
3/25/20 as.info 1

This	is	as.info,	produced	by	makeinfo	version	6.3	from	as.texinfo.

This	file	documents	the	GNU	Assembler	"as".

			Copyright	(C)	1991-2017	Free	Software	Foundation,	Inc.

			Permission	is	granted	to	copy,	distribute	and/or	modify	this	document
under	the	terms	of	the	GNU	Free	Documentation	License,	Version	1.3	or
any	later	version	published	by	the	Free	Software	Foundation;	with	no
Invariant	Sections,	with	no	Front-Cover	Texts,	and	with	no	Back-Cover
Texts.		A	copy	of	the	license	is	included	in	the	section	entitled	"GNU
Free	Documentation	License".

INFO-DIR-SECTION	Software	development
START-INFO-DIR-ENTRY
*	As:	(as).																					The	GNU	assembler.
*	Gas:	(as).																				The	GNU	assembler.
END-INFO-DIR-ENTRY

�
File:	as.info,		Node:	Top,		Next:	Overview,		Up:	(dir)

Using	as

This	file	is	a	user	guide	to	the	GNU	assembler	'as'	(GNU	Binutils)
version	2.28.

			This	document	is	distributed	under	the	terms	of	the	GNU	Free
Documentation	License.		A	copy	of	the	license	is	included	in	the	section
entitled	"GNU	Free	Documentation	License".

*	Menu:

*	Overview::																				Overview
*	Invoking::																				Command-Line	Options
*	Syntax::																						Syntax
*	Sections::																				Sections	and	Relocation
*	Symbols::																					Symbols
*	Expressions::																	Expressions
*	Pseudo	Ops::																		Assembler	Directives
*	Object	Attributes::											Object	Attributes
*	Machine	Dependencies::								Machine	Dependent	Features
*	Reporting	Bugs::														Reporting	Bugs
*	Acknowledgements::												Who	Did	What
*	GNU	Free	Documentation	License::		GNU	Free	Documentation	License
*	AS	Index::																				AS	Index

�
File:	as.info,		Node:	Overview,		Next:	Invoking,		Prev:	Top,		Up:	Top

1	Overview

Here	is	a	brief	summary	of	how	to	invoke	'as'.		For	details,	see	*note
Command-Line	Options:	Invoking.

					as	[-a[cdghlns][=FILE]]	[-alternate]	[-D]
						[-compress-debug-sections]		[-nocompress-debug-sections]

3/25/20 as.info 2

						[-debug-prefix-map	OLD=NEW]
						[-defsym	SYM=VAL]	[-f]	[-g]	[-gstabs]
						[-gstabs+]	[-gdwarf-2]	[-gdwarf-sections]
						[-help]	[-I	DIR]	[-J]
						[-K]	[-L]	[-listing-lhs-width=NUM]
						[-listing-lhs-width2=NUM]	[-listing-rhs-width=NUM]
						[-listing-cont-lines=NUM]	[-keep-locals]
						[-no-pad-sections]
						[-o	OBJFILE]	[-R]
						[-hash-size=NUM]	[-reduce-memory-overheads]
						[-statistics]
						[-v]	[-version]	[-version]
						[-W]	[-warn]	[-fatal-warnings]	[-w]	[-x]
						[-Z]	[@FILE]
						[-sectname-subst]	[-size-check=[error|warning]]
						[-elf-stt-common=[no|yes]]
						[-target-help]	[TARGET-OPTIONS]
						[-|FILES	...]

					Target	AArch64	options:
								[-EB|-EL]
								[-mabi=ABI]

					Target	Alpha	options:
								[-mCPU]
								[-mdebug	|	-no-mdebug]
								[-replace	|	-noreplace]
								[-relax]	[-g]	[-GSIZE]
								[-F]	[-32addr]

					Target	ARC	options:
								[-mcpu=CPU]
								[-mA6|-mARC600|-mARC601|-mA7|-mARC700|-mEM|-mHS]
								[-mcode-density]
								[-mrelax]
								[-EB|-EL]

					Target	ARM	options:
								[-mcpu=PROCESSOR[+EXTENSION...]]
								[-march=ARCHITECTURE[+EXTENSION...]]
								[-mfpu=FLOATING-POINT-FORMAT]
								[-mfloat-abi=ABI]
								[-meabi=VER]
								[-mthumb]
								[-EB|-EL]
								[-mapcs-32|-mapcs-26|-mapcs-float|
									-mapcs-reentrant]
								[-mthumb-interwork]	[-k]

					Target	Blackfin	options:
								[-mcpu=PROCESSOR[-SIREVISION]]
								[-mfdpic]
								[-mno-fdpic]
								[-mnopic]

					Target	CRIS	options:
								[-underscore	|	-no-underscore]
								[-pic]	[-N]
								[-emulation=criself	|	-emulation=crisaout]

3/25/20 as.info 3

								[-march=v0_v10	|	-march=v10	|	-march=v32	|	-march=common_v10_v32]

					Target	D10V	options:
								[-O]

					Target	D30V	options:
								[-O|-n|-N]

					Target	EPIPHANY	options:
								[-mepiphany|-mepiphany16]

					Target	H8/300	options:
								[-h-tick-hex]

					Target	i386	options:
								[-32|-x32|-64]	[-n]
								[-march=CPU[+EXTENSION...]]	[-mtune=CPU]

					Target	i960	options:
								[-ACA|-ACA_A|-ACB|-ACC|-AKA|-AKB|
									-AKC|-AMC]
								[-b]	[-no-relax]

					Target	IA-64	options:
								[-mconstant-gp|-mauto-pic]
								[-milp32|-milp64|-mlp64|-mp64]
								[-mle|mbe]
								[-mtune=itanium1|-mtune=itanium2]
								[-munwind-check=warning|-munwind-check=error]
								[-mhint.b=ok|-mhint.b=warning|-mhint.b=error]
								[-x|-xexplicit]	[-xauto]	[-xdebug]

					Target	IP2K	options:
								[-mip2022|-mip2022ext]

					Target	M32C	options:
								[-m32c|-m16c]	[-relax]	[-h-tick-hex]

					Target	M32R	options:
								[-m32rx|-[no-]warn-explicit-parallel-conflicts|
								-W[n]p]

					Target	M680X0	options:
								[-l]	[-m68000|-m68010|-m68020|...]

					Target	M68HC11	options:
								[-m68hc11|-m68hc12|-m68hcs12|-mm9s12x|-mm9s12xg]
								[-mshort|-mlong]
								[-mshort-double|-mlong-double]
								[-force-long-branches]	[-short-branches]
								[-strict-direct-mode]	[-print-insn-syntax]
								[-print-opcodes]	[-generate-example]

					Target	MCORE	options:
								[-jsri2bsr]	[-sifilter]	[-relax]
								[-mcpu=[210|340]]

					Target	Meta	options:
								[-mcpu=CPU]	[-mfpu=CPU]	[-mdsp=CPU]

3/25/20 as.info 4

					Target	MICROBLAZE	options:

					Target	MIPS	options:
								[-nocpp]	[-EL]	[-EB]	[-O[OPTIMIZATION	LEVEL]]
								[-g[DEBUG	LEVEL]]	[-G	NUM]	[-KPIC]	[-call_shared]
								[-non_shared]	[-xgot	[-mvxworks-pic]
								[-mabi=ABI]	[-32]	[-n32]	[-64]	[-mfp32]	[-mgp32]
								[-mfp64]	[-mgp64]	[-mfpxx]
								[-modd-spreg]	[-mno-odd-spreg]
								[-march=CPU]	[-mtune=CPU]	[-mips1]	[-mips2]
								[-mips3]	[-mips4]	[-mips5]	[-mips32]	[-mips32r2]
								[-mips32r3]	[-mips32r5]	[-mips32r6]	[-mips64]	[-mips64r2]
								[-mips64r3]	[-mips64r5]	[-mips64r6]
								[-construct-floats]	[-no-construct-floats]
								[-mignore-branch-isa]	[-mno-ignore-branch-isa]
								[-mnan=ENCODING]
								[-trap]	[-no-break]	[-break]	[-no-trap]
								[-mips16]	[-no-mips16]
								[-mmicromips]	[-mno-micromips]
								[-msmartmips]	[-mno-smartmips]
								[-mips3d]	[-no-mips3d]
								[-mdmx]	[-no-mdmx]
								[-mdsp]	[-mno-dsp]
								[-mdspr2]	[-mno-dspr2]
								[-mdspr3]	[-mno-dspr3]
								[-mmsa]	[-mno-msa]
								[-mxpa]	[-mno-xpa]
								[-mmt]	[-mno-mt]
								[-mmcu]	[-mno-mcu]
								[-minsn32]	[-mno-insn32]
								[-mfix7000]	[-mno-fix7000]
								[-mfix-rm7000]	[-mno-fix-rm7000]
								[-mfix-vr4120]	[-mno-fix-vr4120]
								[-mfix-vr4130]	[-mno-fix-vr4130]
								[-mdebug]	[-no-mdebug]
								[-mpdr]	[-mno-pdr]

					Target	MMIX	options:
								[-fixed-special-register-names]	[-globalize-symbols]
								[-gnu-syntax]	[-relax]	[-no-predefined-symbols]
								[-no-expand]	[-no-merge-gregs]	[-x]
								[-linker-allocated-gregs]

					Target	Nios	II	options:
								[-relax-all]	[-relax-section]	[-no-relax]
								[-EB]	[-EL]

					Target	NDS32	options:
									[-EL]	[-EB]	[-O]	[-Os]	[-mcpu=CPU]
									[-misa=ISA]	[-mabi=ABI]	[-mall-ext]
									[-m[no-]16-bit]		[-m[no-]perf-ext]	[-m[no-]perf2-ext]
									[-m[no-]string-ext]	[-m[no-]dsp-ext]	[-m[no-]mac]	[-m[no-]div]
									[-m[no-]audio-isa-ext]	[-m[no-]fpu-sp-ext]	[-m[no-]fpu-dp-ext]
									[-m[no-]fpu-fma]	[-mfpu-freg=FREG]	[-mreduced-regs]
									[-mfull-regs]	[-m[no-]dx-regs]	[-mpic]	[-mno-relax]
									[-mb2bb]

					Target	PDP11	options:
								[-mpic|-mno-pic]	[-mall]	[-mno-extensions]

3/25/20 as.info 5

								[-mEXTENSION|-mno-EXTENSION]
								[-mCPU]	[-mMACHINE]

					Target	picoJava	options:
								[-mb|-me]

					Target	PowerPC	options:
								[-a32|-a64]
								[-mpwrx|-mpwr2|-mpwr|-m601|-mppc|-mppc32|-m603|-m604|-m403|-m405|
									-m440|-m464|-m476|-m7400|-m7410|-m7450|-m7455|-m750cl|-mppc64|
									-m620|-me500|-e500x2|-me500mc|-me500mc64|-me5500|-me6500|-mppc64bridge|
									-mbooke|-mpower4|-mpwr4|-mpower5|-mpwr5|-mpwr5x|-mpower6|-mpwr6|
									-mpower7|-mpwr7|-mpower8|-mpwr8|-mpower9|-mpwr9-ma2|
									-mcell|-mspe|-mtitan|-me300|-mcom]
								[-many]	[-maltivec|-mvsx|-mhtm|-mvle]
								[-mregnames|-mno-regnames]
								[-mrelocatable|-mrelocatable-lib|-K	PIC]	[-memb]
								[-mlittle|-mlittle-endian|-le|-mbig|-mbig-endian|-be]
								[-msolaris|-mno-solaris]
								[-nops=COUNT]

					Target	RL78	options:
								[-mg10]
								[-m32bit-doubles|-m64bit-doubles]

					Target	RX	options:
								[-mlittle-endian|-mbig-endian]
								[-m32bit-doubles|-m64bit-doubles]
								[-muse-conventional-section-names]
								[-msmall-data-limit]
								[-mpid]
								[-mrelax]
								[-mint-register=NUMBER]
								[-mgcc-abi|-mrx-abi]

					Target	RISC-V	options:
								[-march=ISA]
								[-mabi=ABI]

					Target	s390	options:
								[-m31|-m64]	[-mesa|-mzarch]	[-march=CPU]
								[-mregnames|-mno-regnames]
								[-mwarn-areg-zero]

					Target	SCORE	options:
								[-EB][-EL][-FIXDD][-NWARN]
								[-SCORE5][-SCORE5U][-SCORE7][-SCORE3]
								[-march=score7][-march=score3]
								[-USE_R1][-KPIC][-O0][-G	NUM][-V]

					Target	SPARC	options:
								[-Av6|-Av7|-Av8|-Aleon|-Asparclet|-Asparclite
									-Av8plus|-Av8plusa|-Av8plusb|-Av8plusc|-Av8plusd
									-Av8plusv|-Av8plusm|-Av9|-Av9a|-Av9b|-Av9c
									-Av9d|-Av9e|-Av9v|-Av9m|-Asparc|-Asparcvis
									-Asparcvis2|-Asparcfmaf|-Asparcima|-Asparcvis3
									-Asparcvisr|-Asparc5]
								[-xarch=v8plus|-xarch=v8plusa]|-xarch=v8plusb|-xarch=v8plusc
									-xarch=v8plusd|-xarch=v8plusv|-xarch=v8plusm|-xarch=v9

3/25/20 as.info 6

									-xarch=v9a|-xarch=v9b|-xarch=v9c|-xarch=v9d|-xarch=v9e
									-xarch=v9v|-xarch=v9m|-xarch=sparc|-xarch=sparcvis
									-xarch=sparcvis2|-xarch=sparcfmaf|-xarch=sparcima
									-xarch=sparcvis3|-xarch=sparcvisr|-xarch=sparc5
									-bump]
								[-32|-64]
								[-enforce-aligned-data][-dcti-couples-detect]

					Target	TIC54X	options:
						[-mcpu=54[123589]|-mcpu=54[56]lp]	[-mfar-mode|-mf]
						[-merrors-to-file	<FILENAME>|-me	<FILENAME>]

					Target	TIC6X	options:
								[-march=ARCH]	[-mbig-endian|-mlittle-endian]
								[-mdsbt|-mno-dsbt]	[-mpid=no|-mpid=near|-mpid=far]
								[-mpic|-mno-pic]

					Target	TILE-Gx	options:
								[-m32|-m64][-EB][-EL]

					Target	Visium	options:
								[-mtune=ARCH]

					Target	Xtensa	options:
						[-[no-]text-section-literals]	[-[no-]auto-litpools]
						[-[no-]absolute-literals]
						[-[no-]target-align]	[-[no-]longcalls]
						[-[no-]transform]
						[-rename-section	OLDNAME=NEWNAME]
						[-[no-]trampolines]

					Target	Z80	options:
							[-z80]	[-r800]
							[-ignore-undocumented-instructions]	[-Wnud]
							[-ignore-unportable-instructions]	[-Wnup]
							[-warn-undocumented-instructions]	[-Wud]
							[-warn-unportable-instructions]	[-Wup]
							[-forbid-undocumented-instructions]	[-Fud]
							[-forbid-unportable-instructions]	[-Fup]

'@FILE'
					Read	command-line	options	from	FILE.		The	options	read	are	inserted
					in	place	of	the	original	@FILE	option.		If	FILE	does	not	exist,	or
					cannot	be	read,	then	the	option	will	be	treated	literally,	and	not
					removed.

					Options	in	FILE	are	separated	by	whitespace.		A	whitespace
					character	may	be	included	in	an	option	by	surrounding	the	entire
					option	in	either	single	or	double	quotes.		Any	character	(including
					a	backslash)	may	be	included	by	prefixing	the	character	to	be
					included	with	a	backslash.		The	FILE	may	itself	contain	additional
					@FILE	options;	any	such	options	will	be	processed	recursively.

'-a[cdghlmns]'
					Turn	on	listings,	in	any	of	a	variety	of	ways:

					'-ac'

3/25/20 as.info 7

										omit	false	conditionals

					'-ad'
										omit	debugging	directives

					'-ag'
										include	general	information,	like	as	version	and	options
										passed

					'-ah'
										include	high-level	source

					'-al'
										include	assembly

					'-am'
										include	macro	expansions

					'-an'
										omit	forms	processing

					'-as'
										include	symbols

					'=file'
										set	the	name	of	the	listing	file

					You	may	combine	these	options;	for	example,	use	'-aln'	for	assembly
					listing	without	forms	processing.		The	'=file'	option,	if	used,
					must	be	the	last	one.		By	itself,	'-a'	defaults	to	'-ahls'.

'--alternate'
					Begin	in	alternate	macro	mode.		*Note	'.altmacro':	Altmacro.

'--compress-debug-sections'
					Compress	DWARF	debug	sections	using	zlib	with	SHF_COMPRESSED	from
					the	ELF	ABI.	The	resulting	object	file	may	not	be	compatible	with
					older	linkers	and	object	file	utilities.		Note	if	compression	would
					make	a	given	section	_larger_	then	it	is	not	compressed.

'--compress-debug-sections=none'
'--compress-debug-sections=zlib'
'--compress-debug-sections=zlib-gnu'
'--compress-debug-sections=zlib-gabi'
					These	options	control	how	DWARF	debug	sections	are	compressed.
					'--compress-debug-sections=none'	is	equivalent	to
					'--nocompress-debug-sections'.		'--compress-debug-sections=zlib'
					and	'--compress-debug-sections=zlib-gabi'	are	equivalent	to
					'--compress-debug-sections'.		'--compress-debug-sections=zlib-gnu'
					compresses	DWARF	debug	sections	using	zlib.		The	debug	sections	are
					renamed	to	begin	with	'.zdebug'.		Note	if	compression	would	make	a
					given	section	_larger_	then	it	is	not	compressed	nor	renamed.

