
the Assembly Bible (64-bit Linux Edition)

Table of Contents

In the Beginning ... 2

Genesis .. 18
Source Code ...
Registers ...
Stack ..
Directives ...
Literals and Datatypes
Op Code Instructions
Macros ..
Conditional Source

Exodus ... 19
Assembler ...
Linker ..
External Includes
External Libraries
Shared Binaries ..
Debuggers ..

Leviticus ... 20
Standards ...
Linux Syscall Convention
C Library Convention
Makefiles ..
bash Scripts ..
Best Practices ...

Numbers .. 21
Datatypes ...
Arithmetic Instructions
Floating–Point Math
Math Optimization

Deuteronomy ... 22
Datatypes ...
String Instructions
String Optimization

Apocrypha .. 23
File Use ...
Linux Terminal Interface
Graphic Interfaces
Networks ..
Games ..
Amateur Radio ..

References ... 24
Linux bash Shell
Assembler Options
Linker Options ..
Make Options ..
Directives ...
Instructions ... 25
Linux Syscalls ...

© 2020; Sean Shaffer, the Assembly Bible
All Rights Reserved

Modified : 2020-07-30 the Assembly Bible, Table of Contents 1

Introduction or "In the Beginning ... "

Why ?

The eternal answer is, "Why Not ?". In more specific terms, a background in
electronics engineering and amateur radio, I work with the components and equipment
that make up a larger system.

When studying any form of programming, I have the same mindset; it is all part of
the machine. The problem is that High Level Languages (HLL's) make too much
abstraction. I have no understanding what is happening or how things work. Too often I
see just a strange collection of words, euphemisms and historical acronyms that people
once thought were funny.

Assembly has been the only language I got some understanding out of in relation
to what the computer was doing for the instructions written in the source code.

You could argue that any HLL can be used in the same way once you set up the
function correctly and use object-oriented code. However OO-based philosophies don't
quite line up with a view based on circuits and components. I tried OO-code and it just
doesn't work. OO-based code is built around hiding what is happening and treats
objects like a black box, unseen to the programmer and more so to the PC user.

The functional paradigm is a bit closer to what I am talking about but just
replaces objects with functions and does similar black box thinking. It just is not as bad
as OO-based stealth.

First learn 32-bit Assembly

Oi, learn the old muck and then learn current assembly code ? Well, yes; in truth
not much has changed and the old code can still be used, within the new structure and
practice. In reality even old 32-bit code will still work on modern machines if you tell
the computer to specifically create a 32-bit program. All new 64-bit processors still use
the 32-bit operating modes.

Now the second answer as to why change, is that old 32-bit programs cannot
access the larger or more efficient 64-bit capabilities; including new registers,
instructions and features like encryption or virtualization. So there are reasons to study
or use 64-bit assembly code.

And remember even if you don't write code in assembly, it can help to learn it in
order to write better programs in your chosen HLL-based code.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 2

Using Gas ATT Syntax

HLA is not available for 64-bit Assembly; if using 32-bit Assembly, HLA is
preferred. I enjoyed studying HLA but caught the tail end of 32-bit CPUs and the author
of HLA does not support 64-bit code. Oh, well; remember that 32-bit code still works.
See http://webster.cs.ucr.edu for HLA-related information. (Please note that he has
retired and the university no longer hosts the website, your browser should be
redirected to the more recent site.)

The Gas assembler, as, will be used instead with the ATT syntax; which has
operands in the 'source, destination' order, which is easier to read for most people.
There are those that think ATT is ugly or confusing. Often this relates to address modes
like the Scale Index Address (you'll see this later). While the code for this feature is
wierd, each syntax has its own peculiar wierdness that makes others prefer their own
chosen syntax.

For me I need the source, destination order of parameters. It just makes more
sense to "move this to there" (move $3, %eax) than to say "put in there, this" (mov
%eax, $3). This has nothing to do with english or left to right precedence in languages.
It has to do with matching cpu code to your language thought process. It would be
better if there was a common syntax to match actual cpu operation but nevermind
(that's why I kinda liked HLA, the code matched how you think).

Compilers used for 64-bit Assembly

hla – not available for 64-bit code but can output assembly code for review.

as – standard gnu assembler also called Gas (command is "as"). If not installed (should
be default in most Linux distros), try installing the bin-utils package. Don't forget
binutils-doc for documentation files.
fasm – a self-written assembler that can produce 32 or 64 bit code. You will have to find
and download this yourself as most Linux repos do not keep a copy available. At last
check, Debian does have this in their repos.
nasm – the Netwide ASseMbler, the most common alternative to gas.
yasm – the Yet Another ASseMbler, not as common as nasm but comes in close third.
Also capable (like HLA) of output in various formats.
ld – linker program to compile object code into an executable. Like as this is also found
in the binutils package.

gcc – common Clanguage compiler found in most Linux distros.
clang – alternate C lang compiler found in BSD and other non-GPL distros.
llvm – backend for clang, capable of outputing code in multiple formats including
assembly.
lld – linker for clang.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 3

http://webster.cs.ucr.edu/

Other useful packages

Editors :
gedit, scite / kate – text editor for either Gnome or KDE (respectively) should already
be installed in distro desktop of choice. If not using KDE or Gnome, either should be in
your repos. Scite also has a project management package available.
bless, jeex, wxhexeditor / okteta / dhex, hexcurse, hexedit, le, lfhex, tweak – hex
editor, displays files in hexadecimal. Used to view sturcture of object files or
executables. Bless and okteta are tied into desktops and have a lot of dependencies,
hexcurse and hexedit are lighter but not as pretty.
bsdmainutils – has the hexdump utility to display files in hexadecimal. Not an editor
like bless or okteta.
xxd – same as hexdump but can be reversed.

Utilities :
make – an utility for managing projects and compiling source code.
pmake / bmake – NetBSD variant of make.
ninja-build – another project/buld management program, aims for speed.
cmake – graphical frontend to make or a standalone make utility.
remake – advanced version of make, includes a debugger.
intel2gas – converts nasm or intel syntax into ATT syntax code.
diffutils / patchutils – Programs that will show differences between files and can
patches to update files to match.

Debuggers :
ddd – graphical frontend to gdb, the GNU Debugger.
lldb – debugger for clang / llvm.
kdbg – another frontend to gdb.
gdb – and of course gdb itself.

