $314

sched_getattr $315

renameat2 $316

seccomp $317

getrandom $318

memfd_create $319

kexec_file_load $320

bpf $321

execveat $322

userfaultfd $323

membarrier $324

mlock2 $325

copy_file_range $326

preadv2 $327

pwritev2 $328

pkey_mprotect $329

pkey_alloc $330

pkey_free $331