'--nocompress-debug-sections'
					Do	not	compress	DWARF	debug	sections.		This	is	usually	the	default
					for	all	targets	except	the	x86/x86_64,	but	a	configure	time	option
					can	be	used	to	override	this.

'-D'

3/25/20 as.info 8

					Ignored.		This	option	is	accepted	for	script	compatibility	with
					calls	to	other	assemblers.

'--debug-prefix-map	OLD=NEW'
					When	assembling	files	in	directory	'OLD',	record	debugging
					information	describing	them	as	in	'NEW'	instead.

'--defsym	SYM=VALUE'
					Define	the	symbol	SYM	to	be	VALUE	before	assembling	the	input	file.
					VALUE	must	be	an	integer	constant.		As	in	C,	a	leading	'0x'
					indicates	a	hexadecimal	value,	and	a	leading	'0'	indicates	an	octal
					value.		The	value	of	the	symbol	can	be	overridden	inside	a	source
					file	via	the	use	of	a	'.set'	pseudo-op.

'-f'
					"fast"--skip	whitespace	and	comment	preprocessing	(assume	source	is
					compiler	output).

'-g'
'--gen-debug'
					Generate	debugging	information	for	each	assembler	source	line	using
					whichever	debug	format	is	preferred	by	the	target.		This	currently
					means	either	STABS,	ECOFF	or	DWARF2.

'--gstabs'
					Generate	stabs	debugging	information	for	each	assembler	line.		This
					may	help	debugging	assembler	code,	if	the	debugger	can	handle	it.

'--gstabs+'
					Generate	stabs	debugging	information	for	each	assembler	line,	with
					GNU	extensions	that	probably	only	gdb	can	handle,	and	that	could
					make	other	debuggers	crash	or	refuse	to	read	your	program.		This
					may	help	debugging	assembler	code.		Currently	the	only	GNU
					extension	is	the	location	of	the	current	working	directory	at
					assembling	time.

'--gdwarf-2'
					Generate	DWARF2	debugging	information	for	each	assembler	line.
					This	may	help	debugging	assembler	code,	if	the	debugger	can	handle
					it.		Note--this	option	is	only	supported	by	some	targets,	not	all
					of	them.

'--gdwarf-sections'
					Instead	of	creating	a	.debug_line	section,	create	a	series	of
					.debug_line.FOO	sections	where	FOO	is	the	name	of	the	corresponding
					code	section.		For	example	a	code	section	called	.TEXT.FUNC	will
					have	its	dwarf	line	number	information	placed	into	a	section	called
					.DEBUG_LINE.TEXT.FUNC.		If	the	code	section	is	just	called	.TEXT
					then	debug	line	section	will	still	be	called	just	.DEBUG_LINE
					without	any	suffix.

'--size-check=error'
'--size-check=warning'
					Issue	an	error	or	warning	for	invalid	ELF	.size	directive.

'--elf-stt-common=no'
'--elf-stt-common=yes'
					These	options	control	whether	the	ELF	assembler	should	generate
					common	symbols	with	the	'STT_COMMON'	type.		The	default	can	be

3/25/20 as.info 9

					controlled	by	a	configure	option	'--enable-elf-stt-common'.

'--help'
					Print	a	summary	of	the	command	line	options	and	exit.

'--target-help'
					Print	a	summary	of	all	target	specific	options	and	exit.

'-I	DIR'
					Add	directory	DIR	to	the	search	list	for	'.include'	directives.

'-J'
					Don't	warn	about	signed	overflow.

'-K'
					Issue	warnings	when	difference	tables	altered	for	long
					displacements.

'-L'
'--keep-locals'
					Keep	(in	the	symbol	table)	local	symbols.		These	symbols	start	with
					system-specific	local	label	prefixes,	typically	'.L'	for	ELF
					systems	or	'L'	for	traditional	a.out	systems.		*Note	Symbol
					Names::.

'--listing-lhs-width=NUMBER'
					Set	the	maximum	width,	in	words,	of	the	output	data	column	for	an
					assembler	listing	to	NUMBER.

'--listing-lhs-width2=NUMBER'
					Set	the	maximum	width,	in	words,	of	the	output	data	column	for
					continuation	lines	in	an	assembler	listing	to	NUMBER.

'--listing-rhs-width=NUMBER'
					Set	the	maximum	width	of	an	input	source	line,	as	displayed	in	a
					listing,	to	NUMBER	bytes.

'--listing-cont-lines=NUMBER'
					Set	the	maximum	number	of	lines	printed	in	a	listing	for	a	single
					line	of	input	to	NUMBER	+	1.

'--no-pad-sections'
					Stop	the	assembler	for	padding	the	ends	of	output	sections	to	the
					alignment	of	that	section.		The	default	is	to	pad	the	sections,	but
					this	can	waste	space	which	might	be	needed	on	targets	which	have
					tight	memory	constraints.

'-o	OBJFILE'
					Name	the	object-file	output	from	'as'	OBJFILE.

'-R'
					Fold	the	data	section	into	the	text	section.

'--hash-size=NUMBER'
					Set	the	default	size	of	GAS's	hash	tables	to	a	prime	number	close
					to	NUMBER.		Increasing	this	value	can	reduce	the	length	of	time	it
					takes	the	assembler	to	perform	its	tasks,	at	the	expense	of
					increasing	the	assembler's	memory	requirements.		Similarly	reducing
					this	value	can	reduce	the	memory	requirements	at	the	expense	of

3/25/20 as.info 10

					speed.

'--reduce-memory-overheads'
					This	option	reduces	GAS's	memory	requirements,	at	the	expense	of
					making	the	assembly	processes	slower.		Currently	this	switch	is	a
					synonym	for	'--hash-size=4051',	but	in	the	future	it	may	have	other
					effects	as	well.

'--sectname-subst'
					Honor	substitution	sequences	in	section	names.		*Note	'.section
					NAME':	Section	Name	Substitutions.

'--statistics'
					Print	the	maximum	space	(in	bytes)	and	total	time	(in	seconds)	used
					by	assembly.

'--strip-local-absolute'
					Remove	local	absolute	symbols	from	the	outgoing	symbol	table.

'-v'
'-version'
					Print	the	'as'	version.

'--version'
					Print	the	'as'	version	and	exit.

'-W'
'--no-warn'
					Suppress	warning	messages.

'--fatal-warnings'
					Treat	warnings	as	errors.

'--warn'
					Don't	suppress	warning	messages	or	treat	them	as	errors.

'-w'
					Ignored.

'-x'
					Ignored.

'-Z'
					Generate	an	object	file	even	after	errors.

'--	|	FILES	...'
					Standard	input,	or	source	files	to	assemble.

			*Note	AArch64	Options::,	for	the	options	available	when	as	is
configured	for	the	64-bit	mode	of	the	ARM	Architecture	(AArch64).

			*Note	Alpha	Options::,	for	the	options	available	when	as	is
configured	for	an	Alpha	processor.

			The	following	options	are	available	when	as	is	configured	for	an	ARC
processor.

'-mcpu=CPU'
					This	option	selects	the	core	processor	variant.

3/25/20 as.info 11

'-EB	|	-EL'
					Select	either	big-endian	(-EB)	or	little-endian	(-EL)	output.
'-mcode-density'
					Enable	Code	Density	extenssion	instructions.

			The	following	options	are	available	when	as	is	configured	for	the	ARM
processor	family.

'-mcpu=PROCESSOR[+EXTENSION...]'
					Specify	which	ARM	processor	variant	is	the	target.
'-march=ARCHITECTURE[+EXTENSION...]'
					Specify	which	ARM	architecture	variant	is	used	by	the	target.
'-mfpu=FLOATING-POINT-FORMAT'
					Select	which	Floating	Point	architecture	is	the	target.
'-mfloat-abi=ABI'
					Select	which	floating	point	ABI	is	in	use.
'-mthumb'
					Enable	Thumb	only	instruction	decoding.
'-mapcs-32	|	-mapcs-26	|	-mapcs-float	|	-mapcs-reentrant'
					Select	which	procedure	calling	convention	is	in	use.
'-EB	|	-EL'
					Select	either	big-endian	(-EB)	or	little-endian	(-EL)	output.
'-mthumb-interwork'
					Specify	that	the	code	has	been	generated	with	interworking	between
					Thumb	and	ARM	code	in	mind.
'-mccs'
					Turns	on	CodeComposer	Studio	assembly	syntax	compatibility	mode.
'-k'
					Specify	that	PIC	code	has	been	generated.

			*Note	Blackfin	Options::,	for	the	options	available	when	as	is
configured	for	the	Blackfin	processor	family.

			See	the	info	pages	for	documentation	of	the	CRIS-specific	options.

			The	following	options	are	available	when	as	is	configured	for	a	D10V
processor.
'-O'
					Optimize	output	by	parallelizing	instructions.

			The	following	options	are	available	when	as	is	configured	for	a	D30V
processor.
'-O'
					Optimize	output	by	parallelizing	instructions.

'-n'
					Warn	when	nops	are	generated.

'-N'
					Warn	when	a	nop	after	a	32-bit	multiply	instruction	is	generated.

			The	following	options	are	available	when	as	is	configured	for	the
Adapteva	EPIPHANY	series.

			*Note	Epiphany	Options::,	for	the	options	available	when	as	is
configured	for	an	Epiphany	processor.

			*Note	i386-Options::,	for	the	options	available	when	as	is	configured
for	an	i386	processor.

3/25/20 as.info 12

			The	following	options	are	available	when	as	is	configured	for	the
Intel	80960	processor.

'-ACA	|	-ACA_A	|	-ACB	|	-ACC	|	-AKA	|	-AKB	|	-AKC	|	-AMC'
					Specify	which	variant	of	the	960	architecture	is	the	target.

'-b'
					Add	code	to	collect	statistics	about	branches	taken.

'-no-relax'
					Do	not	alter	compare-and-branch	instructions	for	long
					displacements;	error	if	necessary.

			The	following	options	are	available	when	as	is	configured	for	the
Ubicom	IP2K	series.

'-mip2022ext'
					Specifies	that	the	extended	IP2022	instructions	are	allowed.

'-mip2022'
					Restores	the	default	behaviour,	which	restricts	the	permitted
					instructions	to	just	the	basic	IP2022	ones.

			The	following	options	are	available	when	as	is	configured	for	the
Renesas	M32C	and	M16C	processors.

'-m32c'
					Assemble	M32C	instructions.

'-m16c'
					Assemble	M16C	instructions	(the	default).

'-relax'
					Enable	support	for	link-time	relaxations.

'-h-tick-hex'
					Support	H'00	style	hex	constants	in	addition	to	0x00	style.

			The	following	options	are	available	when	as	is	configured	for	the
Renesas	M32R	(formerly	Mitsubishi	M32R)	series.

'--m32rx'
					Specify	which	processor	in	the	M32R	family	is	the	target.		The
					default	is	normally	the	M32R,	but	this	option	changes	it	to	the
					M32RX.

'--warn-explicit-parallel-conflicts	or	--Wp'
					Produce	warning	messages	when	questionable	parallel	constructs	are
					encountered.

'--no-warn-explicit-parallel-conflicts	or	--Wnp'
					Do	not	produce	warning	messages	when	questionable	parallel
					constructs	are	encountered.

			The	following	options	are	available	when	as	is	configured	for	the
Motorola	68000	series.

'-l'

3/25/20 as.info 13

					Shorten	references	to	undefined	symbols,	to	one	word	instead	of
					two.

'-m68000	|	-m68008	|	-m68010	|	-m68020	|	-m68030'
'|	-m68040	|	-m68060	|	-m68302	|	-m68331	|	-m68332'
'|	-m68333	|	-m68340	|	-mcpu32	|	-m5200'
					Specify	what	processor	in	the	68000	family	is	the	target.		The
					default	is	normally	the	68020,	but	this	can	be	changed	at
					configuration	time.

'-m68881	|	-m68882	|	-mno-68881	|	-mno-68882'
					The	target	machine	does	(or	does	not)	have	a	floating-point
					coprocessor.		The	default	is	to	assume	a	coprocessor	for	68020,
					68030,	and	cpu32.		Although	the	basic	68000	is	not	compatible	with
					the	68881,	a	combination	of	the	two	can	be	specified,	since	it's
					possible	to	do	emulation	of	the	coprocessor	instructions	with	the
					main	processor.

'-m68851	|	-mno-68851'
					The	target	machine	does	(or	does	not)	have	a	memory-management	unit
					coprocessor.		The	default	is	to	assume	an	MMU	for	68020	and	up.

			*Note	Nios	II	Options::,	for	the	options	available	when	as	is
configured	for	an	Altera	Nios	II	processor.

			For	details	about	the	PDP-11	machine	dependent	features	options,	see
*note	PDP-11-Options::.

'-mpic	|	-mno-pic'
					Generate	position-independent	(or	position-dependent)	code.		The
					default	is	'-mpic'.

'-mall'
'-mall-extensions'
					Enable	all	instruction	set	extensions.		This	is	the	default.

'-mno-extensions'
					Disable	all	instruction	set	extensions.

'-mEXTENSION	|	-mno-EXTENSION'
					Enable	(or	disable)	a	particular	instruction	set	extension.

'-mCPU'
					Enable	the	instruction	set	extensions	supported	by	a	particular
					CPU,	and	disable	all	other	extensions.

'-mMACHINE'
					Enable	the	instruction	set	extensions	supported	by	a	particular
					machine	model,	and	disable	all	other	extensions.

			The	following	options	are	available	when	as	is	configured	for	a
picoJava	processor.

'-mb'
					Generate	"big	endian"	format	output.

'-ml'
					Generate	"little	endian"	format	output.

3/25/20 as.info 14

			The	following	options	are	available	when	as	is	configured	for	the
Motorola	68HC11	or	68HC12	series.

'-m68hc11	|	-m68hc12	|	-m68hcs12	|	-mm9s12x	|	-mm9s12xg'
					Specify	what	processor	is	the	target.		The	default	is	defined	by
					the	configuration	option	when	building	the	assembler.

'--xgate-ramoffset'
					Instruct	the	linker	to	offset	RAM	addresses	from	S12X	address	space
					into	XGATE	address	space.

'-mshort'
					Specify	to	use	the	16-bit	integer	ABI.

'-mlong'
					Specify	to	use	the	32-bit	integer	ABI.

'-mshort-double'
					Specify	to	use	the	32-bit	double	ABI.

'-mlong-double'
					Specify	to	use	the	64-bit	double	ABI.

'--force-long-branches'
					Relative	branches	are	turned	into	absolute	ones.		This	concerns
					conditional	branches,	unconditional	branches	and	branches	to	a	sub
					routine.

'-S	|	--short-branches'
					Do	not	turn	relative	branches	into	absolute	ones	when	the	offset	is
					out	of	range.

'--strict-direct-mode'
					Do	not	turn	the	direct	addressing	mode	into	extended	addressing
					mode	when	the	instruction	does	not	support	direct	addressing	mode.

'--print-insn-syntax'
					Print	the	syntax	of	instruction	in	case	of	error.

'--print-opcodes'
					Print	the	list	of	instructions	with	syntax	and	then	exit.

'--generate-example'
					Print	an	example	of	instruction	for	each	possible	instruction	and
					then	exit.		This	option	is	only	useful	for	testing	'as'.

			The	following	options	are	available	when	'as'	is	configured	for	the
SPARC	architecture:

'-Av6	|	-Av7	|	-Av8	|	-Asparclet	|	-Asparclite'
'-Av8plus	|	-Av8plusa	|	-Av9	|	-Av9a'
					Explicitly	select	a	variant	of	the	SPARC	architecture.

					'-Av8plus'	and	'-Av8plusa'	select	a	32	bit	environment.		'-Av9'	and
					'-Av9a'	select	a	64	bit	environment.

					'-Av8plusa'	and	'-Av9a'	enable	the	SPARC	V9	instruction	set	with
					UltraSPARC	extensions.

3/25/20 as.info 15

'-xarch=v8plus	|	-xarch=v8plusa'
					For	compatibility	with	the	Solaris	v9	assembler.		These	options	are
					equivalent	to	-Av8plus	and	-Av8plusa,	respectively.

'-bump'
					Warn	when	the	assembler	switches	to	another	architecture.

			The	following	options	are	available	when	as	is	configured	for	the
'c54x	architecture.

'-mfar-mode'
					Enable	extended	addressing	mode.		All	addresses	and	relocations
					will	assume	extended	addressing	(usually	23	bits).
'-mcpu=CPU_VERSION'
					Sets	the	CPU	version	being	compiled	for.
'-merrors-to-file	FILENAME'
					Redirect	error	output	to	a	file,	for	broken	systems	which	don't
					support	such	behaviour	in	the	shell.

			The	following	options	are	available	when	as	is	configured	for	a	MIPS
processor.

'-G	NUM'
					This	option	sets	the	largest	size	of	an	object	that	can	be
					referenced	implicitly	with	the	'gp'	register.		It	is	only	accepted
					for	targets	that	use	ECOFF	format,	such	as	a	DECstation	running
					Ultrix.		The	default	value	is	8.

'-EB'
					Generate	"big	endian"	format	output.

'-EL'
					Generate	"little	endian"	format	output.