Other Utilities :
abs-guide – great document on learning to script in the bash shell terminal, common
terminal shell used in most Linux distros. Good for automating project management.
build-essential – Not really required but some other packages depend on it. Also used
to build packages for Debian-based distros. If building other third-party development
software from source, this package may be required. On Debian it is standard to install
this when developing software.
freebsdutils – package of BSD variants of common Linux build tools like make. Used
with other BSD-based programs on Linux distros.
util-linux – package of useful utilities including linux32 and linux64 which let you
execute programs built for another cpu architechture.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 4

Getting Assembly code from gcc or clang

Two most common programs for C language (an HLL close to machine level code
like assembly), gcc and clang, can produce assembly code as part of their normal
operation. The gcc, Gnu Compiler Collection, is a series of programs for programming
in a number of languages. Clang is a library that will call the correct compiler for the
selected language. Both produce assembly in the ATT syntax for compiling into a
program.

gcc -O2 -S file.c
clang -O2 -S file.c

Where file is the original c source code filename. These are handy commands to
get assembly output from C source code or to see what Assembly code looks like that
these programs produce. Most applications are not developed in Assembly anymore but
it is still used as an intermediate format on Linux systems by gcc, cc or clang. Note that
clang can also produce it own format of Assembly code. We will not be using that format
/ syntax.

The option "-O2" (the capital letter O) specifies optimization level, it may be
omitted for the command. The second level of optimization is not complicated and will
display common adjustments that you make by hand.

The option "-S" (the capital letter S) tells the compiler to stop processing after
writing the Assembly file. The resulting file should be named file.s; where file is the
filename of the input C source code file.

You can include a "-v" option to produce verbose output for most Linux programs.
Others will print a version number to the screen instead. The "-v" option for gcc or
clang should be verbose, it will print every action it takes. The "-###" option is similar
but will not actually execute the commands.

Gas is installed with the binutils package and is common to Linux and BSD, it
should already be installed or easily installed. NASM and YASM have packages in most
repos for download.

HLA is available for Windows, Mac, Linux and BSD. It can output assembly code
for HLA, Gas, FASM, MASM (microsoft's macro assembler) and maybe others.

For this text I'll be using as / ld with make and ddd or kdbg. My Linux system
uses KDE for the desktop and kde-based software and utilities like Kate will be used.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 5

What does Assembly look like ?

Here is the ever common (popular ?) "Hello, World" in Assembly Code :

HLA (32-bit) :

program helloWorld;

#include("stdlib.hhf");

begin helloWorld;
stdout.put("Hello, World of Assembly Language", nl);
end helloWorld;

Gas (32-bit) :

.global _start

.data
msg:
 .ascii "Hello, World!\n"
 len = . - msg
.text
_start:
 movl $4, %eax
 movl $1, %ebx
 movl $msg, %ecx
 movl $len, %edx
 int $0x80
 movl $1, %eax
 movl $0, %ebx
 int $0x80

Modified : 2020-07-30 the Assembly Bible, Table of Contents 6

Gas (64-bit) :

.global _start

.data
msg:
 .ascii "Hello, World!\n"
 len = . - msg
.text
_start:
 movq $1, %rax
 movq $1, %rdi
 movq $msg, %rsi
 movq $len, %rdx
 syscall
 movq $60, %rax
 movq $0, %rdi
 syscall

What does it all mean ?

At the start of either source code you find :

program helloWorld;

or

.global _start

both tell the compiler where the program starts, the function that is the first
instruction that is executed. In the case of HLA, it is the name that follows the
"program" keyword (or directive). These are instructions executed by the compiler and
not the computer cpu itself. For Gas, it is the keyword ".global" which in Gas all
keywords start with a period (' . ') .

It is a convention for assembly in Gas and most other assemblers to use an
underscore (' _ ') and the name "start" or "main" for the beginning of a program. This is
also called the "entry point". Collectively all names used in this fashion are called "
Labels ". Labels are unique in both case and spelling. Treat Label, label and LABEL as
different names unless documentation for your assembler says otherwise.

In Linux and using C library functions, use the label "_main" for your entry point,
it is expected by the library functions.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 7

This code :

#include("stdlib.hhf");

is an example of a directive in HLA; it is a common include statement found in
most HLL's, like C or C++. In most HLL's (high-level languages), the statements are
terminated by a semi-colon, in assembly this is optional unless the documentation says
otherwise. In general you should get used to using them.

.data
msg:
 .ascii "Hello, World!\n"
 len = . - msg

The above code is declaring a variable in Gas assembly. The HLA example does
not have a variable as it is declared in the function itself. The ".data" directive indicates
the section of code is used for storing information. Data sections must have storage of
memory reserved but you do not have to give the variable a value, it may be empty. An
empty value is assumed to be 0 (not null or actually empty).

The "msg:" is a label and indicates the name of a variable. It does not need to be
on a separate line as written here.

The ".ascii" directive indicates value type or size. In this case it indicates that the
data is an ascii string. Strings are quoted and may have what is called an escape
sequence (the ' \ ' character). It is used to indicate a control sequence or other
character not normally printed. Here it marks the newline character, telling the
assembler to print any information that follows on a new line in the terminal (like your
command prompt).

Strings should be zero-terminated unless the .asciz directive is used. Here the
terminator is neglected but the program compiles anyways, oops. The length of the
string is specified and can be used anyways. Do not rely on that, always zero terminate
strings unless declaring them with .asciz . Strings are quoted with double-quotes. If a
double quote is needed in the string, use an escape character. If the escape character is
needed, use it twice (' \\ ').

The line "len = . - msg" is an expression to find the length without counting the
number of characters in each string declared. In short it means to find the length by
starting here (the ' . ' character) and counting back to the beginning (' - msg '). What
you are doing is taking the memory address of the end of the string and subtracting the
memory address of the beginning, thus getting the total length of the string.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 8

begin helloWorld;

This is the _start label of an HLA program. For gas it is indicated by :

.text
_start:

The ".text" is the directive declaring the section that holds the instructions or
functions to be executed. In some other assemblers the directive ".code" is used
instead. The reason for the names are historical and are not needed to be known. The
label "_start:" was declared by the .global directive (or ' .globl ') and must match here
or the code won't compile.

This is the function or instructions to be executed by the program :

stdout.put("Hello, World of Assembly Language", nl);
end helloWorld;

As explained earlier, HLA can have the string declared in the function instead of
creating a variable. Either method could have been used here. Like Gas the string is
quoted but the newline sequence follows the string as ", nl);" . This is not required,
HLA could use escape sequences as well. Either method is acceptable in HLA.