'-mips1'
'-mips2'
'-mips3'
'-mips4'
'-mips5'
'-mips32'
'-mips32r2'
'-mips32r3'
'-mips32r5'
'-mips32r6'
'-mips64'
'-mips64r2'
'-mips64r3'
'-mips64r5'
'-mips64r6'
					Generate	code	for	a	particular	MIPS	Instruction	Set	Architecture
					level.		'-mips1'	is	an	alias	for	'-march=r3000',	'-mips2'	is	an
					alias	for	'-march=r6000',	'-mips3'	is	an	alias	for	'-march=r4000'
					and	'-mips4'	is	an	alias	for	'-march=r8000'.		'-mips5',	'-mips32',
					'-mips32r2',	'-mips32r3',	'-mips32r5',	'-mips32r6',	'-mips64',
					'-mips64r2',	'-mips64r3',	'-mips64r5',	and	'-mips64r6'	correspond
					to	generic	MIPS	V,	MIPS32,	MIPS32	Release	2,	MIPS32	Release	3,
					MIPS32	Release	5,	MIPS32	Release	6,	MIPS64,	MIPS64	Release	2,
					MIPS64	Release	3,	MIPS64	Release	5,	and	MIPS64	Release	6	ISA
					processors,	respectively.

3/25/20 as.info 16

'-march=CPU'
					Generate	code	for	a	particular	MIPS	CPU.

'-mtune=CPU'
					Schedule	and	tune	for	a	particular	MIPS	CPU.

'-mfix7000'
'-mno-fix7000'
					Cause	nops	to	be	inserted	if	the	read	of	the	destination	register
					of	an	mfhi	or	mflo	instruction	occurs	in	the	following	two
					instructions.

'-mfix-rm7000'
'-mno-fix-rm7000'
					Cause	nops	to	be	inserted	if	a	dmult	or	dmultu	instruction	is
					followed	by	a	load	instruction.

'-mdebug'
'-no-mdebug'
					Cause	stabs-style	debugging	output	to	go	into	an	ECOFF-style
					.mdebug	section	instead	of	the	standard	ELF	.stabs	sections.

'-mpdr'
'-mno-pdr'
					Control	generation	of	'.pdr'	sections.

'-mgp32'
'-mfp32'
					The	register	sizes	are	normally	inferred	from	the	ISA	and	ABI,	but
					these	flags	force	a	certain	group	of	registers	to	be	treated	as	32
					bits	wide	at	all	times.		'-mgp32'	controls	the	size	of
					general-purpose	registers	and	'-mfp32'	controls	the	size	of
					floating-point	registers.

'-mgp64'
'-mfp64'
					The	register	sizes	are	normally	inferred	from	the	ISA	and	ABI,	but
					these	flags	force	a	certain	group	of	registers	to	be	treated	as	64
					bits	wide	at	all	times.		'-mgp64'	controls	the	size	of
					general-purpose	registers	and	'-mfp64'	controls	the	size	of
					floating-point	registers.

'-mfpxx'
					The	register	sizes	are	normally	inferred	from	the	ISA	and	ABI,	but
					using	this	flag	in	combination	with	'-mabi=32'	enables	an	ABI
					variant	which	will	operate	correctly	with	floating-point	registers
					which	are	32	or	64	bits	wide.

'-modd-spreg'
'-mno-odd-spreg'
					Enable	use	of	floating-point	operations	on	odd-numbered
					single-precision	registers	when	supported	by	the	ISA.	'-mfpxx'
					implies	'-mno-odd-spreg',	otherwise	the	default	is	'-modd-spreg'.

'-mips16'
'-no-mips16'
					Generate	code	for	the	MIPS	16	processor.		This	is	equivalent	to
					putting	'.set	mips16'	at	the	start	of	the	assembly	file.

3/25/20 as.info 17

					'-no-mips16'	turns	off	this	option.

'-mmicromips'
'-mno-micromips'
					Generate	code	for	the	microMIPS	processor.		This	is	equivalent	to
					putting	'.set	micromips'	at	the	start	of	the	assembly	file.
					'-mno-micromips'	turns	off	this	option.		This	is	equivalent	to
					putting	'.set	nomicromips'	at	the	start	of	the	assembly	file.

'-msmartmips'
'-mno-smartmips'
					Enables	the	SmartMIPS	extension	to	the	MIPS32	instruction	set.
					This	is	equivalent	to	putting	'.set	smartmips'	at	the	start	of	the
					assembly	file.		'-mno-smartmips'	turns	off	this	option.

'-mips3d'
'-no-mips3d'
					Generate	code	for	the	MIPS-3D	Application	Specific	Extension.		This
					tells	the	assembler	to	accept	MIPS-3D	instructions.		'-no-mips3d'
					turns	off	this	option.

'-mdmx'
'-no-mdmx'
					Generate	code	for	the	MDMX	Application	Specific	Extension.		This
					tells	the	assembler	to	accept	MDMX	instructions.		'-no-mdmx'	turns
					off	this	option.

'-mdsp'
'-mno-dsp'
					Generate	code	for	the	DSP	Release	1	Application	Specific	Extension.
					This	tells	the	assembler	to	accept	DSP	Release	1	instructions.
					'-mno-dsp'	turns	off	this	option.

'-mdspr2'
'-mno-dspr2'
					Generate	code	for	the	DSP	Release	2	Application	Specific	Extension.
					This	option	implies	'-mdsp'.		This	tells	the	assembler	to	accept
					DSP	Release	2	instructions.		'-mno-dspr2'	turns	off	this	option.

'-mdspr3'
'-mno-dspr3'
					Generate	code	for	the	DSP	Release	3	Application	Specific	Extension.
					This	option	implies	'-mdsp'	and	'-mdspr2'.		This	tells	the
					assembler	to	accept	DSP	Release	3	instructions.		'-mno-dspr3'	turns
					off	this	option.

'-mmsa'
'-mno-msa'
					Generate	code	for	the	MIPS	SIMD	Architecture	Extension.		This	tells
					the	assembler	to	accept	MSA	instructions.		'-mno-msa'	turns	off
					this	option.

'-mxpa'
'-mno-xpa'
					Generate	code	for	the	MIPS	eXtended	Physical	Address	(XPA)
					Extension.		This	tells	the	assembler	to	accept	XPA	instructions.
					'-mno-xpa'	turns	off	this	option.

'-mmt'

3/25/20 as.info 18

'-mno-mt'
					Generate	code	for	the	MT	Application	Specific	Extension.		This
					tells	the	assembler	to	accept	MT	instructions.		'-mno-mt'	turns	off
					this	option.

'-mmcu'
'-mno-mcu'
					Generate	code	for	the	MCU	Application	Specific	Extension.		This
					tells	the	assembler	to	accept	MCU	instructions.		'-mno-mcu'	turns
					off	this	option.

'-minsn32'
'-mno-insn32'
					Only	use	32-bit	instruction	encodings	when	generating	code	for	the
					microMIPS	processor.		This	option	inhibits	the	use	of	any	16-bit
					instructions.		This	is	equivalent	to	putting	'.set	insn32'	at	the
					start	of	the	assembly	file.		'-mno-insn32'	turns	off	this	option.
					This	is	equivalent	to	putting	'.set	noinsn32'	at	the	start	of	the
					assembly	file.		By	default	'-mno-insn32'	is	selected,	allowing	all
					instructions	to	be	used.

'--construct-floats'
'--no-construct-floats'
					The	'--no-construct-floats'	option	disables	the	construction	of
					double	width	floating	point	constants	by	loading	the	two	halves	of
					the	value	into	the	two	single	width	floating	point	registers	that
					make	up	the	double	width	register.		By	default	'--construct-floats'
					is	selected,	allowing	construction	of	these	floating	point
					constants.

'--relax-branch'
'--no-relax-branch'
					The	'--relax-branch'	option	enables	the	relaxation	of	out-of-range
					branches.		By	default	'--no-relax-branch'	is	selected,	causing	any
					out-of-range	branches	to	produce	an	error.

'-mignore-branch-isa'
'-mno-ignore-branch-isa'
					Ignore	branch	checks	for	invalid	transitions	between	ISA	modes.
					The	semantics	of	branches	does	not	provide	for	an	ISA	mode	switch,
					so	in	most	cases	the	ISA	mode	a	branch	has	been	encoded	for	has	to
					be	the	same	as	the	ISA	mode	of	the	branch's	target	label.
					Therefore	GAS	has	checks	implemented	that	verify	in	branch	assembly
					that	the	two	ISA	modes	match.		'-mignore-branch-isa'	disables	these
					checks.		By	default	'-mno-ignore-branch-isa'	is	selected,	causing
					any	invalid	branch	requiring	a	transition	between	ISA	modes	to
					produce	an	error.

'-mnan=ENCODING'
					Select	between	the	IEEE	754-2008	('-mnan=2008')	or	the	legacy
					('-mnan=legacy')	NaN	encoding	format.		The	latter	is	the	default.

'--emulation=NAME'
					This	option	was	formerly	used	to	switch	between	ELF	and	ECOFF
					output	on	targets	like	IRIX	5	that	supported	both.		MIPS	ECOFF
					support	was	removed	in	GAS	2.24,	so	the	option	now	serves	little
					purpose.		It	is	retained	for	backwards	compatibility.

					The	available	configuration	names	are:	'mipself',	'mipslelf'	and

3/25/20 as.info 19

					'mipsbelf'.		Choosing	'mipself'	now	has	no	effect,	since	the	output
					is	always	ELF.	'mipslelf'	and	'mipsbelf'	select	little-	and
					big-endian	output	respectively,	but	'-EL'	and	'-EB'	are	now	the
					preferred	options	instead.

'-nocpp'
					'as'	ignores	this	option.		It	is	accepted	for	compatibility	with
					the	native	tools.

'--trap'
'--no-trap'
'--break'
'--no-break'
					Control	how	to	deal	with	multiplication	overflow	and	division	by
					zero.		'--trap'	or	'--no-break'	(which	are	synonyms)	take	a	trap
					exception	(and	only	work	for	Instruction	Set	Architecture	level	2
					and	higher);	'--break'	or	'--no-trap'	(also	synonyms,	and	the
					default)	take	a	break	exception.

'-n'
					When	this	option	is	used,	'as'	will	issue	a	warning	every	time	it
					generates	a	nop	instruction	from	a	macro.

			The	following	options	are	available	when	as	is	configured	for	an
MCore	processor.

'-jsri2bsr'
'-nojsri2bsr'
					Enable	or	disable	the	JSRI	to	BSR	transformation.		By	default	this
					is	enabled.		The	command	line	option	'-nojsri2bsr'	can	be	used	to
					disable	it.

'-sifilter'
'-nosifilter'
					Enable	or	disable	the	silicon	filter	behaviour.		By	default	this	is
					disabled.		The	default	can	be	overridden	by	the	'-sifilter'	command
					line	option.

'-relax'
					Alter	jump	instructions	for	long	displacements.

'-mcpu=[210|340]'
					Select	the	cpu	type	on	the	target	hardware.		This	controls	which
					instructions	can	be	assembled.

'-EB'
					Assemble	for	a	big	endian	target.

'-EL'
					Assemble	for	a	little	endian	target.

			*Note	Meta	Options::,	for	the	options	available	when	as	is	configured
for	a	Meta	processor.

			See	the	info	pages	for	documentation	of	the	MMIX-specific	options.

			*Note	NDS32	Options::,	for	the	options	available	when	as	is
configured	for	a	NDS32	processor.

3/25/20 as.info 20

			*Note	PowerPC-Opts::,	for	the	options	available	when	as	is	configured
for	a	PowerPC	processor.

			*Note	RISC-V-Opts::,	for	the	options	available	when	as	is	configured
for	a	RISC-V	processor.

			See	the	info	pages	for	documentation	of	the	RX-specific	options.

			The	following	options	are	available	when	as	is	configured	for	the
s390	processor	family.

'-m31'
'-m64'
					Select	the	word	size,	either	31/32	bits	or	64	bits.
'-mesa'
'-mzarch'
					Select	the	architecture	mode,	either	the	Enterprise	System
					Architecture	(esa)	or	the	z/Architecture	mode	(zarch).
'-march=PROCESSOR'
					Specify	which	s390	processor	variant	is	the	target,	'g5'	(or
					'arch3'),	'g6',	'z900'	(or	'arch5'),	'z990'	(or	'arch6'),	'z9-109',
					'z9-ec'	(or	'arch7'),	'z10'	(or	'arch8'),	'z196'	(or	'arch9'),
					'zEC12'	(or	'arch10'),	'z13'	(or	'arch11'),	or	'arch12'.
'-mregnames'
'-mno-regnames'
					Allow	or	disallow	symbolic	names	for	registers.
'-mwarn-areg-zero'
					Warn	whenever	the	operand	for	a	base	or	index	register	has	been
					specified	but	evaluates	to	zero.

			*Note	TIC6X	Options::,	for	the	options	available	when	as	is
configured	for	a	TMS320C6000	processor.

			*Note	TILE-Gx	Options::,	for	the	options	available	when	as	is
configured	for	a	TILE-Gx	processor.

			*Note	Visium	Options::,	for	the	options	available	when	as	is
configured	for	a	Visium	processor.

			*Note	Xtensa	Options::,	for	the	options	available	when	as	is
configured	for	an	Xtensa	processor.

			The	following	options	are	available	when	as	is	configured	for	a	Z80
family	processor.
'-z80'
					Assemble	for	Z80	processor.
'-r800'
					Assemble	for	R800	processor.
'-ignore-undocumented-instructions'
'-Wnud'
					Assemble	undocumented	Z80	instructions	that	also	work	on	R800
					without	warning.
'-ignore-unportable-instructions'
'-Wnup'
					Assemble	all	undocumented	Z80	instructions	without	warning.
'-warn-undocumented-instructions'
'-Wud'
					Issue	a	warning	for	undocumented	Z80	instructions	that	also	work	on
					R800.

3/25/20 as.info 21

'-warn-unportable-instructions'
'-Wup'
					Issue	a	warning	for	undocumented	Z80	instructions	that	do	not	work
					on	R800.
'-forbid-undocumented-instructions'
'-Fud'
					Treat	all	undocumented	instructions	as	errors.
'-forbid-unportable-instructions'
'-Fup'
					Treat	undocumented	Z80	instructions	that	do	not	work	on	R800	as
					errors.

*	Menu:

*	Manual::																						Structure	of	this	Manual
*	GNU	Assembler::															The	GNU	Assembler
*	Object	Formats::														Object	File	Formats
*	Command	Line::																Command	Line
*	Input	Files::																	Input	Files
*	Object::																						Output	(Object)	File
*	Errors::																						Error	and	Warning	Messages

�
File:	as.info,		Node:	Manual,		Next:	GNU	Assembler,		Up:	Overview

1.1	Structure	of	this	Manual
============================

This	manual	is	intended	to	describe	what	you	need	to	know	to	use	GNU
'as'.		We	cover	the	syntax	expected	in	source	files,	including	notation
for	symbols,	constants,	and	expressions;	the	directives	that	'as'
understands;	and	of	course	how	to	invoke	'as'.

			This	manual	also	describes	some	of	the	machine-dependent	features	of
various	flavors	of	the	assembler.

			On	the	other	hand,	this	manual	is	_not_	intended	as	an	introduction
to	programming	in	assembly	language--let	alone	programming	in	general!
In	a	similar	vein,	we	make	no	attempt	to	introduce	the	machine
architecture;	we	do	_not_	describe	the	instruction	set,	standard
mnemonics,	registers	or	addressing	modes	that	are	standard	to	a
particular	architecture.		You	may	want	to	consult	the	manufacturer's
machine	architecture	manual	for	this	information.

�
File:	as.info,		Node:	GNU	Assembler,		Next:	Object	Formats,		Prev:	Manual,		Up:
Overview

1.2	The	GNU	Assembler
=====================

GNU	'as'	is	really	a	family	of	assemblers.		If	you	use	(or	have	used)
the	GNU	assembler	on	one	architecture,	you	should	find	a	fairly	similar
environment	when	you	use	it	on	another	architecture.		Each	version	has
much	in	common	with	the	others,	including	object	file	formats,	most
assembler	directives	(often	called	"pseudo-ops")	and	assembler	syntax.

			'as'	is	primarily	intended	to	assemble	the	output	of	the	GNU	C
compiler	'gcc'	for	use	by	the	linker	'ld'.		Nevertheless,	we've	tried	to

3/25/20 as.info 22

make	'as'	assemble	correctly	everything	that	other	assemblers	for	the
same	machine	would	assemble.		Any	exceptions	are	documented	explicitly
(*note	Machine	Dependencies::).		This	doesn't	mean	'as'	always	uses	the
same	syntax	as	another	assembler	for	the	same	architecture;	for	example,
we	know	of	several	incompatible	versions	of	680x0	assembly	language
syntax.

			Unlike	older	assemblers,	'as'	is	designed	to	assemble	a	source
program	in	one	pass	of	the	source	file.		This	has	a	subtle	impact	on	the
'.org'	directive	(*note	'.org':	Org.).

�
File:	as.info,		Node:	Object	Formats,		Next:	Command	Line,		Prev:	GNU	Assembler,		Up:
Overview

1.3	Object	File	Formats
=======================

The	GNU	assembler	can	be	configured	to	produce	several	alternative
object	file	formats.		For	the	most	part,	this	does	not	affect	how	you
write	assembly	language	programs;	but	directives	for	debugging	symbols
are	typically	different	in	different	file	formats.		*Note	Symbol
Attributes:	Symbol	Attributes.