The line "end helloWorld;" indicates the terminus of the program. Here it ends
and the program returns control to the Operating System. For Gas it is not required as
we will use the exit system call which does the same thing. If not, you can use the
".end" directive which is the same thing as what HLA uses.

 movq $1, %rax
 movq $1, %rdi
 movq $msg, %rsi
 movq $len, %rdx
 syscall

In Gas for 64-bit assembly, these five lines are used in place of the single
"stdout.put" function from HLA. If you ask HLA to output assembly source file instead of
compiling to a program you should see a similar output of five lines.

The "movq" instruction tells Gas to move a 64-bit sized value from the number one
(decimal) to the register rax (registers are prefixed by ' % ' in ATT syntax). You can omit
the % prefix if you set the assembler to the ".att_syntax noprefix" directive before the
.data or .text sections (or use -mnakedreg at the command line). There is no reason to
do this for HLA.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 9

The "syscall" instruction tells Gas to call the Linux system command to write a
value. In 32-bit code this is $4 instead (syscalls are remapped between 32- and 64-bit
values).

An instruction or opcode (operating code) are followed by the values to be
operated on. Depending on the instruction these can be between zero or four values
(not usually higher than four, and rarely at that).

Gas uses a comma to separate values in source then destination order. Intel
syntax and other assemblers may place the values in destination then source order. Be
careful when reading code from other assemblers. HLA also uses source then
destination order unless told to produce code for other assemblers.

In Gas an immediate value (one typed directly in the instruction as shown) is
always prefixed with a dollar sign character (' $ '). And as stated the registers can be
either ' % ' or not depending on configuration, by default they are prefixed.

A register is a storage value found in the cpu. It is an actual piece of hardware
that is physical memory. The size of registers vary according to CPU. There will be a list
of registers a little bit later.

For 32-bit programs these values change a bit. You will notice the registers start
with an ' e ' instead of an ' r '. This is a particular difference between 32- and 64-bit
codes; like register sizes. Another difference is the replacement of "syscall" with "int
$0x80". This is because a direct call to the interrupts of the computer (' int ' means
interrupt in this context), is not available in 64-bit programming. You must call syscall
(which uses an OS-based interface) instead.

Otherwise you will see a one to one match between 32- and 64-bit programming
in assembly.

The last bit of code is :

 movq $60, %rax
 movq $0, %rdi
 syscall

These three lines are equal to the "end helloWorld;" from the HLA code. It
terminates the program by calling the exit system call of the Unix operating system (be
it Linux or BSD, maybe MacOS too). Each OS will use a different numeric value for the
syscall. In 32-bit code it is $1 while in 64-bit code it is $60, there is a C language header
file used in the source code that will indicate the values for different system calls. In
Linux you should find this C header in the location "/usr/include/x86_64-linux-gnu/asm/"
as either "unistd_32.h" or "unistd_64.h" depending on wether you are writing 32- or 64-
bit code.

The exact location may vary depending on your Linux distro, the above example
was for Debian Linux (version 9, to be exact).

The line "movq $0, %rdi" gives an exit status to the Linux OS. The exit syscall
does not do this itself, you have to specify it in the program.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 10

How do I make this program ?

Once you have written the source code into a plain text file (do not use a word
processor unless you can save the file as plain text), you create the program by running
two programs; the assembler and the linker.

An Assembler is like a compiler in a high-level language, it takes the code you
have written and translate it into the instructions a computer understands. This file is
then called an object file. Technically you are finished as there is little difference
between an object file and an executable. On some embedded platforms, like Arduinos
and ESP32 chips, this is in fact the last step and you upload the binary into the chip as
firmware. However, for more complex computers there is one more step.

The second program is called the Linker, this program converts the object code
into an executable file for your PC. This conversion takes the information used by the
object code and puts it into a format for your PC and operating system. Linux and other
OS's are more complex and require additional information to process an executable and
understand the format. A Linker handles this responsibility. If you compare an object
file to an executable, you will find the same instructions with extra fields for the format
and processing of the program.

Randall Hyde's book series "Write Great Code" has excellent examples of this
comparision.

To assemble code in Linux, which is used in this text, you need the 'as' program
from the binutils package. This package might already be installed in your distro or it is
easily found in the repos for your distro. On BSD this should already be installed, or a
similar assembler is available.

The command to build 64-bit code is :

$ as -v -o hello.o hello.s

To build 32-bit code on a 64-bit processor is :

$ as -v --32 -o hello.o hello.s

Be sure two hyphens are used in front of 32 in that command (in case the word
processor spellchecks them to something else). The "-v" parameter sets the program to
report the version of the assembler, it can be omitted, Linux has a convention of "-v" to
produce verbose output of what is happening for troubleshooting purposes. Both
assembler and linker are based of old standards and may or may not honor that
convention; do not worry about it. The "--32" parameter tells the OS to build code for
32-bit systems, it can be omitted to build 64-bit code. This works if as is being run on a
64-bit machine, otherwise use "--64" to build 64-bit code specifically. To produce object
code using a specific name, use the "-o" parameter followed by the name to be used.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 11

By convention all object code uses the ".o" file extension. The last parameter is
the assembly source code to be built. These files use the ".s" file extension by
convention.

The dollar sign used in commands is a Linux convention to indicate a user
command prompt. It is not required to type that when giving a command, it should
already be displayed at the end of your terminal prompt.

A root terminal (or the administrator in Windows-speak) is indicated by using a
"#" character instead.

To link object code use a program called "ld", like as this is installed with binutils.
Same install procedures apply, you should find it in the repos if not already installed on
your Linux distro.

To build object code into 64-bit executable :

$ ld -v -m elf_x86_64 -o hello hello.o

To build obejct code into 32-bit executable on a 64-bit cpu :

$ ld -v -m elf_i386 -o hello32 hello32.o

Both as and ld share similar output parameters. Specific use is given below. For
simple compiling of code they mean the same thing.

If not specified, the output file will be called "a.out"; for use in a binary only
capacity (like the firmware example used earlier). These files can still be executed as
programs. But it is preferred to specify an output name.

In order to avoid confusion, I named the 32-bit version with a 32 suffix to the file
names. Note the ELF format indicated by the "-m parameter". Windows prefers to use
the COFF format for executables and Linux/BSD/Unix uses ELF formats. Gas/as/ld can
produce either and also the Windows PE format for executables. This ELF or COFF is
the format information mentioned earlier that is the difference between an object file
and an executable. Again, the books by Randall Hyde for "Write Great Code" does
explain this difference. For the most part you will build using the format for your OS
and there is no need to be concerned with this information.

The "-m" parameter to specify object format is not required for 64-bit code if built
on 64-bit cpu's, you may omit it.

When you need to build a specifically efficient and fast program is when the
object/executable format will become important. Keep the info handy in case but do not
be worried about it.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 12

You can easily search for these commands using "$ which as" or "$ whereis as", if
the system returns a file path to your screen; then the program is installed. Same
applies for the ld program. Note that how to use these programs are found in the
manual pages either "$ man as" or "$ man ld"

'as' lives at :
$ which as
/usr/bin/as

'ld' lives at :
$ which ld
/usr/bin/ld

for 'gcc' and 'clang' from earlier :
$ which gcc
/usr/bin/gcc
$ which clang
/usr/bin/clang

While HLL programmers can use gcc to build their program in one command,
using assembly directly requires the manual use of both as and ld to compile code. GCC
and Clang build code automatically but they also build the assembly source file instead
of skipping that step and building straight to the object code. You can make use of this
to read the assembly code they build if you wanted to examine it. These commands
were given near the beginning of the text.

gcc -O2 -S hello.c
clang -O2 -S hello.c

Will assume that hello.c is the HLL equivalant of the aseembly code we have just
been working with.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 13

Here is ths C code :

#include <stdio.h>
int main(void)
{
 printf("Hello World!\n");
 return 0;
}

Now the directive should look familiar, it is how all HLL's write their directives.
The line "int main(void)" is the function declaration of the entry point as C specifies it.
There are other parameters and function information but this is the simple use of it for
our purpose. The { or } on thier own lines are for pretty-ness. These mark the
instructions carried out by the function (including other functions). The "printf("Hello
World\n");" line is what is called a C Format string, again you will find most HLL's write
their strings in this way. And finally a "return 0;" which is the exit code for the return
status to the Linux OS.

Now here is the assembly code produce by the -S parameter in gcc :

.file "hello.c"

.section .rodata
.LC0:

.string "Hello World!"

.text

.globl main

.type main, @function
main:
.LFB0:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
leaq .LC0(%rip), %rdi
call puts@PLT
movl $0, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.LFE0:
.size main, .-main
.ident "GCC: (Debian 6.3.0-18+deb9u1) 6.3.0 20170516"
.section .note.GNU-stack,"",@progbits

Modified : 2020-07-30 the Assembly Bible, Table of Contents 14

Okay, break this down to something simple. First I'll remove all the debug symbols
and sections. We want something simple to show like our hand-coded example.

.file "hello.c"

.section .rodata
.LC0:

.string "Hello World!"

.text

.globl main

.type main, @function
main:
.LFB0:

pushq %rbp
movq %rsp, %rbp
leaq .LC0(%rip), %rdi
call puts@PLT
movl $0, %eax
popq %rbp
ret

Alright we can work with this. First the lines ' .file "hello.c" ' and ".section .rodata"
are optional. The first indicates the source file and is not needed, while the second is a
named section for our string data. We can use the .data section for this and making a
specific read-only section is not required. It would have been easier to just use .data
instead.

The label .LC0 just indcates our variable, we named it msg specifically earlier;
here they just used a label for the whole thing instead. This causes no real difference
but our way may be more readable.

GCC also put the .global directive after the .text section; not a problem just a
readablility issue. The "@function" value just indicates our entry is a function. This is
not really neccesary and can be omitted. Also the .type section is not needed either.

The "main:" label is then followed by another label ".LFB0:", this is not needed but
they created a label for the function printing the string like they did for the string itself.
Not required, but not an issue either.

The "pushq %rbp" and "popq %rbp" instructions from the function are new; they
preserve what is called the stack. First you push the stack to preserve what was there
and then you pop it to remove your data and restore the stacks last value. Our program
was simpler and didn't affect the stack. But here they manipulated it a bit.

The stack is a temporary place to hold data while the program is running. It will
be brought up again later.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 15

The "leaq .LC0(%rip), %rdi" instruction is also new and so is the value it uses.
This called 'load effective address', lea is used to find memory address of a value rather
than specify it yourself. Sometimes a value might not be where you expect it based on
how the program runs. Using lea is a safer alternative. The value ".LC0(%rip)" means
find the address starting at rip and move a distance equal to .LC0 size. This gives the
address of the string you want to print (remember that .LC0 is the label for the string).

The "call" instruction here is making a function call and not a syscall. It is getting
the C function puts (put string) from the C std (standard) library. This is known as an
External Function, since it is not in the assembly source itself. This is unneccessary but
is an example of using an existing function from another file. It would be simpler to call
the write function yourself.

The last new instruction is "ret", which means return. It is used after the call
function is done (the callee) and gives control back to the original program (the caller).
You will notice that an exit status is given, "movl $0,%eax", but no exit syscall is made.
This example shows GCC letting the program run its course instead of specifically
making a graceful exit. This is bad form and you should always make an exit syscall
(actually GCC is making the exit call from the puts function but that isn't visible from
the assembly code and looks like it isn't made,hence why this code is a little more
unreadable.).

Final Review

The hand-coded program was 15 lines and before removing the debug
information, the GCC compiler was 26 lines (16 after). For a simple hello world
example, 10 lines (almost double) is pretty bad for an HLL compiler. And Clang's code is
worse. It's 40 lines and I just won't bother with it. Now it uses alignment directives
(.align) which is a good thing to keep your code on specific memory boundaries, but it is
full of the same debug mess and uses some wierder function calls. It is a fine example of
a compiler not producing human-readable code for the sake of better efficiency.

Running away with it

Finally you can execute your program from the command line of Linux with either
the 32-bit or 64-bit version, depending on which you compiled.

$./hello
Hello, World!
$

$./hello32
Hello, World!
$

Modified : 2020-07-30 the Assembly Bible, Table of Contents 16

So now what ?

Now go over the structure of an assembly program and the syntax of the
language. Lets start making some headway into 'understanding the machine' as a
previously specified author might put it.

First, remember this is using ATT syntax because it uses the source, destination
order in opcodes and makes it easier to read instructions. This is the default in Linux
and as but can be specified by using ".att_syntax" in the directives. You can specify
".att_syntax noprefix" if you don't want to use ' % ' before an register name.

Second, this will be Gas on a 64-bit machine. There may be an occasional mention
of HLA or 32-bit code but this is not the preferred code we will be using. On a 64-bit
cpu, no parameters need to be given. You can specify bitness of the code by using
".code32" or ".code64" directives or using "--32" or "--64" parameters for the as
program. If you need to, there is also a ".code16" directive for the source code file.