�
File:	as.info,		Node:	Command	Line,		Next:	Input	Files,		Prev:	Object	Formats,		Up:
Overview

1.4	Command	Line
================

After	the	program	name	'as',	the	command	line	may	contain	options	and
file	names.		Options	may	appear	in	any	order,	and	may	be	before,	after,
or	between	file	names.		The	order	of	file	names	is	significant.

			'--'	(two	hyphens)	by	itself	names	the	standard	input	file
explicitly,	as	one	of	the	files	for	'as'	to	assemble.

			Except	for	'--'	any	command	line	argument	that	begins	with	a	hyphen
('-')	is	an	option.		Each	option	changes	the	behavior	of	'as'.		No
option	changes	the	way	another	option	works.		An	option	is	a	'-'
followed	by	one	or	more	letters;	the	case	of	the	letter	is	important.
All	options	are	optional.

			Some	options	expect	exactly	one	file	name	to	follow	them.		The	file
name	may	either	immediately	follow	the	option's	letter	(compatible	with
older	assemblers)	or	it	may	be	the	next	command	argument	(GNU	standard).
These	two	command	lines	are	equivalent:

					as	-o	my-object-file.o	mumble.s
					as	-omy-object-file.o	mumble.s

�
File:	as.info,		Node:	Input	Files,		Next:	Object,		Prev:	Command	Line,		Up:	Overview

1.5	Input	Files
===============

We	use	the	phrase	"source	program",	abbreviated	"source",	to	describe

3/25/20 as.info 23

the	program	input	to	one	run	of	'as'.		The	program	may	be	in	one	or	more
files;	how	the	source	is	partitioned	into	files	doesn't	change	the
meaning	of	the	source.

			The	source	program	is	a	concatenation	of	the	text	in	all	the	files,
in	the	order	specified.

			Each	time	you	run	'as'	it	assembles	exactly	one	source	program.		The
source	program	is	made	up	of	one	or	more	files.		(The	standard	input	is
also	a	file.)

			You	give	'as'	a	command	line	that	has	zero	or	more	input	file	names.
The	input	files	are	read	(from	left	file	name	to	right).		A	command	line
argument	(in	any	position)	that	has	no	special	meaning	is	taken	to	be	an
input	file	name.

			If	you	give	'as'	no	file	names	it	attempts	to	read	one	input	file
from	the	'as'	standard	input,	which	is	normally	your	terminal.		You	may
have	to	type	<ctl-D>	to	tell	'as'	there	is	no	more	program	to	assemble.

			Use	'--'	if	you	need	to	explicitly	name	the	standard	input	file	in
your	command	line.

			If	the	source	is	empty,	'as'	produces	a	small,	empty	object	file.

Filenames	and	Line-numbers

There	are	two	ways	of	locating	a	line	in	the	input	file	(or	files)	and
either	may	be	used	in	reporting	error	messages.		One	way	refers	to	a
line	number	in	a	physical	file;	the	other	refers	to	a	line	number	in	a
"logical"	file.		*Note	Error	and	Warning	Messages:	Errors.

			"Physical	files"	are	those	files	named	in	the	command	line	given	to
'as'.

			"Logical	files"	are	simply	names	declared	explicitly	by	assembler
directives;	they	bear	no	relation	to	physical	files.		Logical	file	names
help	error	messages	reflect	the	original	source	file,	when	'as'	source
is	itself	synthesized	from	other	files.		'as'	understands	the	'#'
directives	emitted	by	the	'gcc'	preprocessor.		See	also	*note	'.file':
File.

�
File:	as.info,		Node:	Object,		Next:	Errors,		Prev:	Input	Files,		Up:	Overview

1.6	Output	(Object)	File
========================

Every	time	you	run	'as'	it	produces	an	output	file,	which	is	your
assembly	language	program	translated	into	numbers.		This	file	is	the
object	file.		Its	default	name	is	'a.out'.		You	can	give	it	another	name
by	using	the	'-o'	option.		Conventionally,	object	file	names	end	with
'.o'.		The	default	name	is	used	for	historical	reasons:	older	assemblers
were	capable	of	assembling	self-contained	programs	directly	into	a
runnable	program.		(For	some	formats,	this	isn't	currently	possible,	but
it	can	be	done	for	the	'a.out'	format.)

			The	object	file	is	meant	for	input	to	the	linker	'ld'.		It	contains

3/25/20 as.info 24

assembled	program	code,	information	to	help	'ld'	integrate	the	assembled
program	into	a	runnable	file,	and	(optionally)	symbolic	information	for
the	debugger.

�
File:	as.info,		Node:	Errors,		Prev:	Object,		Up:	Overview

1.7	Error	and	Warning	Messages
==============================

'as'	may	write	warnings	and	error	messages	to	the	standard	error	file
(usually	your	terminal).		This	should	not	happen	when	a	compiler	runs
'as'	automatically.		Warnings	report	an	assumption	made	so	that	'as'
could	keep	assembling	a	flawed	program;	errors	report	a	grave	problem
that	stops	the	assembly.

			Warning	messages	have	the	format

					file_name:NNN:Warning	Message	Text

(where	NNN	is	a	line	number).		If	both	a	logical	file	name	(*note
'.file':	File.)	and	a	logical	line	number	(*note	'.line':	Line.)	have
been	given	then	they	will	be	used,	otherwise	the	file	name	and	line
number	in	the	current	assembler	source	file	will	be	used.		The	message
text	is	intended	to	be	self	explanatory	(in	the	grand	Unix	tradition).

			Note	the	file	name	must	be	set	via	the	logical	version	of	the	'.file'
directive,	not	the	DWARF2	version	of	the	'.file'	directive.		For
example:

							.file	2	"bar.c"
										error_assembler_source
							.file	"foo.c"
							.line	30
											error_c_source

			produces	this	output:

							Assembler	messages:
							asm.s:2:	Error:	no	such	instruction:	`error_assembler_source'
							foo.c:31:	Error:	no	such	instruction:	`error_c_source'

			Error	messages	have	the	format

					file_name:NNN:FATAL:Error	Message	Text

			The	file	name	and	line	number	are	derived	as	for	warning	messages.
The	actual	message	text	may	be	rather	less	explanatory	because	many	of
them	aren't	supposed	to	happen.

�
File:	as.info,		Node:	Invoking,		Next:	Syntax,		Prev:	Overview,		Up:	Top

2	Command-Line	Options

This	chapter	describes	command-line	options	available	in	_all_	versions
of	the	GNU	assembler;	see	*note	Machine	Dependencies::,	for	options
specific	to	particular	machine	architectures.

3/25/20 as.info 25

			If	you	are	invoking	'as'	via	the	GNU	C	compiler,	you	can	use	the
'-Wa'	option	to	pass	arguments	through	to	the	assembler.		The	assembler
arguments	must	be	separated	from	each	other	(and	the	'-Wa')	by	commas.
For	example:

					gcc	-c	-g	-O	-Wa,-alh,-L	file.c

This	passes	two	options	to	the	assembler:	'-alh'	(emit	a	listing	to
standard	output	with	high-level	and	assembly	source)	and	'-L'	(retain
local	symbols	in	the	symbol	table).

			Usually	you	do	not	need	to	use	this	'-Wa'	mechanism,	since	many
compiler	command-line	options	are	automatically	passed	to	the	assembler
by	the	compiler.		(You	can	call	the	GNU	compiler	driver	with	the	'-v'
option	to	see	precisely	what	options	it	passes	to	each	compilation	pass,
including	the	assembler.)

*	Menu:

*	a::													-a[cdghlns]	enable	listings
*	alternate::					-alternate	enable	alternate	macro	syntax
*	D::													-D	for	compatibility
*	f::													-f	to	work	faster
*	I::													-I	for	.include	search	path
*	K::													-K	for	difference	tables

*	L::													-L	to	retain	local	symbols
*	listing::							-listing-XXX	to	configure	listing	output
*	M:: 		-M	or	-mri	to	assemble	in	MRI	compatibility	mode
*	MD::												-MD	for	dependency	tracking
*	no-pad-sections::	-no-pad-sections	to	stop	section	padding
*	o::													-o	to	name	the	object	file
*	R::													-R	to	join	data	and	text	sections
*	statistics::				-statistics	to	see	statistics	about	assembly
*	traditional-format::	-traditional-format	for	compatible	output
*	v::													-v	to	announce	version
*	W::													-W,	-no-warn,	-warn,	-fatal-warnings	to	control	warnings
*	Z::													-Z	to	make	object	file	even	after	errors

�
File:	as.info,		Node:	a,		Next:	alternate,		Up:	Invoking

2.1	Enable	Listings:	'-a[cdghlns]'
==================================

These	options	enable	listing	output	from	the	assembler.		By	itself,	'-a'
requests	high-level,	assembly,	and	symbols	listing.		You	can	use	other
letters	to	select	specific	options	for	the	list:	'-ah'	requests	a
high-level	language	listing,	'-al'	requests	an	output-program	assembly
listing,	and	'-as'	requests	a	symbol	table	listing.		High-level	listings
require	that	a	compiler	debugging	option	like	'-g'	be	used,	and	that
assembly	listings	('-al')	be	requested	also.

			Use	the	'-ag'	option	to	print	a	first	section	with	general	assembly
information,	like	as	version,	switches	passed,	or	time	stamp.

			Use	the	'-ac'	option	to	omit	false	conditionals	from	a	listing.		Any
lines	which	are	not	assembled	because	of	a	false	'.if'	(or	'.ifdef',	or

3/25/20 as.info 26

any	other	conditional),	or	a	true	'.if'	followed	by	an	'.else',	will	be
omitted	from	the	listing.

			Use	the	'-ad'	option	to	omit	debugging	directives	from	the	listing.

			Once	you	have	specified	one	of	these	options,	you	can	further	control
listing	output	and	its	appearance	using	the	directives	'.list',
'.nolist',	'.psize',	'.eject',	'.title',	and	'.sbttl'.		The	'-an'	option
turns	off	all	forms	processing.		If	you	do	not	request	listing	output
with	one	of	the	'-a'	options,	the	listing-control	directives	have	no
effect.

			The	letters	after	'-a'	may	be	combined	into	one	option,	_e.g._,
'-aln'.

			Note	if	the	assembler	source	is	coming	from	the	standard	input	(e.g.,
because	it	is	being	created	by	'gcc'	and	the	'-pipe'	command	line	switch
is	being	used)	then	the	listing	will	not	contain	any	comments	or
preprocessor	directives.		This	is	because	the	listing	code	buffers	input
source	lines	from	stdin	only	after	they	have	been	preprocessed	by	the
assembler.		This	reduces	memory	usage	and	makes	the	code	more	efficient.

�
File:	as.info,		Node:	alternate,		Next:	D,		Prev:	a,		Up:	Invoking

2.2	'--alternate'
=================

Begin	in	alternate	macro	mode,	see	*note	'.altmacro':	Altmacro.

�
File:	as.info,		Node:	D,		Next:	f,		Prev:	alternate,		Up:	Invoking

2.3	'-D'
========

This	option	has	no	effect	whatsoever,	but	it	is	accepted	to	make	it	more
likely	that	scripts	written	for	other	assemblers	also	work	with	'as'.

�
File:	as.info,		Node:	f,		Next:	I,		Prev:	D,		Up:	Invoking

2.4	Work	Faster:	'-f'
=====================

'-f'	should	only	be	used	when	assembling	programs	written	by	a	(trusted)
compiler.		'-f'	stops	the	assembler	from	doing	whitespace	and	comment
preprocessing	on	the	input	file(s)	before	assembling	them.		*Note
Preprocessing:	Preprocessing.

					Warning:	if	you	use	'-f'	when	the	files	actually	need	to	be
					preprocessed	(if	they	contain	comments,	for	example),	'as'	does	not
					work	correctly.

�
File:	as.info,		Node:	I,		Next:	K,		Prev:	f,		Up:	Invoking

2.5	'.include'	Search	Path:	'-I'	PATH
=====================================

3/25/20 as.info 27

Use	this	option	to	add	a	PATH	to	the	list	of	directories	'as'	searches
for	files	specified	in	'.include'	directives	(*note	'.include':
Include.).		You	may	use	'-I'	as	many	times	as	necessary	to	include	a
variety	of	paths.		The	current	working	directory	is	always	searched
first;	after	that,	'as'	searches	any	'-I'	directories	in	the	same	order
as	they	were	specified	(left	to	right)	on	the	command	line.

�
File:	as.info,		Node:	K,		Next:	L,		Prev:	I,		Up:	Invoking

2.6	Difference	Tables:	'-K'
===========================

'as'	sometimes	alters	the	code	emitted	for	directives	of	the	form	'.word
SYM1-SYM2'.		*Note	'.word':	Word.		You	can	use	the	'-K'	option	if	you
want	a	warning	issued	when	this	is	done.

�
File:	as.info,		Node:	L,		Next:	listing,		Prev:	K,		Up:	Invoking

2.7	Include	Local	Symbols:	'-L'
===============================

Symbols	beginning	with	system-specific	local	label	prefixes,	typically
'.L'	for	ELF	systems	or	'L'	for	traditional	a.out	systems,	are	called
"local	symbols".		*Note	Symbol	Names::.		Normally	you	do	not	see	such
symbols	when	debugging,	because	they	are	intended	for	the	use	of
programs	(like	compilers)	that	compose	assembler	programs,	not	for	your
notice.		Normally	both	'as'	and	'ld'	discard	such	symbols,	so	you	do	not
normally	debug	with	them.

			This	option	tells	'as'	to	retain	those	local	symbols	in	the	object
file.		Usually	if	you	do	this	you	also	tell	the	linker	'ld'	to	preserve
those	symbols.

�
File:	as.info,		Node:	listing,		Next:	M,		Prev:	L,		Up:	Invoking

2.8	Configuring	listing	output:	'--listing'
===

The	listing	feature	of	the	assembler	can	be	enabled	via	the	command	line
switch	'-a'	(*note	a::).		This	feature	combines	the	input	source	file(s)
with	a	hex	dump	of	the	corresponding	locations	in	the	output	object
file,	and	displays	them	as	a	listing	file.		The	format	of	this	listing
can	be	controlled	by	directives	inside	the	assembler	source	(i.e.,
'.list'	(*note	List::),	'.title'	(*note	Title::),	'.sbttl'	(*note
Sbttl::),	'.psize'	(*note	Psize::),	and	'.eject'	(*note	Eject::)	and
also	by	the	following	switches:

'--listing-lhs-width='number''
					Sets	the	maximum	width,	in	words,	of	the	first	line	of	the	hex	byte
					dump.		This	dump	appears	on	the	left	hand	side	of	the	listing
					output.

'--listing-lhs-width2='number''
					Sets	the	maximum	width,	in	words,	of	any	further	lines	of	the	hex
					byte	dump	for	a	given	input	source	line.		If	this	value	is	not

3/25/20 as.info 28

					specified,	it	defaults	to	being	the	same	as	the	value	specified	for
					'--listing-lhs-width'.		If	neither	switch	is	used	the	default	is	to
					one.

'--listing-rhs-width='number''
					Sets	the	maximum	width,	in	characters,	of	the	source	line	that	is
					displayed	alongside	the	hex	dump.		The	default	value	for	this
					parameter	is	100.		The	source	line	is	displayed	on	the	right	hand
					side	of	the	listing	output.

'--listing-cont-lines='number''
					Sets	the	maximum	number	of	continuation	lines	of	hex	dump	that	will
					be	displayed	for	a	given	single	line	of	source	input.		The	default
					value	is	4.

�
File:	as.info,		Node:	M,		Next:	MD,		Prev:	listing,		Up:	Invoking

2.9	Assemble	in	MRI	Compatibility	Mode:	'-M'
==

The	'-M'	or	'--mri'	option	selects	MRI	compatibility	mode.		This	changes
the	syntax	and	pseudo-op	handling	of	'as'	to	make	it	compatible	with	the
'ASM68K'	or	the	'ASM960'	(depending	upon	the	configured	target)
assembler	from	Microtec	Research.		The	exact	nature	of	the	MRI	syntax
will	not	be	documented	here;	see	the	MRI	manuals	for	more	information.
Note	in	particular	that	the	handling	of	macros	and	macro	arguments	is
somewhat	different.		The	purpose	of	this	option	is	to	permit	assembling
existing	MRI	assembler	code	using	'as'.

			The	MRI	compatibility	is	not	complete.		Certain	operations	of	the	MRI
assembler	depend	upon	its	object	file	format,	and	can	not	be	supported
using	other	object	file	formats.		Supporting	these	would	require
enhancing	each	object	file	format	individually.		These	are:

			*	global	symbols	in	common	section

					The	m68k	MRI	assembler	supports	common	sections	which	are	merged	by
					the	linker.		Other	object	file	formats	do	not	support	this.		'as'
					handles	common	sections	by	treating	them	as	a	single	common	symbol.
					It	permits	local	symbols	to	be	defined	within	a	common	section,	but
					it	can	not	support	global	symbols,	since	it	has	no	way	to	describe
					them.

			*	complex	relocations

					The	MRI	assemblers	support	relocations	against	a	negated	section
					address,	and	relocations	which	combine	the	start	addresses	of	two
					or	more	sections.		These	are	not	support	by	other	object	file
					formats.