When running your own programs, be sure to use "./" in front of your program's
name. This is because your program won't be in the normal places Linux looks for
binary executables unless you tell it where to look. The "." tells Linux to start here or
"this" and the "/" character is used to define a directory or a sub-directory (a folder in
Windows-speak). Even though your program may be sitting in the top folder of a
directory, you always use "/" before the name because the contents of a folder is always
a sub-directory of the "this" character.

$ ls -a1
.
..
hello
hello32
hello32.o
hello32.s
hello.o
hello.s
makefile

The "ls -a1" is a command to list (ls) all programs (-a) in the current directory one
per line (-1). As you can see there is an entry for "." and "..", the first is the name for
"this" and the second indicates the parent directory. All contents of a folder are children
of this so to run either executable above in linux be sure to use "./hello" or "./hello32",
the alternative is to either copy these programs into a location Linux will check or add
the current directory to what is called the $PATH variable. Both can be a security risk
so run the programs yourself instead.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 17

Genesis
(Source Code Grammar and CPU design)

Source Code

Registers

Memory

Stack

Directives

Literals and Datatypes

Op Code Instructions

Macros

Conditional Source

Modified : 2020-07-30 the Assembly Bible, Table of Contents 18

Exodus
(External Programs and Source Code)

Assembler

Linker

External Includes

External Libraries

Shared Binaries

Debugger

Modified : 2020-07-30 the Assembly Bible, Table of Contents 19

Leviticus
(Standards, Conventions and Practices)

Standards

Linux Syscall Convention

C Library Convention

Makefiles

bash Scripts

Best Practices

Modified : 2020-07-30 the Assembly Bible, Table of Contents 20

Numbers
(Integers, Numbers and Math)

Datatypes

Arithmetic Instructions

Floating–Point Math

Optimizing Math

Modified : 2020-07-30 the Assembly Bible, Table of Contents 21

Deuteronomy
(Characters and Strings)

Datatypes

String Instructions

String Optimization

Modified : 2020-07-30 the Assembly Bible, Table of Contents 22

Apocrypha
(Assembly–written Software)

File Use

Linux Terminal Interface

Graphic Interfaces

Multimedia

Networks

Games

Amateur Radio

Modified : 2020-07-30 the Assembly Bible, Table of Contents 23

References
(What is Expected to be Remembered)

Linux bash Shell

Assembler Options

Linker Options

Make Options

Directives

Modified : 2020-07-30 the Assembly Bible, Table of Contents 24

Instructions

Most x86 (32-bit) instructions are still usable in 64–bit code except where
otherwise depreciated or invalid. Instructions that assume genreal–purpose register
use, use the 64–bit registers instead of the 32–bit registers.

Format = Op Code (Source), Op (Src, Dest) or Op (Src1, Src2, Dest)
IRM or I/R/M = Immediate (or Literal), Register or Memory
Italic sz indicates a size code (data type)

Code Integer Types Bit Size Code Float Types Bit Size

b byte 8 ss scalar, single 64 / 128

w word 16 sd scalar, double 128

l dword 32 ps packed, single 128 / 256

q qword 64 pd packed, double 128 / 256

Italic cc indicates a required condition code.

Code Condition FLAGs

a / nbe above or not below and equal CF = 0 ZF = 0

ae /nb above and equal or not below CF = 0

b / nae below or not above and equal CF = 1

be / na below and equal or not above CF =1 or ZF = 1

e / z equal or zero ZF = 1

ne / nz not equal or not zero ZF = 0

g / nle greater or not less than and equal ZF = 0 SF = OF

ge / nl greater and equal or not less than SF = OF

l / nge less than or not greater and equal SF != OF

le / ng less than and equal or not greater ZF = 1 or SF !=OF

s signed SF = 1

ns not signed SF = 0

c carry CF = 1

nc not carry CF = 0

o overflow OF = 1

no not overflow OF = 0

p / pe parity or parity even PF = 1

np po no parity or parity odd PF = 0

Modified : 2020-07-30 the Assembly Bible, Table of Contents 25

Invalid / Depreciated Instructions

aaa, aad, aam, aas, bound, daa, das, into, popa, popad, pusha, pushad

SIMD Instructions

[Single Instruction Multiple Data (SIMD)]
[Streaming SIMD Extensions (SSE)]
[Advanced Vector eXtensions (AVX)]

Instructions flagged with SSE or AVX in their Use column are floating point or
packed types used in SSE, SSE4/5, AVX or AVX256 instructions. A compatible CPU is
required (most modern CPUs circa 2000-ish should have up to AVX instructions). Note
that if the opcode is defined in more than one version (maybe additional formats were
added), the higher version is used for the label.

Some instructions require specific feature sets. In addition to an AVX compatible
cpu, the cpu must also support the indicated feature. Most features are supported by a
cpu that also supports AVX2 instructions. Some common sets are FMA or BMI.

Transfer Instructions

Moving or exchanging data.

Op Code Format Use

movsz Op (I/R/M, R/M)
Op (R, R/M)

Move value from source to destination
SSE2, Move float from XMM to XMM register or memory

movsx Op (R/M, R) Sign–extend source into destination.

movzx Op (R/M, R) Zero–extend source into destination.

cmovcc Op (R/M, R) Move if cc condition evaluates.

push Op (I/R/M) Push value from source onto stack.

pop Op (R/M) Pop value from stack into destination.

xadd Op (R, R/M) Exchange data and place sum in destination

xchg Op (R, R/M) Exchange data between source and destination

Modified : 2020-07-30 the Assembly Bible, Table of Contents 26

Transfer Instructions (SSE opcodes)

Moving or exchanging data. These require an SSE compatible cpu, most modern
PCs should have these opcodes available. There are several versions of these
extensions, your cpu needs to support the specified version. Most modern PCs should
support SSE/SSE2 and maybe SSE3. More recent PCs can support SSE 4, 4.1, 4.2 or
SSE5 opcodes.

Op Code Format Use

movasz Op (R/M, R) SSE2, Move pack type from XMM to XMM.

movusz Op (R/M, R) SSE2, Move (unaligned) pack type from XMM to XMM.

movlsz Op (R/M, R/M) SSE2, Move low–order qword into destination.

movhsz Op (R/M, R/M) SSE2, Move high–order qword into destination.

movlhsz Op (R, R) SSE, Move low–order qword into high–order destination.

movhlsz Op (R, R) SSE, Move high–order qword into low–order destination.

movmsksz Op (R/M, R) SSE2, Store sign bits into low bits of dest. High bits
zero

movdqa SSE2,

movdqu SSE2,

movq2dq SSE2,

movdq2q SSE2,

movsldup Op (R/M, R/M) SSE3, Copies low qword into dest then copies into high.

movshdup Op (R/M, R/M) SSE3, Copies high qword into dest then copies into low.

movddup Op (R/M, R/M) SSE3, Copies low qword into low and high of dest.

pmovsxszsz SSE4.1, sign extend low-order into destination. (bwdq)

pmovzxszsz SSE4.1, zero extend low-order into destination. (bwdq)

pmovmskb Move byte mask.

Transfer Instructions (AVX opcodes)

Moving or exchanging data. These require an AVX compatible cpu, most recent
modern PCs should have these opcodes available.

Op Code Format Use

vbroadcastsz AVX2, Copy value (i/f) to all positions in dest.

vbroadcastf128 AVX, Copy 128-bit float to all positions.

vbroadcasti128 AVX2, Copy 128-bit integer to all positions.

vmaskmovsz AVX, Condition copy float src2 to dest by src1 mask.

vpmaskmovsz AVX2, Condition copy int src2 to dest by src1 mask.

vgatherszsz AVX2 Condition copy 4 or 8 floats or integers from
memory by VSIB address.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 27

Arithmetic Instructions

Common arithmetic and mathematical instructions.

Op Code Format Use

add Op (I/R/M, R/M)
Op (R, R/M)

Sign/Unsign addition of source to destination.
SSE2, Add float from XMM to destination.

adc Op (I/R/M, R/M) Sign/Unsign carry addition of source to destination.

sub Op (I/R/M, R/M)
Op (R, R/M)

Sign/Unsign subtraction of source from destination.
SSE2, Subtract float XMM from destination.

sbb Op (I/R/M, R/M) Sign/Unsign carry subtraction of src from dest.

imul
Op (R/M)
Op (I/R/M, R/M)
Op (I, R/M, R)

Signed Multiplication, assumes RAX is src.
Signed Multiplication, stores result in dest.
Signed Multiply of two sources, stores result in dest.

mul Op (R/M)
Op (R, R/M)

Unsigned Multiplication, assumes RAX is src.
SSE2, Multiply destination by float XMM.

idiv Op (R/M) Signed division, assumes RAX is src.
Stores result in RAX:RDX (quotient:remainder)

div
Op (R/M)
Op (R, R/M)

Unsigned division, assumes RAX is src.
Stores result in RAX:RDX (quotient:remainder)
SSE2, Divide destination by float XMM.

inc Op (R/M) Increase source by one. Does not affect FLAGS.

dec Op (R/M) Decrease source by one. Does not affect FLAGS.

neg Op (R/M) Two's complement negation

Modified : 2020-07-30 the Assembly Bible, Table of Contents 28

Arithmetic Instructions (SSE)

Common arithmetic and mathematical instructions.

Op Code Format Use

addsubsz Op (R/M, R/M) SSE3, Add odd packed and subtract even packed data.

haddsz Op (R/M, R/M) SSE3, Add adjacent values between two packed types.

hsubsz Op (R/M, R/M) SSE3, Subtract adjacent values between two packed types.

sqrtsz Op (R/M) SSE2, Calculate square root of source.

maxsz Op (R, R/M) SSE2, Compare source to dest store highest in dest.

minsz Op (R, R/M) SSE2, Compare source to dest store lowest in dest.

roundsz Op (R, R/M) SSE4.1, Round value as indicated by second operand.

rcpss Op (R/M) SSE, Compute reciprical of value.

rsqrtss Op (R/M) SSE, Compute reciprical square root of value.

dpsz Op (R/M) SSE4.1, dot product of packed type

pmulld SSE4.1,

pmuldq SSE4.1,

pminusz SSE4.1, b,w or d, Compare and store lowest unsign value.

pminssz SSE4.1, b,w or d, Compare and store lowest sign value.

pmaxusz SSE4.1, b,w or d, Compare and store highest unsign value.

pmaxssz SSE4.1, b,w or d, Compare and store highest sign value.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 29

Arithmetic Instructions (AVX)

Common arithmetic and mathematical instructions.

Op Code Format Use

vfmadd132sz
vfmadd213sz
vfmadd231sz

FMA4, fused mathematics according to indicated algorithm.
Same algorithm used for all fuse instructions.
dest = src * src + src

vfmsubsz FMA4, fused mathematics according to indicated algorithm.
dest = src * src - src

vfmaddsubsz
FMA4, fused mathematics according to indicated algorithm.
odd: dest = src * src + src
even: dest = src * src - src

vfmsubaddsz
FMA4, fused mathematics according to indicated algorithm.
odd: dest = src * src - src
even: dest = src * src + src

vfnmaddsz FMA4, fused mathematics according to indicated algorithm.
dest = -(src * src) + src

vfnmsubsz FMA4, fused mathematics according to indicated algorithm.
dest = -(src * src) - src

mulx BMI2, unsigned mult EDX and src into dest1 and dest2, no
FLAGs.

rdrand RDRAND, load hardware random number into dest register.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 30

Comparison Instructions

Test instructions comparing two values and setting FLAG register based on
results.

Op Code Format Use

cmp Op (I/R/M, R/M)
Op ()

Compares two values and sets FLAGs accordingly.
SSE2, Compares two floats and stores result in dest.

cmpssz Compares memory pointed by ESI and EDI, sets FLAGs.

cmpxchg Op (R/M) Compares values with RAX and exchanges based on results.

cmpxchg8b Op (R/M) Compares RAX to 8-bit values and exchanges based on
results.

cmpxchg16b Compares RDX:RAX to 16-bit values and exchanges based on
results.

Comparison Instructions (SSE)

Test instructions comparing two values and setting FLAG register based on
results.

Op Code Format Use

comisz Op (I/R/M, R/M) SSE2, Ordered compare of two values, sets FLAGs

ucomsz Op (I/R/M, R/M) SSE2, Unordered compare of two values, sets FLAGs

pcmpeqsz SSE4.1, bwdq,

pcmpgtsz SSE4.2, bwdq,

Comparison Instructions (AVX)

Test instructions comparing two values and setting FLAG register based on
results.

Op Code Format Use

Modified : 2020-07-30 the Assembly Bible, Table of Contents 31

Conversion Instructions

Converts data from one type to another. Will typically use RAX or RDX:RAX for
conversion.