			*	'END'	pseudo-op	specifying	start	address

					The	MRI	'END'	pseudo-op	permits	the	specification	of	a	start
					address.		This	is	not	supported	by	other	object	file	formats.		The
					start	address	may	instead	be	specified	using	the	'-e'	option	to	the
					linker,	or	in	a	linker	script.

			*	'IDNT',	'.ident'	and	'NAME'	pseudo-ops

3/25/20 as.info 29

					The	MRI	'IDNT',	'.ident'	and	'NAME'	pseudo-ops	assign	a	module	name
					to	the	output	file.		This	is	not	supported	by	other	object	file
					formats.

			*	'ORG'	pseudo-op

					The	m68k	MRI	'ORG'	pseudo-op	begins	an	absolute	section	at	a	given
					address.		This	differs	from	the	usual	'as'	'.org'	pseudo-op,	which
					changes	the	location	within	the	current	section.		Absolute	sections
					are	not	supported	by	other	object	file	formats.		The	address	of	a
					section	may	be	assigned	within	a	linker	script.

			There	are	some	other	features	of	the	MRI	assembler	which	are	not
supported	by	'as',	typically	either	because	they	are	difficult	or
because	they	seem	of	little	consequence.		Some	of	these	may	be	supported
in	future	releases.

			*	EBCDIC	strings

					EBCDIC	strings	are	not	supported.

			*	packed	binary	coded	decimal

					Packed	binary	coded	decimal	is	not	supported.		This	means	that	the
					'DC.P'	and	'DCB.P'	pseudo-ops	are	not	supported.

			*	'FEQU'	pseudo-op

					The	m68k	'FEQU'	pseudo-op	is	not	supported.

			*	'NOOBJ'	pseudo-op

					The	m68k	'NOOBJ'	pseudo-op	is	not	supported.

			*	'OPT'	branch	control	options

					The	m68k	'OPT'	branch	control	options--'B',	'BRS',	'BRB',	'BRL',
					and	'BRW'--are	ignored.		'as'	automatically	relaxes	all	branches,
					whether	forward	or	backward,	to	an	appropriate	size,	so	these
					options	serve	no	purpose.

			*	'OPT'	list	control	options

					The	following	m68k	'OPT'	list	control	options	are	ignored:	'C',
					'CEX',	'CL',	'CRE',	'E',	'G',	'I',	'M',	'MEX',	'MC',	'MD',	'X'.

			*	other	'OPT'	options

					The	following	m68k	'OPT'	options	are	ignored:	'NEST',	'O',	'OLD',
					'OP',	'P',	'PCO',	'PCR',	'PCS',	'R'.

			*	'OPT'	'D'	option	is	default

					The	m68k	'OPT'	'D'	option	is	the	default,	unlike	the	MRI	assembler.
					'OPT	NOD'	may	be	used	to	turn	it	off.

			*	'XREF'	pseudo-op.

3/25/20 as.info 30

					The	m68k	'XREF'	pseudo-op	is	ignored.

			*	'.debug'	pseudo-op

					The	i960	'.debug'	pseudo-op	is	not	supported.

			*	'.extended'	pseudo-op

					The	i960	'.extended'	pseudo-op	is	not	supported.

			*	'.list'	pseudo-op.

					The	various	options	of	the	i960	'.list'	pseudo-op	are	not
					supported.

			*	'.optimize'	pseudo-op

					The	i960	'.optimize'	pseudo-op	is	not	supported.

			*	'.output'	pseudo-op

					The	i960	'.output'	pseudo-op	is	not	supported.

			*	'.setreal'	pseudo-op

					The	i960	'.setreal'	pseudo-op	is	not	supported.

�
File:	as.info,		Node:	MD,		Next:	no-pad-sections,		Prev:	M,		Up:	Invoking

2.10	Dependency	Tracking:	'--MD'
================================

'as'	can	generate	a	dependency	file	for	the	file	it	creates.		This	file
consists	of	a	single	rule	suitable	for	'make'	describing	the
dependencies	of	the	main	source	file.

			The	rule	is	written	to	the	file	named	in	its	argument.

			This	feature	is	used	in	the	automatic	updating	of	makefiles.

�
File:	as.info,		Node:	no-pad-sections,		Next:	o,		Prev:	MD,		Up:	Invoking

2.11	Output	Section	Padding
===========================

Normally	the	assembler	will	pad	the	end	of	each	output	section	up	to	its
alignment	boundary.		But	this	can	waste	space,	which	can	be	significant
on	memory	constrained	targets.		So	the	'--no-pad-sections'	option	will
disable	this	behaviour.

�
File:	as.info,		Node:	o,		Next:	R,		Prev:	no-pad-sections,		Up:	Invoking

2.12	Name	the	Object	File:	'-o'
===============================

There	is	always	one	object	file	output	when	you	run	'as'.		By	default	it

3/25/20 as.info 31

has	the	name	'a.out'	(or	'b.out',	for	Intel	960	targets	only).		You	use
this	option	(which	takes	exactly	one	filename)	to	give	the	object	file	a
different	name.

			Whatever	the	object	file	is	called,	'as'	overwrites	any	existing	file
of	the	same	name.

�
File:	as.info,		Node:	R,		Next:	statistics,		Prev:	o,		Up:	Invoking

2.13	Join	Data	and	Text	Sections:	'-R'
======================================

'-R'	tells	'as'	to	write	the	object	file	as	if	all	data-section	data
lives	in	the	text	section.		This	is	only	done	at	the	very	last	moment:
your	binary	data	are	the	same,	but	data	section	parts	are	relocated
differently.		The	data	section	part	of	your	object	file	is	zero	bytes
long	because	all	its	bytes	are	appended	to	the	text	section.		(*Note
Sections	and	Relocation:	Sections.)

			When	you	specify	'-R'	it	would	be	possible	to	generate	shorter
address	displacements	(because	we	do	not	have	to	cross	between	text	and
data	section).		We	refrain	from	doing	this	simply	for	compatibility	with
older	versions	of	'as'.		In	future,	'-R'	may	work	this	way.

			When	'as'	is	configured	for	COFF	or	ELF	output,	this	option	is	only
useful	if	you	use	sections	named	'.text'	and	'.data'.

			'-R'	is	not	supported	for	any	of	the	HPPA	targets.		Using	'-R'
generates	a	warning	from	'as'.

�
File:	as.info,		Node:	statistics,		Next:	traditional-format,		Prev:	R,		Up:	Invoking

2.14	Display	Assembly	Statistics:	'--statistics'
==

Use	'--statistics'	to	display	two	statistics	about	the	resources	used	by
'as':	the	maximum	amount	of	space	allocated	during	the	assembly	(in
bytes),	and	the	total	execution	time	taken	for	the	assembly	(in	CPU
seconds).

�
File:	as.info,		Node:	traditional-format,		Next:	v,		Prev:	statistics,		Up:	Invoking

2.15	Compatible	Output:	'--traditional-format'
==

For	some	targets,	the	output	of	'as'	is	different	in	some	ways	from	the
output	of	some	existing	assembler.		This	switch	requests	'as'	to	use	the
traditional	format	instead.

			For	example,	it	disables	the	exception	frame	optimizations	which	'as'
normally	does	by	default	on	'gcc'	output.

�
File:	as.info,		Node:	v,		Next:	W,		Prev:	traditional-format,		Up:	Invoking

2.16	Announce	Version:	'-v'

3/25/20 as.info 32

===========================

You	can	find	out	what	version	of	as	is	running	by	including	the	option
'-v'	(which	you	can	also	spell	as	'-version')	on	the	command	line.

�
File:	as.info,		Node:	W,		Next:	Z,		Prev:	v,		Up:	Invoking

2.17	Control	Warnings:	'-W',	'--warn',	'--no-warn',	'--fatal-warnings'
==

'as'	should	never	give	a	warning	or	error	message	when	assembling
compiler	output.		But	programs	written	by	people	often	cause	'as'	to
give	a	warning	that	a	particular	assumption	was	made.		All	such	warnings
are	directed	to	the	standard	error	file.

			If	you	use	the	'-W'	and	'--no-warn'	options,	no	warnings	are	issued.
This	only	affects	the	warning	messages:	it	does	not	change	any
particular	of	how	'as'	assembles	your	file.		Errors,	which	stop	the
assembly,	are	still	reported.

			If	you	use	the	'--fatal-warnings'	option,	'as'	considers	files	that
generate	warnings	to	be	in	error.

			You	can	switch	these	options	off	again	by	specifying	'--warn',	which
causes	warnings	to	be	output	as	usual.

�
File:	as.info,		Node:	Z,		Prev:	W,		Up:	Invoking

2.18	Generate	Object	File	in	Spite	of	Errors:	'-Z'
==

After	an	error	message,	'as'	normally	produces	no	output.		If	for	some
reason	you	are	interested	in	object	file	output	even	after	'as'	gives	an
error	message	on	your	program,	use	the	'-Z'	option.		If	there	are	any
errors,	'as'	continues	anyways,	and	writes	an	object	file	after	a	final
warning	message	of	the	form	'N	errors,	M	warnings,	generating	bad	object
file.'

�
File:	as.info,		Node:	Syntax,		Next:	Sections,		Prev:	Invoking,		Up:	Top

3	Syntax

This	chapter	describes	the	machine-independent	syntax	allowed	in	a
source	file.		'as'	syntax	is	similar	to	what	many	other	assemblers	use;
it	is	inspired	by	the	BSD	4.2	assembler,	except	that	'as'	does	not
assemble	Vax	bit-fields.

*	Menu:

*	Preprocessing::															Preprocessing
*	Whitespace::																		Whitespace
*	Comments::																				Comments
*	Symbol	Intro::																Symbols
*	Statements::																		Statements
*	Constants::																			Constants

3/25/20 as.info 33

�
File:	as.info,		Node:	Preprocessing,		Next:	Whitespace,		Up:	Syntax

3.1	Preprocessing
=================

The	'as'	internal	preprocessor:
			*	adjusts	and	removes	extra	whitespace.		It	leaves	one	space	or	tab
					before	the	keywords	on	a	line,	and	turns	any	other	whitespace	on
					the	line	into	a	single	space.

			*	removes	all	comments,	replacing	them	with	a	single	space,	or	an
					appropriate	number	of	newlines.

			*	converts	character	constants	into	the	appropriate	numeric	values.

			It	does	not	do	macro	processing,	include	file	handling,	or	anything
else	you	may	get	from	your	C	compiler's	preprocessor.		You	can	do
include	file	processing	with	the	'.include'	directive	(*note	'.include':
Include.).		You	can	use	the	GNU	C	compiler	driver	to	get	other	"CPP"
style	preprocessing	by	giving	the	input	file	a	'.S'	suffix.		*Note
Options	Controlling	the	Kind	of	Output:	(gcc	info)Overall	Options.

			Excess	whitespace,	comments,	and	character	constants	cannot	be	used
in	the	portions	of	the	input	text	that	are	not	preprocessed.

			If	the	first	line	of	an	input	file	is	'#NO_APP'	or	if	you	use	the
'-f'	option,	whitespace	and	comments	are	not	removed	from	the	input
file.		Within	an	input	file,	you	can	ask	for	whitespace	and	comment
removal	in	specific	portions	of	the	by	putting	a	line	that	says	'#APP'
before	the	text	that	may	contain	whitespace	or	comments,	and	putting	a
line	that	says	'#NO_APP'	after	this	text.		This	feature	is	mainly	intend
to	support	'asm'	statements	in	compilers	whose	output	is	otherwise	free
of	comments	and	whitespace.

�
File:	as.info,		Node:	Whitespace,		Next:	Comments,		Prev:	Preprocessing,		Up:	Syntax

3.2	Whitespace
==============

"Whitespace"	is	one	or	more	blanks	or	tabs,	in	any	order.		Whitespace	is
used	to	separate	symbols,	and	to	make	programs	neater	for	people	to
read.		Unless	within	character	constants	(*note	Character	Constants:
Characters.),	any	whitespace	means	the	same	as	exactly	one	space.

�
File:	as.info,		Node:	Comments,		Next:	Symbol	Intro,		Prev:	Whitespace,		Up:	Syntax

3.3	Comments
============

There	are	two	ways	of	rendering	comments	to	'as'.		In	both	cases	the
comment	is	equivalent	to	one	space.

			Anything	from	'/*'	through	the	next	'*/'	is	a	comment.		This	means
you	may	not	nest	these	comments.

3/25/20 as.info 34

					/*
							The	only	way	to	include	a	newline	('\n')	in	a	comment
							is	to	use	this	sort	of	comment.
					*/

					/*	This	sort	of	comment	does	not	nest.	*/

			Anything	from	a	"line	comment"	character	up	to	the	next	newline	is
considered	a	comment	and	is	ignored.		The	line	comment	character	is
target	specific,	and	some	targets	multiple	comment	characters.		Some
targets	also	have	line	comment	characters	that	only	work	if	they	are	the
first	character	on	a	line.		Some	targets	use	a	sequence	of	two
characters	to	introduce	a	line	comment.		Some	targets	can	also	change
their	line	comment	characters	depending	upon	command	line	options	that
have	been	used.		For	more	details	see	the	_Syntax_	section	in	the
documentation	for	individual	targets.

			If	the	line	comment	character	is	the	hash	sign	('#')	then	it	still
has	the	special	ability	to	enable	and	disable	preprocessing	(*note
Preprocessing::)	and	to	specify	logical	line	numbers:

			To	be	compatible	with	past	assemblers,	lines	that	begin	with	'#'	have
a	special	interpretation.		Following	the	'#'	should	be	an	absolute
expression	(*note	Expressions::):	the	logical	line	number	of	the	_next_
line.		Then	a	string	(*note	Strings:	Strings.)	is	allowed:	if	present	it
is	a	new	logical	file	name.		The	rest	of	the	line,	if	any,	should	be
whitespace.

			If	the	first	non-whitespace	characters	on	the	line	are	not	numeric,
the	line	is	ignored.		(Just	like	a	comment.)

																															#	This	is	an	ordinary	comment.
					#	42-6	"new_file_name"				#	New	logical	file	name
																															#	This	is	logical	line	#	36.
			This	feature	is	deprecated,	and	may	disappear	from	future	versions	of
'as'.

�
File:	as.info,		Node:	Symbol	Intro,		Next:	Statements,		Prev:	Comments,		Up:	Syntax

3.4	Symbols
===========

A	"symbol"	is	one	or	more	characters	chosen	from	the	set	of	all	letters
(both	upper	and	lower	case),	digits	and	the	three	characters	'_.$'.		On
most	machines,	you	can	also	use	'$'	in	symbol	names;	exceptions	are
noted	in	*note	Machine	Dependencies::.		No	symbol	may	begin	with	a
digit.		Case	is	significant.		There	is	no	length	limit;	all	characters
are	significant.		Multibyte	characters	are	supported.		Symbols	are
delimited	by	characters	not	in	that	set,	or	by	the	beginning	of	a	file
(since	the	source	program	must	end	with	a	newline,	the	end	of	a	file	is
not	a	possible	symbol	delimiter).		*Note	Symbols::.

			Symbol	names	may	also	be	enclosed	in	double	quote	'"'	characters.		In
such	cases	any	characters	are	allowed,	except	for	the	NUL	character.		If
a	double	quote	character	is	to	be	included	in	the	symbol	name	it	must	be
preceeded	by	a	backslash	'\'	character.

�

3/25/20 as.info 35

File:	as.info,		Node:	Statements,		Next:	Constants,		Prev:	Symbol	Intro,		Up:	Syntax

3.5	Statements
==============

A	"statement"	ends	at	a	newline	character	('\n')	or	a	"line	separator
character".		The	line	separator	character	is	target	specific	and
described	in	the	_Syntax_	section	of	each	target's	documentation.		Not
all	targets	support	a	line	separator	character.		The	newline	or	line
separator	character	is	considered	to	be	part	of	the	preceding	statement.
Newlines	and	separators	within	character	constants	are	an	exception:
they	do	not	end	statements.

			It	is	an	error	to	end	any	statement	with	end-of-file:	the	last
character	of	any	input	file	should	be	a	newline.

			An	empty	statement	is	allowed,	and	may	include	whitespace.		It	is
ignored.

			A	statement	begins	with	zero	or	more	labels,	optionally	followed	by	a
key	symbol	which	determines	what	kind	of	statement	it	is.		The	key
symbol	determines	the	syntax	of	the	rest	of	the	statement.		If	the
symbol	begins	with	a	dot	'.'	then	the	statement	is	an	assembler
directive:	typically	valid	for	any	computer.		If	the	symbol	begins	with
a	letter	the	statement	is	an	assembly	language	"instruction":	it
assembles	into	a	machine	language	instruction.		Different	versions	of
'as'	for	different	computers	recognize	different	instructions.		In	fact,
the	same	symbol	may	represent	a	different	instruction	in	a	different
computer's	assembly	language.

			A	label	is	a	symbol	immediately	followed	by	a	colon	(':').
Whitespace	before	a	label	or	after	a	colon	is	permitted,	but	you	may	not
have	whitespace	between	a	label's	symbol	and	its	colon.		*Note	Labels::.

			For	HPPA	targets,	labels	need	not	be	immediately	followed	by	a	colon,
but	the	definition	of	a	label	must	begin	in	column	zero.		This	also
implies	that	only	one	label	may	be	defined	on	each	line.

					label:					.directive				followed	by	something
					another_label:											#	This	is	an	empty	statement.
																instruction			operand_1,	operand_2,	...