Op Code Format Use

cbw Op Sign–extend byte and store into word value. AL -> AX

cwde Op Sign–extend word and store into dword value. AX -> EAX

cwd Op Sign–extend word and store into dword value. AX -> DX:AX

cdq Op Sign–extend dword and store into qword value. EAX ->
EDX:EAX

cdqe Sign–extend dword and store into qword value. EAX -> RAX

cqo Sign–extend dword and store into qword value. RAX ->
RDX:RAX

bswap Op (R) Reverses bytes from Little–Endian ot Big–Endian.

movbe Op (R, M)
Op (M, R)

Reverses source and stores in destination.

xlatb Op Convert AL according to lookup table in EBX

Conversion Instructions (SSE)

Converts data from one type to another. Will typically use RAX or RDX:RAX for
conversion.

Op Code Format Use

cvtsi2sz Op (R/M, R) SSE2, Convert sign-dword into float.

cvtsz2si Op (R/M, R) SSE2, Convert float into sign-dword.

cvttsz2si Op (R/M, R) SSE2, Convert float into sign-dword. Truncates values.

cvtsz2sz Op (R/M, R) SSE2, Convert float to float (change precision).

cvtpi2sz Op (R/M, R) SSE2, Convert packed integers into pack floats.

cvtsz2pi Op (R/M, R) SSE2, Convert pack float into pack integers.

cvttsz2pi Op (R/M, R) SSE2, Convert pack float into pack integers, Truncates.

cvtdq2sz Op (R/M, R/M) SSE2, Convert pack qword into pack floats.

cvtsz2dq Op (R/M, R/M) SSE2, Convert pack float into pack qwords.

cvttsz2dq Op (R/M, R/M) SSE2, Convert pack float into pack qwords. Truncates.

cvtsz2sz Op (R/M, R/M) SSE2, Convert pack float into pack float. Change prec.

packuswb SSE4.1, Convert pack to 2x pack integers, saturation.

packusdw SSE4.1, Convert pack to 2x pack integers, saturation.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 32

Conversion Instructions (AVX)

Converts data from one type to another. Will typically use RAX or RDX:RAX for
conversion.

Op Code Format Use

vcvtph2ps AVX, Convert half-precision float to single precision.

vcvtph2ps AVX, Convert single precision float to half-precision.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 33

Logical Instructions

Boolean tests of comparison, unless otherwise stated these are bit–wise
operations (except for not).

Op Code Format Use

and Op (I/R/M, R/M) And evaluation
SSE2, And evaluation of each pack type.

or Op (I/R/M, R/M) Or evaluation.
SSE2, Or evaluation of each pack type.

xor Op (I/R/M, R/M) Exclusive OR evaluation.
SSE2, Exclusive OR evaluation of each pack type.

not Op (R/M) One's compliment negation.

test Op (I/R/M, R/M) Bitwise test to affect FLAGs, no results stored.

Logical Instructions (SSE)

Boolean tests of comparison, unless otherwise stated these are bit–wise
operations (except for not).

Op Code Format Use

andnsz Op (I/R/M, R/M) SSE2, dest Bitwise NOT followed by Bitwise AND into dest.

Logical Instructions (AVX)

Boolean tests of comparison, unless otherwise stated these are bit–wise
operations (except for not).

Op Code Format Use

andn BMI1, Bitwise AND of inverted src1 and src2 into dest.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 34

Rotate/Shift Instructions

Moves data within location, often used as a short cut for arithmetic. Use RCX to
count number of rotated or shifted places.

Op Code Format Use

rcl Op (R/M) Rotate with carry to left.

rcr Op (R/M) Rotate with carry to right.

rol Op (R/M) Rotate to left.

ror Op (R/M) Rotate to right.

sal/shl Op (R/M) Shift to left, can perform math.

sar Op (R/M) Shift to right, can perform math.

shr Op (R/M) Shift right.

shld Op (R/M) Shift left, double precision math.

shrd Op (R/M) Shift right, double precision math.

Rotate/Shift Instructions (SSE)

Moves data within location, often used as a short cut for arithmetic. Use RCX to
count number of rotated or shifted places.

Op Code Format Use

pslldq SSE2, Shift pack left.

psrldq SSE2, Shift pack right.

Rotate/Shift Instructions (AVX)

Moves data within location, often used as a short cut for arithmetic. Use RCX to
count number of rotated or shifted places.

Op Code Format Use

vpsllv AVX2, Shift integer left src1 by src2 count into dest.

vpsrav AVX2, Sign shift integer right src1 by src2 count into
dest.

vpsrlv AVX2, Shift integer right src1 by src2 count into dest.

roxr BMI2, Rotate src by value into dest, no FLAGs.

sarx BMI2, Math shift right src1 by src2 count into dest, no
FLAGs.

shlx BMI2, Shift src1 left by src2 into dest.

shrx BMI2, Shift src1 right by src2 into dest.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 35

Bit Instructions

Moves data within location, often used as a short cut for arithmetic. Use RCX to
count number of rotated or shifted places.

Op Code Format Use

setcc Opcc (R/M) Set byte to 1 if conditions are met.

bt Op (R/M) Copy bit into FLAGS

bts Op (R/M) Copy bit to FLAGs and set to '1'.

btr Op (R/M) Copy bit to FLAGs and set to '0'.

btc Op (R/M) Copy bit to FLAGs and set to '0'.

bsf Op (R/M, R/M) Scan source and store in dest the lsb. Affects Zero FLAG.

bsr Op (R/M, R/M) Scan source and store in dest the msb. Affects Zero FLAG.

Bit Instructions (SSE)

Moves data within location, often used as a short cut for arithmetic. Use RCX to
count number of rotated or shifted places.

Op Code Format Use

shufsz Op (b, R/M, R/M) SSE2, Moves pack from src to dest according to 8-bit mask

unpcklsz Op (R/M, R/M) SSE2, Unpack and interweave src low into dest.

unpckhsz Op (R/M, R/M) SSE2, Unpack and interweave src high into dest.

insertps Op (I, R/M, R) SSE4, Insert single into pack according to immediate.

extractps Op (I, R/M, R) SSE4, Extraact single from pack according to immediate.

blendsz Op (I, R/M, R/M) SSE4, Copy float pack from src to dest by immediate.

blendvsz Op (R, R/M, R/M) SSE4, Copy float pack from src to dest by register.

pshufd SSE2, Copy src to dest by immediate value.

pshuflw SSE2, Copy low-src to low-dest by immediate value.

pshufhw SSE2, Copy high-src to high-dest by immediate value.

punpcklqdq SSE2, Copy low-src to high-dest.

punpckhqdq SSE2, Copy high-src to high-dest, high-dest to low dest.

pinsrsz SSE4.1, Copy integer to XMM register by immediate value.

pextrsz SSE4.1, Copy integer from XMM by immediate value.

pblendw SSE4.1, Copy words from src to dest by immediate.

pblendvb SSE4.1, Copy bytes from src to dest by XMM0.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 36

Bit Instructions (AVX)

Moves data within location, often used as a short cut for arithmetic. Use RCX to
count number of rotated or shifted places.