�
File:	as.info,		Node:	Constants,		Prev:	Statements,		Up:	Syntax

3.6	Constants
=============

A	constant	is	a	number,	written	so	that	its	value	is	known	by
inspection,	without	knowing	any	context.		Like	this:
					.byte		74,	0112,	092,	0x4A,	0X4a,	'J,	'\J	#	All	the	same	value.
					.ascii	"Ring	the	bell\7"																		#	A	string	constant.
					.octa		0x123456789abcdef0123456789ABCDEF0	#	A	bignum.
					.float	0f-314159265358979323846264338327\
					95028841971.693993751E-40																	#	-	pi,	a	flonum.

*	Menu:

*	Characters::																		Character	Constants

3/25/20 as.info 36

*	Numbers::																					Number	Constants

�
File:	as.info,		Node:	Characters,		Next:	Numbers,		Up:	Constants

3.6.1	Character	Constants

There	are	two	kinds	of	character	constants.		A	"character"	stands	for
one	character	in	one	byte	and	its	value	may	be	used	in	numeric
expressions.		String	constants	(properly	called	string	_literals_)	are
potentially	many	bytes	and	their	values	may	not	be	used	in	arithmetic
expressions.

*	Menu:

*	Strings::																					Strings
*	Chars::																							Characters

�
File:	as.info,		Node:	Strings,		Next:	Chars,		Up:	Characters

3.6.1.1	Strings
...............

A	"string"	is	written	between	double-quotes.		It	may	contain
double-quotes	or	null	characters.		The	way	to	get	special	characters
into	a	string	is	to	"escape"	these	characters:	precede	them	with	a
backslash	'\'	character.		For	example	'\\'	represents	one	backslash:	the
first	'\'	is	an	escape	which	tells	'as'	to	interpret	the	second
character	literally	as	a	backslash	(which	prevents	'as'	from	recognizing
the	second	'\'	as	an	escape	character).		The	complete	list	of	escapes
follows.

'\b'
					Mnemonic	for	backspace;	for	ASCII	this	is	octal	code	010.

'backslash-f'
					Mnemonic	for	FormFeed;	for	ASCII	this	is	octal	code	014.

'\n'
					Mnemonic	for	newline;	for	ASCII	this	is	octal	code	012.

'\r'
					Mnemonic	for	carriage-Return;	for	ASCII	this	is	octal	code	015.

'\t'
					Mnemonic	for	horizontal	Tab;	for	ASCII	this	is	octal	code	011.

'\	DIGIT	DIGIT	DIGIT'
					An	octal	character	code.		The	numeric	code	is	3	octal	digits.		For
					compatibility	with	other	Unix	systems,	8	and	9	are	accepted	as
					digits:	for	example,	'\008'	has	the	value	010,	and	'\009'	the	value
					011.

'\x	HEX-DIGITS..�.'
					A	hex	character	code.		All	trailing	hex	digits	are	combined.
					Either	upper	or	lower	case	'x'	works.

3/25/20 as.info 37

'\\'
					Represents	one	'\'	character.

'\"'
					Represents	one	'"'	character.		Needed	in	strings	to	represent	this
					character,	because	an	unescaped	'"'	would	end	the	string.

'\	ANYTHING-ELSE'
					Any	other	character	when	escaped	by	'\'	gives	a	warning,	but
					assembles	as	if	the	'\'	was	not	present.		The	idea	is	that	if	you
					used	an	escape	sequence	you	clearly	didn't	want	the	literal
					interpretation	of	the	following	character.		However	'as'	has	no
					other	interpretation,	so	'as'	knows	it	is	giving	you	the	wrong	code
					and	warns	you	of	the	fact.

			Which	characters	are	escapable,	and	what	those	escapes	represent,
varies	widely	among	assemblers.		The	current	set	is	what	we	think	the
BSD	4.2	assembler	recognizes,	and	is	a	subset	of	what	most	C	compilers
recognize.		If	you	are	in	doubt,	do	not	use	an	escape	sequence.

�
File:	as.info,		Node:	Chars,		Prev:	Strings,		Up:	Characters

3.6.1.2	Characters
..................

A	single	character	may	be	written	as	a	single	quote	immediately	followed
by	that	character.		Some	backslash	escapes	apply	to	characters,	'\b',
'\f',	'\n',	'\r',	'\t',	and	'\"'	with	the	same	meaning	as	for	strings,
plus	'\''	for	a	single	quote.		So	if	you	want	to	write	the	character
backslash,	you	must	write	''\\'	where	the	first	'\'	escapes	the	second
'\'.		As	you	can	see,	the	quote	is	an	acute	accent,	not	a	grave	accent.
A	newline	immediately	following	an	acute	accent	is	taken	as	a	literal
character	and	does	not	count	as	the	end	of	a	statement.		The	value	of	a
character	constant	in	a	numeric	expression	is	the	machine's	byte-wide
code	for	that	character.		'as'	assumes	your	character	code	is	ASCII:
''A'	means	65,	''B'	means	66,	and	so	on.

�
File:	as.info,		Node:	Numbers,		Prev:	Characters,		Up:	Constants

3.6.2	Number	Constants

'as'	distinguishes	three	kinds	of	numbers	according	to	how	they	are
stored	in	the	target	machine.		_Integers_	are	numbers	that	would	fit
into	an	'int'	in	the	C	language.		_Bignums_	are	integers,	but	they	are
stored	in	more	than	32	bits.		_Flonums_	are	floating	point	numbers,
described	below.

*	Menu:

*	Integers::																				Integers
*	Bignums::																					Bignums
*	Flonums::																					Flonums

�
File:	as.info,		Node:	Integers,		Next:	Bignums,		Up:	Numbers

3/25/20 as.info 38

3.6.2.1	Integers
................

A	binary	integer	is	'0b'	or	'0B'	followed	by	zero	or	more	of	the	binary
digits	'01'.

			An	octal	integer	is	'0'	followed	by	zero	or	more	of	the	octal	digits
('01234567').

			A	decimal	integer	starts	with	a	non-zero	digit	followed	by	zero	or
more	digits	('0123456789').

			A	hexadecimal	integer	is	'0x'	or	'0X'	followed	by	one	or	more
hexadecimal	digits	chosen	from	'0123456789abcdefABCDEF'.

			Integers	have	the	usual	values.		To	denote	a	negative	integer,	use
the	prefix	operator	'-'	discussed	under	expressions	(*note	Prefix
Operators:	Prefix	Ops.).

�
File:	as.info,		Node:	Bignums,		Next:	Flonums,		Prev:	Integers,		Up:	Numbers

3.6.2.2	Bignums
...............

A	"bignum"	has	the	same	syntax	and	semantics	as	an	integer	except	that
the	number	(or	its	negative)	takes	more	than	32	bits	to	represent	in
binary.		The	distinction	is	made	because	in	some	places	integers	are
permitted	while	bignums	are	not.

�
File:	as.info,		Node:	Flonums,		Prev:	Bignums,		Up:	Numbers

3.6.2.3	Flonums
...............

A	"flonum"	represents	a	floating	point	number.		The	translation	is
indirect:	a	decimal	floating	point	number	from	the	text	is	converted	by
'as'	to	a	generic	binary	floating	point	number	of	more	than	sufficient
precision.		This	generic	floating	point	number	is	converted	to	a
particular	computer's	floating	point	format	(or	formats)	by	a	portion	of
'as'	specialized	to	that	computer.

			A	flonum	is	written	by	writing	(in	order)
			*	The	digit	'0'.		('0'	is	optional	on	the	HPPA.)

			*	A	letter,	to	tell	'as'	the	rest	of	the	number	is	a	flonum.		'e'	is
					recommended.		Case	is	not	important.

					On	the	H8/300,	Renesas	/	SuperH	SH,	and	AMD	29K	architectures,	the
					letter	must	be	one	of	the	letters	'DFPRSX'	(in	upper	or	lower
					case).

					On	the	ARC,	the	letter	must	be	one	of	the	letters	'DFRS'	(in	upper
					or	lower	case).

					On	the	Intel	960	architecture,	the	letter	must	be	one	of	the
					letters	'DFT'	(in	upper	or	lower	case).

3/25/20 as.info 39

					On	the	HPPA	architecture,	the	letter	must	be	'E'	(upper	case	only).

			*	An	optional	sign:	either	'+'	or	'-'.

			*	An	optional	"integer	part":	zero	or	more	decimal	digits.

			*	An	optional	"fractional	part":	'.'	followed	by	zero	or	more	decimal
					digits.

			*	An	optional	exponent,	consisting	of:

								*	An	'E'	or	'e'.
								*	Optional	sign:	either	'+'	or	'-'.
								*	One	or	more	decimal	digits.

			At	least	one	of	the	integer	part	or	the	fractional	part	must	be
present.		The	floating	point	number	has	the	usual	base-10	value.

			'as'	does	all	processing	using	integers.		Flonums	are	computed
independently	of	any	floating	point	hardware	in	the	computer	running
'as'.

�
File:	as.info,		Node:	Sections,		Next:	Symbols,		Prev:	Syntax,		Up:	Top

4	Sections	and	Relocation

*	Menu:

*	Secs	Background::													Background
*	Ld	Sections::																	Linker	Sections
*	As	Sections::																	Assembler	Internal	Sections
*	Sub-Sections::																Sub-Sections
*	bss::																									bss	Section

�
File:	as.info,		Node:	Secs	Background,		Next:	Ld	Sections,		Up:	Sections

4.1	Background
==============

Roughly,	a	section	is	a	range	of	addresses,	with	no	gaps;	all	data	"in"
those	addresses	is	treated	the	same	for	some	particular	purpose.		For
example	there	may	be	a	"read	only"	section.

			The	linker	'ld'	reads	many	object	files	(partial	programs)	and
combines	their	contents	to	form	a	runnable	program.		When	'as'	emits	an
object	file,	the	partial	program	is	assumed	to	start	at	address	0.		'ld'
assigns	the	final	addresses	for	the	partial	program,	so	that	different
partial	programs	do	not	overlap.		This	is	actually	an
oversimplification,	but	it	suffices	to	explain	how	'as'	uses	sections.

			'ld'	moves	blocks	of	bytes	of	your	program	to	their	run-time
addresses.		These	blocks	slide	to	their	run-time	addresses	as	rigid
units;	their	length	does	not	change	and	neither	does	the	order	of	bytes
within	them.		Such	a	rigid	unit	is	called	a	_section_.		Assigning
run-time	addresses	to	sections	is	called	"relocation".		It	includes	the
task	of	adjusting	mentions	of	object-file	addresses	so	they	refer	to	the

3/25/20 as.info 40

proper	run-time	addresses.		For	the	H8/300,	and	for	the	Renesas	/	SuperH
SH,	'as'	pads	sections	if	needed	to	ensure	they	end	on	a	word	(sixteen
bit)	boundary.

			An	object	file	written	by	'as'	has	at	least	three	sections,	any	of
which	may	be	empty.		These	are	named	"text",	"data"	and	"bss"	sections.

			When	it	generates	COFF	or	ELF	output,	'as'	can	also	generate	whatever
other	named	sections	you	specify	using	the	'.section'	directive	(*note
'.section':	Section.).		If	you	do	not	use	any	directives	that	place
output	in	the	'.text'	or	'.data'	sections,	these	sections	still	exist,
but	are	empty.

			When	'as'	generates	SOM	or	ELF	output	for	the	HPPA,	'as'	can	also
generate	whatever	other	named	sections	you	specify	using	the	'.space'
and	'.subspace'	directives.		See	'HP9000	Series	800	Assembly	Language
Reference	Manual'	(HP	92432-90001)	for	details	on	the	'.space'	and
'.subspace'	assembler	directives.

			Additionally,	'as'	uses	different	names	for	the	standard	text,	data,
and	bss	sections	when	generating	SOM	output.		Program	text	is	placed
into	the	'$CODE$'	section,	data	into	'$DATA$',	and	BSS	into	'BSS'.

			Within	the	object	file,	the	text	section	starts	at	address	'0',	the
data	section	follows,	and	the	bss	section	follows	the	data	section.

			When	generating	either	SOM	or	ELF	output	files	on	the	HPPA,	the	text
section	starts	at	address	'0',	the	data	section	at	address	'0x4000000',
and	the	bss	section	follows	the	data	section.

			To	let	'ld'	know	which	data	changes	when	the	sections	are	relocated,
and	how	to	change	that	data,	'as'	also	writes	to	the	object	file	details
of	the	relocation	needed.		To	perform	relocation	'ld'	must	know,	each
time	an	address	in	the	object	file	is	mentioned:
			*	Where	in	the	object	file	is	the	beginning	of	this	reference	to	an
					address?
			*	How	long	(in	bytes)	is	this	reference?
			*	Which	section	does	the	address	refer	to?		What	is	the	numeric	value
					of
										(ADDRESS)	-	(START-ADDRESS	OF	SECTION)?
			*	Is	the	reference	to	an	address	"Program-Counter	relative"?

			In	fact,	every	address	'as'	ever	uses	is	expressed	as
					(SECTION)	+	(OFFSET	INTO	SECTION)
Further,	most	expressions	'as'	computes	have	this	section-relative
nature.		(For	some	object	formats,	such	as	SOM	for	the	HPPA,	some
expressions	are	symbol-relative	instead.)

			In	this	manual	we	use	the	notation	{SECNAME	N}	to	mean	"offset	N	into
section	SECNAME."

			Apart	from	text,	data	and	bss	sections	you	need	to	know	about	the
"absolute"	section.		When	'ld'	mixes	partial	programs,	addresses	in	the
absolute	section	remain	unchanged.		For	example,	address	'{absolute	0}'
is	"relocated"	to	run-time	address	0	by	'ld'.		Although	the	linker	never
arranges	two	partial	programs'	data	sections	with	overlapping	addresses
after	linking,	_by	definition_	their	absolute	sections	must	overlap.
Address	'{absolute	239}'	in	one	part	of	a	program	is	always	the	same
address	when	the	program	is	running	as	address	'{absolute	239}'	in	any

3/25/20 as.info 41

other	part	of	the	program.

			The	idea	of	sections	is	extended	to	the	"undefined"	section.		Any
address	whose	section	is	unknown	at	assembly	time	is	by	definition
rendered	{undefined	U}--where	U	is	filled	in	later.		Since	numbers	are
always	defined,	the	only	way	to	generate	an	undefined	address	is	to
mention	an	undefined	symbol.		A	reference	to	a	named	common	block	would
be	such	a	symbol:	its	value	is	unknown	at	assembly	time	so	it	has
section	_undefined_.

			By	analogy	the	word	_section_	is	used	to	describe	groups	of	sections
in	the	linked	program.		'ld'	puts	all	partial	programs'	text	sections	in
contiguous	addresses	in	the	linked	program.		It	is	customary	to	refer	to
the	_text	section_	of	a	program,	meaning	all	the	addresses	of	all
partial	programs'	text	sections.		Likewise	for	data	and	bss	sections.

			Some	sections	are	manipulated	by	'ld';	others	are	invented	for	use	of
'as'	and	have	no	meaning	except	during	assembly.

�
File:	as.info,		Node:	Ld	Sections,		Next:	As	Sections,		Prev:	Secs	Background,		Up:
Sections

4.2	Linker	Sections
===================

'ld'	deals	with	just	four	kinds	of	sections,	summarized	below.

named	sections
text	section
data	section
					These	sections	hold	your	program.		'as'	and	'ld'	treat	them	as
					separate	but	equal	sections.		Anything	you	can	say	of	one	section
					is	true	of	another.		When	the	program	is	running,	however,	it	is
					customary	for	the	text	section	to	be	unalterable.		The	text	section
					is	often	shared	among	processes:	it	contains	instructions,
					constants	and	the	like.		The	data	section	of	a	running	program	is
					usually	alterable:	for	example,	C	variables	would	be	stored	in	the
					data	section.

bss	section
					This	section	contains	zeroed	bytes	when	your	program	begins
					running.		It	is	used	to	hold	uninitialized	variables	or	common
					storage.		The	length	of	each	partial	program's	bss	section	is
					important,	but	because	it	starts	out	containing	zeroed	bytes	there
					is	no	need	to	store	explicit	zero	bytes	in	the	object	file.		The
					bss	section	was	invented	to	eliminate	those	explicit	zeros	from
					object	files.

absolute	section
					Address	0	of	this	section	is	always	"relocated"	to	runtime	address
					0.		This	is	useful	if	you	want	to	refer	to	an	address	that	'ld'
					must	not	change	when	relocating.		In	this	sense	we	speak	of
					absolute	addresses	being	"unrelocatable":	they	do	not	change	during
					relocation.

undefined	section
					This	"section"	is	a	catch-all	for	address	references	to	objects	not
					in	the	preceding	sections.

3/25/20 as.info 42

			An	idealized	example	of	three	relocatable	sections	follows.		The
example	uses	the	traditional	section	names	'.text'	and	'.data'.		Memory
addresses	are	on	the	horizontal	axis.

																											+-----+----+--+
					partial	program	#	1:		|ttttt|dddd|00|
																											+-----+----+--+

																											text			data	bss
																											seg.			seg.	seg.

																											+---+---+---+
					partial	program	#	2:		|TTT|DDD|000|
																											+---+---+---+

																											+--+---+-----+--+----+---+-----+~~
					linked	program:							|		|TTT|ttttt|		|dddd|DDD|00000|
																											+--+---+-----+--+----+---+-----+~~

									addresses:								0	...

�
File:	as.info,		Node:	As	Sections,		Next:	Sub-Sections,		Prev:	Ld	Sections,		Up:
Sections

4.3	Assembler	Internal	Sections
===============================

These	sections	are	meant	only	for	the	internal	use	of	'as'.		They	have
no	meaning	at	run-time.		You	do	not	really	need	to	know	about	these
sections	for	most	purposes;	but	they	can	be	mentioned	in	'as'	warning
messages,	so	it	might	be	helpful	to	have	an	idea	of	their	meanings	to
'as'.		These	sections	are	used	to	permit	the	value	of	every	expression
in	your	assembly	language	program	to	be	a	section-relative	address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
					An	internal	assembler	logic	error	has	been	found.		This	means	there
					is	a	bug	in	the	assembler.

expr	section
					The	assembler	stores	complex	expression	internally	as	combinations
					of	symbols.		When	it	needs	to	represent	an	expression	as	a	symbol,
					it	puts	it	in	the	expr	section.

�
File:	as.info,		Node:	Sub-Sections,		Next:	bss,		Prev:	As	Sections,		Up:	Sections

4.4	Sub-Sections
================

Assembled	bytes	conventionally	fall	into	two	sections:	text	and	data.
You	may	have	separate	groups	of	data	in	named	sections	that	you	want	to
end	up	near	to	each	other	in	the	object	file,	even	though	they	are	not
contiguous	in	the	assembler	source.		'as'	allows	you	to	use
"subsections"	for	this	purpose.		Within	each	section,	there	can	be
numbered	subsections	with	values	from	0	to	8192.		Objects	assembled	into
the	same	subsection	go	into	the	object	file	together	with	other	objects
in	the	same	subsection.		For	example,	a	compiler	might	want	to	store

3/25/20 as.info 43

constants	in	the	text	section,	but	might	not	want	to	have	them
interspersed	with	the	program	being	assembled.		In	this	case,	the
compiler	could	issue	a	'.text	0'	before	each	section	of	code	being
output,	and	a	'.text	1'	before	each	group	of	constants	being	output.

			Subsections	are	optional.		If	you	do	not	use	subsections,	everything
goes	in	subsection	number	zero.

			Each	subsection	is	zero-padded	up	to	a	multiple	of	four	bytes.
(Subsections	may	be	padded	a	different	amount	on	different	flavors	of
'as'.)

			Subsections	appear	in	your	object	file	in	numeric	order,	lowest
numbered	to	highest.		(All	this	to	be	compatible	with	other	people's
assemblers.)		The	object	file	contains	no	representation	of	subsections;
'ld'	and	other	programs	that	manipulate	object	files	see	no	trace	of
them.		They	just	see	all	your	text	subsections	as	a	text	section,	and
all	your	data	subsections	as	a	data	section.

			To	specify	which	subsection	you	want	subsequent	statements	assembled
into,	use	a	numeric	argument	to	specify	it,	in	a	'.text	EXPRESSION'	or	a
'.data	EXPRESSION'	statement.		When	generating	COFF	output,	you	can	also
use	an	extra	subsection	argument	with	arbitrary	named	sections:
'.section	NAME,	EXPRESSION'.		When	generating	ELF	output,	you	can	also
use	the	'.subsection'	directive	(*note	SubSection::)	to	specify	a
subsection:	'.subsection	EXPRESSION'.		EXPRESSION	should	be	an	absolute
expression	(*note	Expressions::).		If	you	just	say	'.text'	then	'.text
0'	is	assumed.		Likewise	'.data'	means	'.data	0'.		Assembly	begins	in
'text	0'.		For	instance:
					.text	0					#	The	default	subsection	is	text	0	anyway.
					.ascii	"This	lives	in	the	first	text	subsection.	*"
					.text	1
					.ascii	"But	this	lives	in	the	second	text	subsection."
					.data	0
					.ascii	"This	lives	in	the	data	section,"
					.ascii	"in	the	first	data	subsection."
					.text	0
					.ascii	"This	lives	in	the	first	text	section,"
					.ascii	"immediately	following	the	asterisk	(*)."

			Each	section	has	a	"location	counter"	incremented	by	one	for	every
byte	assembled	into	that	section.		Because	subsections	are	merely	a
convenience	restricted	to	'as'	there	is	no	concept	of	a	subsection
location	counter.		There	is	no	way	to	directly	manipulate	a	location
counter--but	the	'.align'	directive	changes	it,	and	any	label	definition
captures	its	current	value.		The	location	counter	of	the	section	where
statements	are	being	assembled	is	said	to	be	the	"active"	location
counter.

�
File:	as.info,		Node:	bss,		Prev:	Sub-Sections,		Up:	Sections

4.5	bss	Section
===============

The	bss	section	is	used	for	local	common	variable	storage.		You	may
allocate	address	space	in	the	bss	section,	but	you	may	not	dictate	data
to	load	into	it	before	your	program	executes.		When	your	program	starts
running,	all	the	contents	of	the	bss	section	are	zeroed	bytes.

3/25/20 as.info 44

			The	'.lcomm'	pseudo-op	defines	a	symbol	in	the	bss	section;	see	*note
'.lcomm':	Lcomm.

			The	'.comm'	pseudo-op	may	be	used	to	declare	a	common	symbol,	which
is	another	form	of	uninitialized	symbol;	see	*note	'.comm':	Comm.

			When	assembling	for	a	target	which	supports	multiple	sections,	such
as	ELF	or	COFF,	you	may	switch	into	the	'.bss'	section	and	define
symbols	as	usual;	see	*note	'.section':	Section.		You	may	only	assemble
zero	values	into	the	section.		Typically	the	section	will	only	contain
symbol	definitions	and	'.skip'	directives	(*note	'.skip':	Skip.).

�
File:	as.info,		Node:	Symbols,		Next:	Expressions,		Prev:	Sections,		Up:	Top

5	Symbols

Symbols	are	a	central	concept:	the	programmer	uses	symbols	to	name
things,	the	linker	uses	symbols	to	link,	and	the	debugger	uses	symbols
to	debug.

					Warning:	'as'	does	not	place	symbols	in	the	object	file	in	the
					same	order	they	were	declared.		This	may	break	some	debuggers.

*	Menu:

*	Labels::																						Labels
*	Setting	Symbols::													Giving	Symbols	Other	Values
*	Symbol	Names::																Symbol	Names
*	Dot::																									The	Special	Dot	Symbol
*	Symbol	Attributes::											Symbol	Attributes

�
File:	as.info,		Node:	Labels,		Next:	Setting	Symbols,		Up:	Symbols

5.1	Labels
==========

A	"label"	is	written	as	a	symbol	immediately	followed	by	a	colon	':'.
The	symbol	then	represents	the	current	value	of	the	active	location
counter,	and	is,	for	example,	a	suitable	instruction	operand.		You	are
warned	if	you	use	the	same	symbol	to	represent	two	different	locations:
the	first	definition	overrides	any	other	definitions.

			On	the	HPPA,	the	usual	form	for	a	label	need	not	be	immediately
followed	by	a	colon,	but	instead	must	start	in	column	zero.		Only	one
label	may	be	defined	on	a	single	line.		To	work	around	this,	the	HPPA
version	of	'as'	also	provides	a	special	directive	'.label'	for	defining
labels	more	flexibly.

�
File:	as.info,		Node:	Setting	Symbols,		Next:	Symbol	Names,		Prev:	Labels,		Up:
Symbols

5.2	Giving	Symbols	Other	Values
===============================

3/25/20 as.info 45

A	symbol	can	be	given	an	arbitrary	value	by	writing	a	symbol,	followed
by	an	equals	sign	'=',	followed	by	an	expression	(*note	Expressions::).
This	is	equivalent	to	using	the	'.set'	directive.		*Note	'.set':	Set.
In	the	same	way,	using	a	double	equals	sign	'=''='	here	represents	an
equivalent	of	the	'.eqv'	directive.		*Note	'.eqv':	Eqv.

			Blackfin	does	not	support	symbol	assignment	with	'='.

�
File:	as.info,		Node:	Symbol	Names,		Next:	Dot,		Prev:	Setting	Symbols,		Up:	Symbols

5.3	Symbol	Names
================

Symbol	names	begin	with	a	letter	or	with	one	of	'._'.		On	most	machines,
you	can	also	use	'$'	in	symbol	names;	exceptions	are	noted	in	*note
Machine	Dependencies::.		That	character	may	be	followed	by	any	string	of
digits,	letters,	dollar	signs	(unless	otherwise	noted	for	a	particular
target	machine),	and	underscores.

			Case	of	letters	is	significant:	'foo'	is	a	different	symbol	name	than
'Foo'.

			Symbol	names	do	not	start	with	a	digit.		An	exception	to	this	rule	is
made	for	Local	Labels.		See	below.

			Multibyte	characters	are	supported.		To	generate	a	symbol	name
containing	multibyte	characters	enclose	it	within	double	quotes	and	use
escape	codes.		cf	*Note	Strings::.		Generating	a	multibyte	symbol	name
from	a	label	is	not	currently	supported.

			Each	symbol	has	exactly	one	name.		Each	name	in	an	assembly	language
program	refers	to	exactly	one	symbol.		You	may	use	that	symbol	name	any
number	of	times	in	a	program.

Local	Symbol	Names

A	local	symbol	is	any	symbol	beginning	with	certain	local	label
prefixes.		By	default,	the	local	label	prefix	is	'.L'	for	ELF	systems	or
'L'	for	traditional	a.out	systems,	but	each	target	may	have	its	own	set
of	local	label	prefixes.		On	the	HPPA	local	symbols	begin	with	'L$'.

			Local	symbols	are	defined	and	used	within	the	assembler,	but	they	are
normally	not	saved	in	object	files.		Thus,	they	are	not	visible	when
debugging.		You	may	use	the	'-L'	option	(*note	Include	Local	Symbols:
L.)	to	retain	the	local	symbols	in	the	object	files.

Local	Labels

Local	labels	are	different	from	local	symbols.		Local	labels	help
compilers	and	programmers	use	names	temporarily.		They	create	symbols
which	are	guaranteed	to	be	unique	over	the	entire	scope	of	the	input
source	code	and	which	can	be	referred	to	by	a	simple	notation.		To
define	a	local	label,	write	a	label	of	the	form	'N:'	(where	N	represents
any	non-negative	integer).		To	refer	to	the	most	recent	previous
definition	of	that	label	write	'Nb',	using	the	same	number	as	when	you
defined	the	label.		To	refer	to	the	next	definition	of	a	local	label,

3/25/20 as.info 46

write	'Nf'.		The	'b'	stands	for	"backwards"	and	the	'f'	stands	for
"forwards".

			There	is	no	restriction	on	how	you	can	use	these	labels,	and	you	can
reuse	them	too.		So	that	it	is	possible	to	repeatedly	define	the	same
local	label	(using	the	same	number	'N'),	although	you	can	only	refer	to
the	most	recently	defined	local	label	of	that	number	(for	a	backwards
reference)	or	the	next	definition	of	a	specific	local	label	for	a
forward	reference.		It	is	also	worth	noting	that	the	first	10	local
labels	('0:'...'9:')	are	implemented	in	a	slightly	more	efficient	manner
than	the	others.

			Here	is	an	example:

					1:								branch	1f
					2:								branch	1b
					1:								branch	2f
					2:								branch	1b

			Which	is	the	equivalent	of:

					label_1:		branch	label_3
					label_2:		branch	label_1
					label_3:		branch	label_4
					label_4:		branch	label_3

			Local	label	names	are	only	a	notational	device.		They	are	immediately
transformed	into	more	conventional	symbol	names	before	the	assembler
uses	them.		The	symbol	names	are	stored	in	the	symbol	table,	appear	in
error	messages,	and	are	optionally	emitted	to	the	object	file.		The
names	are	constructed	using	these	parts:

'_local	label	prefix_'
					All	local	symbols	begin	with	the	system-specific	local	label
					prefix.		Normally	both	'as'	and	'ld'	forget	symbols	that	start	with
					the	local	label	prefix.		These	labels	are	used	for	symbols	you	are
					never	intended	to	see.		If	you	use	the	'-L'	option	then	'as'
					retains	these	symbols	in	the	object	file.		If	you	also	instruct
					'ld'	to	retain	these	symbols,	you	may	use	them	in	debugging.

'NUMBER'
					This	is	the	number	that	was	used	in	the	local	label	definition.		So
					if	the	label	is	written	'55:'	then	the	number	is	'55'.

'C-B'
					This	unusual	character	is	included	so	you	do	not	accidentally
					invent	a	symbol	of	the	same	name.		The	character	has	ASCII	value	of
					'\002'	(control-B).

'_ordinal	number_'
					This	is	a	serial	number	to	keep	the	labels	distinct.		The	first
					definition	of	'0:'	gets	the	number	'1'.		The	15th	definition	of
					'0:'	gets	the	number	'15',	and	so	on.		Likewise	the	first
					definition	of	'1:'	gets	the	number	'1'	and	its	15th	definition	gets
					'15'	as	well.

			So	for	example,	the	first	'1:'	may	be	named	'.L1C-B1',	and	the	44th
'3:'	may	be	named	'.L3C-B44'.

3/25/20 as.info 47

Dollar	Local	Labels

On	some	targets	'as'	also	supports	an	even	more	local	form	of	local
labels	called	dollar	labels.		These	labels	go	out	of	scope	(i.e.,	they
become	undefined)	as	soon	as	a	non-local	label	is	defined.		Thus	they
remain	valid	for	only	a	small	region	of	the	input	source	code.		Normal
local	labels,	by	contrast,	remain	in	scope	for	the	entire	file,	or	until
they	are	redefined	by	another	occurrence	of	the	same	local	label.

			Dollar	labels	are	defined	in	exactly	the	same	way	as	ordinary	local
labels,	except	that	they	have	a	dollar	sign	suffix	to	their	numeric
value,	e.g.,	'55$:'.

			They	can	also	be	distinguished	from	ordinary	local	labels	by	their
transformed	names	which	use	ASCII	character	'\001'	(control-A)	as	the
magic	character	to	distinguish	them	from	ordinary	labels.		For	example,
the	fifth	definition	of	'6$'	may	be	named	'.L6'C-A'5'.

�
File:	as.info,		Node:	Dot,		Next:	Symbol	Attributes,		Prev:	Symbol	Names,		Up:
Symbols

5.4	The	Special	Dot	Symbol
==========================

The	special	symbol	'.'	refers	to	the	current	address	that	'as'	is
assembling	into.		Thus,	the	expression	'melvin:	.long	.'	defines
'melvin'	to	contain	its	own	address.		Assigning	a	value	to	'.'	is
treated	the	same	as	a	'.org'	directive.		Thus,	the	expression	'.=.+4'	is
the	same	as	saying	'.space	4'.

�
File:	as.info,		Node:	Symbol	Attributes,		Prev:	Dot,		Up:	Symbols

5.5	Symbol	Attributes
=====================

Every	symbol	has,	as	well	as	its	name,	the	attributes	"Value"	and
"Type".		Depending	on	output	format,	symbols	can	also	have	auxiliary
attributes.

			If	you	use	a	symbol	without	defining	it,	'as'	assumes	zero	for	all
these	attributes,	and	probably	won't	warn	you.		This	makes	the	symbol	an
externally	defined	symbol,	which	is	generally	what	you	would	want.

*	Menu:

*	Symbol	Value::																Value
*	Symbol	Type::																	Type
*	a.out	Symbols::															Symbol	Attributes:	'a.out'
*	COFF	Symbols::																Symbol	Attributes	for	COFF
*	SOM	Symbols::																Symbol	Attributes	for	SOM

�
File:	as.info,		Node:	Symbol	Value,		Next:	Symbol	Type,		Up:	Symbol	Attributes

5.5.1	Value

3/25/20 as.info 48

The	value	of	a	symbol	is	(usually)	32	bits.		For	a	symbol	which	labels	a
location	in	the	text,	data,	bss	or	absolute	sections	the	value	is	the
number	of	addresses	from	the	start	of	that	section	to	the	label.
Naturally	for	text,	data	and	bss	sections	the	value	of	a	symbol	changes
as	'ld'	changes	section	base	addresses	during	linking.		Absolute
symbols'	values	do	not	change	during	linking:	that	is	why	they	are
called	absolute.

			The	value	of	an	undefined	symbol	is	treated	in	a	special	way.		If	it
is	0	then	the	symbol	is	not	defined	in	this	assembler	source	file,	and
'ld'	tries	to	determine	its	value	from	other	files	linked	into	the	same
program.		You	make	this	kind	of	symbol	simply	by	mentioning	a	symbol
name	without	defining	it.		A	non-zero	value	represents	a	'.comm'	common
declaration.		The	value	is	how	much	common	storage	to	reserve,	in	bytes
(addresses).		The	symbol	refers	to	the	first	address	of	the	allocated
storage.

�
File:	as.info,		Node:	Symbol	Type,		Next:	a.out	Symbols,		Prev:	Symbol	Value,		Up:
Symbol	Attributes

5.5.2	Type

The	type	attribute	of	a	symbol	contains	relocation	(section)
information,	any	flag	settings	indicating	that	a	symbol	is	external,	and
(optionally),	other	information	for	linkers	and	debuggers.		The	exact
format	depends	on	the	object-code	output	format	in	use.