Op Code Format Use

vpblend Op (src, src, dest) AVX2, Condition copy value from src to dest by mask.

vpermsz AVX2, Reorders dword by 2nd src mask. d, q, ps, pd sz

vpermilsz AVX, Reorders float by 2nd src, independent lanes.

vperm2f128 AVX2, Reorders 128-bit float of 2 src by mask.

vperm2i128 AVX2, Reorders 128-bit integer of 2 src by mask.

vextracti128 AVX2, Extract int from src to dest by mask.

vinserti128 AVX2, Insert int from src to dest by mask.

bextr BMI1, Extract bit field from src1 by src2 index+length
into dest.

blsi BMI1, Extract lowest 1 bit into dest, zero other bits.

blsmask BMI1, Extract bit by mask into dest, set lower bit to
1, clear other bits.

bzhi BMI2, Copy src1 into dest, clear high-order dest by
src2 mask.

lzcnt LZCNT, Count leading zero in src, result in dest.

pdep BMI2, Scatters low bit from src1 to dest by src2 mask,
other bits are clear.

pext BMI2, Copy low bit from src1 to dest by src2 mask.

tzcnt BMI1, Count trailing zero of src, result in dest.

vzeroupper AVX-64, Zeros upper bits in YMM register.

vzerall AVX-64, Zeroes all bits in YMM register.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 37

String Instructions

Manipulates text strings or blocks of data. Rep accepts e, ne, z, nz condition codes
(or no code at all).

Op Code Format Use

cmpssz Op Compares values pointed by RSI and RDI, sets FLAGs
accordingly.

lodssz Op Load string pointed by RSI into RAX.

movssz Op Move string from RSI to RDI.

scassz Op Compares string in pointer of RDI to RAX, sets FLAGs.

stossz Op Store string pointed by RDI into RAX.

repcc Op
No cc, Repeat String while RCX is not 0.
If e or z, repeat while RCX != 0 AND Zero FLAG = 1
If ne or nz, repeat while RCX != 0 AND Zero FLAG = 0

String Instructions (SSE)

Manipulates text strings or blocks of data. Known strings are of known length,
unknown strings require EOS (terminator, end-of-string), character.

Op Code Format Use

pcmpestri SSE4.2, Compare two known strings, results in ECX.

pcmpestrm SSE4.2, Compare two known strings, results in XMM0.

pcmpistri SSE4.2, Compare two unknown strings, results in ECX.

pcmpistrm SSE4.2, Compare two unknown strings, results in XMM0.

String Instructions (AVX)

Manipulates text strings or blocks of data.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 38

Flag Instructions

Manipulate the flag register. MSB > SF, ZF, 0, AF, 0, PF, 1, CF > LSB

Op Code Format Use

clc Op CLEAR carry FLAG

stc Op SET carry FLAG

cmc Op TOGGLE carry FLAG

std Op SET direction FLAG

cld Op CLEAR direction FLAG

lahf Op Load AH with FLAG register.

sahf Op Store AH into FLAG register.

pushfd Op Push EFLAG register onto stack.

pushfq Push RFLAG register onto stack.

popfd Op Pop stack into EFLAG register.

popfq Pop stack into RFLAG register.

Flag Instructions (SSE)

Manipulate the MXCSR flag register.

Op Code Format Use

ldmxscr SSE, Load MXSCR from memory.

stmxcsr SSE, Store MXCSR into memory.

fxsave SSE, Store FPU, MMX, XMM and MXSCR to memory.

fxrstor SSE, Load FPU, MMX, XMM and MXSCR from memory.

Flag Instructions (AVX)

Manipulate the MXCSR flag register.

Op Code Format Use

Modified : 2020-07-30 the Assembly Bible, Table of Contents 39

Control Instructions

Program flow control; Low-level, does not include conditional statements found in
HLL programming languages.

Op Code Format Use

jmp Op (I/R/M) Jump to location specified by value.

jcc Op (I/R/M) Jump if condition is true.

call Op (R/M)
Op func

Push RIP onto stack and jump to address.
Push RIP onto stack and jump to function (address label).

ret Op Pops call off stack and jump to previous address.

enter Op (R/M) Creates stack frame and allocates memory for parameters.

leave Op Destroys frame and deallocates memory.

jecxz Op (R/M) Jump to location if ECX = 0

jrcxz Op (R/M) Jump to location if RCX = 0

loopcc Op (I/R/M)
No cc, Decrease ECX and jump to location if ECX = 0
If e or z, also test ZF = 1
If ne or nz, also test if ZF = 0

Control Instructions (SSE)

Program flow control; Low-level, does not include conditional statements found in
HLL programming languages.

Op Code Format Use

movnti SSE2, Copy register to memory by non-temporal hint.

movntdq SSE2, Copy XMM register to memory by non-temporal hint.

maskmovdqu SSE2, Condition Copy bytes from XMM to memory by hint.

movntdqa SSE4.1, Load memory dword into XMM by NT hint.

sfence SSE, Serialize memory store operations.

lfence SSE2, Serialize memory load operations.

mfence SSE2, Serialize memory store and load operations.

prefetchH SSE, Provide hint to load memory into cache, H is hint.

clflush SSE2, Flush cache line of memory, src is memory address.

Control Instructions (AVX)

Program flow control; Low-level, does not include conditional statements found in
HLL programming languages.

Modified : 2020-07-30 the Assembly Bible, Table of Contents 40

Other Instructions

Instructions with no specific use or category, general actions for programs.

Op Code Format Use

lea Op (R/M, R) Calculate effective address and store in register.

nop Op Do nothing, increments RIP to next instruction.

cpuid Op Obtain CPU informatino and supported features.

Other Instructions (SSE)

Instructions with no specific use or category, general actions for programs.

Op Code Format Use

crc32 SSE4.2, Accerlate 32-bit CRC algorithms.

popcnt Op (R/M, R) SSE4.2, Counts bits that are 1 in src, result in dest.

Other Instructions (AVX)

Instructions with no specific use or category, general actions for programs.

Op Code Format Use

Modified : 2020-07-30 the Assembly Bible, Table of Contents 41

Linux Syscalls

Modified : 2020-07-30 the Assembly Bible, Table of Contents 42