�
File:	as.info,		Node:	a.out	Symbols,		Next:	COFF	Symbols,		Prev:	Symbol	Type,		Up:
Symbol	Attributes

5.5.3	Symbol	Attributes:	'a.out'

*	Menu:

*	Symbol	Desc::																	Descriptor
*	Symbol	Other::																Other

�
File:	as.info,		Node:	Symbol	Desc,		Next:	Symbol	Other,		Up:	a.out	Symbols

5.5.3.1	Descriptor
..................

This	is	an	arbitrary	16-bit	value.		You	may	establish	a	symbol's
descriptor	value	by	using	a	'.desc'	statement	(*note	'.desc':	Desc.).		A
descriptor	value	means	nothing	to	'as'.

�
File:	as.info,		Node:	Symbol	Other,		Prev:	Symbol	Desc,		Up:	a.out	Symbols

5.5.3.2	Other
.............

This	is	an	arbitrary	8-bit	value.		It	means	nothing	to	'as'.

3/25/20 as.info 49

�
File:	as.info,		Node:	COFF	Symbols,		Next:	SOM	Symbols,		Prev:	a.out	Symbols,		Up:
Symbol	Attributes

5.5.4	Symbol	Attributes	for	COFF

The	COFF	format	supports	a	multitude	of	auxiliary	symbol	attributes;
like	the	primary	symbol	attributes,	they	are	set	between	'.def'	and
'.endef'	directives.

5.5.4.1	Primary	Attributes
..........................

The	symbol	name	is	set	with	'.def';	the	value	and	type,	respectively,
with	'.val'	and	'.type'.

5.5.4.2	Auxiliary	Attributes
............................

The	'as'	directives	'.dim',	'.line',	'.scl',	'.size',	'.tag',	and
'.weak'	can	generate	auxiliary	symbol	table	information	for	COFF.

�
File:	as.info,		Node:	SOM	Symbols,		Prev:	COFF	Symbols,		Up:	Symbol	Attributes

5.5.5	Symbol	Attributes	for	SOM

The	SOM	format	for	the	HPPA	supports	a	multitude	of	symbol	attributes
set	with	the	'.EXPORT'	and	'.IMPORT'	directives.

			The	attributes	are	described	in	'HP9000	Series	800	Assembly	Language
Reference	Manual'	(HP	92432-90001)	under	the	'IMPORT'	and	'EXPORT'
assembler	directive	documentation.

�
File:	as.info,		Node:	Expressions,		Next:	Pseudo	Ops,		Prev:	Symbols,		Up:	Top

6	Expressions

An	"expression"	specifies	an	address	or	numeric	value.		Whitespace	may
precede	and/or	follow	an	expression.

			The	result	of	an	expression	must	be	an	absolute	number,	or	else	an
offset	into	a	particular	section.		If	an	expression	is	not	absolute,	and
there	is	not	enough	information	when	'as'	sees	the	expression	to	know
its	section,	a	second	pass	over	the	source	program	might	be	necessary	to
interpret	the	expression--but	the	second	pass	is	currently	not
implemented.		'as'	aborts	with	an	error	message	in	this	situation.

*	Menu:

*	Empty	Exprs::																	Empty	Expressions
*	Integer	Exprs::															Integer	Expressions

�

3/25/20 as.info 50

File:	as.info,		Node:	Empty	Exprs,		Next:	Integer	Exprs,		Up:	Expressions

6.1	Empty	Expressions
=====================

An	empty	expression	has	no	value:	it	is	just	whitespace	or	null.
Wherever	an	absolute	expression	is	required,	you	may	omit	the
expression,	and	'as'	assumes	a	value	of	(absolute)	0.		This	is
compatible	with	other	assemblers.

�
File:	as.info,		Node:	Integer	Exprs,		Prev:	Empty	Exprs,		Up:	Expressions

6.2	Integer	Expressions
=======================

An	"integer	expression"	is	one	or	more	_arguments_	delimited	by
operators.

*	Menu:

*	Arguments::																			Arguments
*	Operators::																			Operators
*	Prefix	Ops::																		Prefix	Operators
*	Infix	Ops::																			Infix	Operators

�
File:	as.info,		Node:	Arguments,		Next:	Operators,		Up:	Integer	Exprs

6.2.1	Arguments

"Arguments"	are	symbols,	numbers	or	subexpressions.		In	other	contexts
arguments	are	sometimes	called	"arithmetic	operands".		In	this	manual,
to	avoid	confusing	them	with	the	"instruction	operands"	of	the	machine
language,	we	use	the	term	"argument"	to	refer	to	parts	of	expressions
only,	reserving	the	word	"operand"	to	refer	only	to	machine	instruction
operands.

			Symbols	are	evaluated	to	yield	{SECTION	NNN}	where	SECTION	is	one	of
text,	data,	bss,	absolute,	or	undefined.		NNN	is	a	signed,	2's
complement	32	bit	integer.

			Numbers	are	usually	integers.

			A	number	can	be	a	flonum	or	bignum.		In	this	case,	you	are	warned
that	only	the	low	order	32	bits	are	used,	and	'as'	pretends	these	32
bits	are	an	integer.		You	may	write	integer-manipulating	instructions
that	act	on	exotic	constants,	compatible	with	other	assemblers.

			Subexpressions	are	a	left	parenthesis	'('	followed	by	an	integer
expression,	followed	by	a	right	parenthesis	')';	or	a	prefix	operator
followed	by	an	argument.

�
File:	as.info,		Node:	Operators,		Next:	Prefix	Ops,		Prev:	Arguments,		Up:	Integer
Exprs

6.2.2	Operators

3/25/20 as.info 51

"Operators"	are	arithmetic	functions,	like	'+'	or	'%'.		Prefix	operators
are	followed	by	an	argument.		Infix	operators	appear	between	their
arguments.		Operators	may	be	preceded	and/or	followed	by	whitespace.

�
File:	as.info,		Node:	Prefix	Ops,		Next:	Infix	Ops,		Prev:	Operators,		Up:	Integer
Exprs

6.2.3	Prefix	Operator

'as'	has	the	following	"prefix	operators".		They	each	take	one	argument,
which	must	be	absolute.

'-'
					"Negation".		Two's	complement	negation.
'~'
					"Complementation".		Bitwise	not.

�
File:	as.info,		Node:	Infix	Ops,		Prev:	Prefix	Ops,		Up:	Integer	Exprs

6.2.4	Infix	Operators

"Infix	operators"	take	two	arguments,	one	on	either	side.		Operators
have	precedence,	but	operations	with	equal	precedence	are	performed	left
to	right.		Apart	from	'+'	or	'-',	both	arguments	must	be	absolute,	and
the	result	is	absolute.

		1.	Highest	Precedence

					'*'
										"Multiplication".

					'/'
										"Division".		Truncation	is	the	same	as	the	C	operator	'/'

					'%'
										"Remainder".

					'<<'
										"Shift	Left".		Same	as	the	C	operator	'<<'.

					'>>'
										"Shift	Right".		Same	as	the	C	operator	'>>'.

		2.	Intermediate	precedence

					'|'

										"Bitwise	Inclusive	Or".

					'&'
										"Bitwise	And".

					'^'

3/25/20 as.info 52

										"Bitwise	Exclusive	Or".

					'!'
										"Bitwise	Or	Not".

		3.	Low	Precedence

					'+'
										"Addition".		If	either	argument	is	absolute,	the	result	has
										the	section	of	the	other	argument.		You	may	not	add	together
										arguments	from	different	sections.

					'-'
										"Subtraction".		If	the	right	argument	is	absolute,	the	result
										has	the	section	of	the	left	argument.		If	both	arguments	are
										in	the	same	section,	the	result	is	absolute.		You	may	not
										subtract	arguments	from	different	sections.

					'=='
										"Is	Equal	To"
					'<>'
					'!='
										"Is	Not	Equal	To"
					'<'
										"Is	Less	Than"
					'>'
										"Is	Greater	Than"
					'>='
										"Is	Greater	Than	Or	Equal	To"
					'<='
										"Is	Less	Than	Or	Equal	To"

										The	comparison	operators	can	be	used	as	infix	operators.		A
										true	results	has	a	value	of	-1	whereas	a	false	result	has	a
										value	of	0.		Note,	these	operators	perform	signed	comparisons.

		4.	Lowest	Precedence

					'&&'
										"Logical	And".

					'||'
										"Logical	Or".

										These	two	logical	operations	can	be	used	to	combine	the
										results	of	sub	expressions.		Note,	unlike	the	comparison
										operators	a	true	result	returns	a	value	of	1	but	a	false
										results	does	still	return	0.		Also	note	that	the	logical	or
										operator	has	a	slightly	lower	precedence	than	logical	and.

			In	short,	it's	only	meaningful	to	add	or	subtract	the	_offsets_	in	an
address;	you	can	only	have	a	defined	section	in	one	of	the	two
arguments.

�
File:	as.info,		Node:	Pseudo	Ops,		Next:	Object	Attributes,		Prev:	Expressions,		Up:
Top

7	Assembler	Directives

3/25/20 as.info 53

All	assembler	directives	have	names	that	begin	with	a	period	('.').		The
names	are	case	insensitive	for	most	targets,	and	usually	written	in
lower	case.

			This	chapter	discusses	directives	that	are	available	regardless	of
the	target	machine	configuration	for	the	GNU	assembler.		Some	machine
configurations	provide	additional	directives.		*Note	Machine
Dependencies::.

*	Menu:

*	Abort::																							'.abort'
*	ABORT	(COFF)::																'.ABORT'

*	Align::																							'.align	ABS-EXPR	,	ABS-EXPR'
*	Altmacro::																				'.altmacro'
*	Ascii::																							'.ascii	"STRING"'...
*	Asciz::																							'.asciz	"STRING"'...
*	Balign::																						'.balign	ABS-EXPR	,	ABS-EXPR'
*	Bundle	directives::											'.bundle_align_mode	ABS-EXPR',	etc
*	Byte::																								'.byte	EXPRESSIONS'
*	CFI	directives:: '.cfi_startproc	[simple]',	'.cfi_endproc',	etc.
*	Comm::																								'.comm	SYMBOL	,	LENGTH	'
*	Data::																								'.data	SUBSECTION'
*	Def::																									'.def	NAME'
*	Desc::																								'.desc	SYMBOL,	ABS-EXPRESSION'
*	Dim::																									'.dim'

*	Double::																						'.double	FLONUMS'
*	Eject::																							'.eject'
*	Else::																								'.else'
*	Elseif::																						'.elseif'
*	End:: '.end'
*	Endef::																							'.endef'

*	Endfunc::																					'.endfunc'
*	Endif::																							'.endif'
*	Equ::																									'.equ	SYMBOL,	EXPRESSION'
*	Equiv::																							'.equiv	SYMBOL,	EXPRESSION'
*	Eqv::																									'.eqv	SYMBOL,	EXPRESSION'
*	Err:: '.err'
*	Error:: '.error	STRING'
*	Exitm:: '.exitm'
*	Extern::																						'.extern'
*	Fail:: '.fail'
*	File::																								'.file'
*	Fill::																								'.fill	REPEAT	,	SIZE	,	VALUE'
*	Float::																							'.float	FLONUMS'
*	Func::																								'.func'
*	Global::																						'.global	SYMBOL',	'.globl	SYMBOL'
*	Gnu_attribute::															'.gnu_attribute	TAG,VALUE'
*	Hidden::																						'.hidden	NAMES'

*	hword::																							'.hword	EXPRESSIONS'
*	Ident::																							'.ident'
*	If::																										'.if	ABSOLUTE	EXPRESSION'
*	Incbin::																						'.incbin	"FILE"[,SKIP[,COUNT]]'

3/25/20 as.info 54

*	Include::																					'.include	"FILE"'
*	Int::																									'.int	EXPRESSIONS'
*	Internal::																				'.internal	NAMES'

*	Irp:: '.irp	SYMBOL,VALUES'...
*	Irpc:: '.irpc	SYMBOL,VALUES'...
*	Lcomm::																							'.lcomm	SYMBOL	,	LENGTH'
*	Lflags::																						'.lflags'
*	Line::																								'.line	LINE-NUMBER'

*	Linkonce:: '.linkonce	[TYPE]'
*	List::																								'.list'
*	Ln::																										'.ln	LINE-NUMBER'
*	Loc::																									'.loc	FILENO	LINENO'
*	Loc_mark_labels::													'.loc_mark_labels	ENABLE'
*	Local::																							'.local	NAMES'

*	Long::																								'.long	EXPRESSIONS'

*	Macro:: '.macro	NAME	ARGS'...
*	MRI:: '.mri	VAL'
*	Noaltmacro::																		'.noaltmacro'
*	Nolist::																						'.nolist'
*	Octa::																								'.octa	BIGNUMS'
*	Offset:: '.offset	LOC'
*	Org::																									'.org	NEW-LC,	FILL'
*	P2align::																					'.p2align	ABS-EXPR,	ABS-EXPR,	ABS-EXPR'
*	PopSection::																		'.popsection'
*	Previous::																				'.previous'

*	Print:: '.print	STRING'
*	Protected::																			'.protected	NAMES'

*	Psize::																							'.psize	LINES,	COLUMNS'
*	Purgem:: '.purgem	NAME'
*	PushSection::																	'.pushsection	NAME'

*	Quad::																								'.quad	BIGNUMS'
*	Reloc:: '.reloc	OFFSET,	RELOC_NAME[,	EXPRESSION]'
*	Rept:: '.rept	COUNT'
*	Sbttl::																							'.sbttl	"SUBHEADING"'
*	Scl::																									'.scl	CLASS'
*	Section::																					'.section	NAME[,	FLAGS]'

*	Set::																									'.set	SYMBOL,	EXPRESSION'
*	Short::																							'.short	EXPRESSIONS'
*	Single::																						'.single	FLONUMS'
*	Size::																								'.size	[NAME	,	EXPRESSION]'
*	Skip::																								'.skip	SIZE	,	FILL'

*	Sleb128:: '.sleb128	EXPRESSIONS'
*	Space::																							'.space	SIZE	,	FILL'
*	Stab::																								'.stabd,	.stabn,	.stabs'

*	String::																						'.string	"STR"',	'.string8	"STR"',	'.string16	"STR"',
'.string32	"STR"',	'.string64	"STR"'
*	Struct:: '.struct	EXPRESSION'
*	SubSection::																		'.subsection'
*	Symver::																						'.symver	NAME,NAME2@NODENAME'

3/25/20 as.info 55

*	Tag::																									'.tag	STRUCTNAME'

*	Text::																								'.text	SUBSECTION'
*	Title::																							'.title	"HEADING"'
*	Type::																								'.type	<INT	|	NAME	,	TYPE	DESCRIPTION>'

*	Uleb128::																					'.uleb128	EXPRESSIONS'
*	Val::																									'.val	ADDR'

*	Version::																					'.version	"STRING"'
*	VTableEntry::																	'.vtable_entry	TABLE,	OFFSET'
*	VTableInherit::															'.vtable_inherit	CHILD,	PARENT'

*	Warning:: '.warning	STRING'
*	Weak::																								'.weak	NAMES'
*	Weakref::																					'.weakref	ALIAS,	SYMBOL'
*	Word::																								'.word	EXPRESSIONS'
*	Zero::																								'.zero	SIZE'
*	Deprecated::																		Deprecated	Directives

�
File:	as.info,		Node:	Abort,		Next:	ABORT	(COFF),		Up:	Pseudo	Ops

7.1	'.abort'
============

This	directive	stops	the	assembly	immediately.		It	is	for	compatibility
with	other	assemblers.		The	original	idea	was	that	the	assembly	language
source	would	be	piped	into	the	assembler.		If	the	sender	of	the	source
quit,	it	could	use	this	directive	tells	'as'	to	quit	also.		One	day
'.abort'	will	not	be	supported.

�
File:	as.info,		Node:	ABORT	(COFF),		Next:	Align,		Prev:	Abort,		Up:	Pseudo	Ops

7.2	'.ABORT'	(COFF)
===================

When	producing	COFF	output,	'as'	accepts	this	directive	as	a	synonym	for
'.abort'.

�
File:	as.info,		Node:	Align,		Next:	Altmacro,		Prev:	ABORT	(COFF),		Up:	Pseudo	Ops

7.3	'.align	ABS-EXPR,	ABS-EXPR,	ABS-EXPR'
===

Pad	the	location	counter	(in	the	current	subsection)	to	a	particular
storage	boundary.		The	first	expression	(which	must	be	absolute)	is	the
alignment	required,	as	described	below.

			The	second	expression	(also	absolute)	gives	the	fill	value	to	be
stored	in	the	padding	bytes.		It	(and	the	comma)	may	be	omitted.		If	it
is	omitted,	the	padding	bytes	are	normally	zero.		However,	on	some
systems,	if	the	section	is	marked	as	containing	code	and	the	fill	value
is	omitted,	the	space	is	filled	with	no-op	instructions.

			The	third	expression	is	also	absolute,	and	is	also	optional.		If	it

3/25/20 as.info 56

is	present,	it	is	the	maximum	number	of	bytes	that	should	be	skipped	by
this	alignment	directive.		If	doing	the	alignment	would	require	skipping
more	bytes	than	the	specified	maximum,	then	the	alignment	is	not	done	at
all.		You	can	omit	the	fill	value	(the	second	argument)	entirely	by
simply	using	two	commas	after	the	required	alignment;	this	can	be	useful
if	you	want	the	alignment	to	be	filled	with	no-op	instructions	when
appropriate.

			The	way	the	required	alignment	is	specified	varies	from	system	to
system.		For	the	arc,	hppa,	i386	using	ELF,	i860,	iq2000,	m68k,	or1k,
s390,	sparc,	tic4x,	tic80	and	xtensa,	the	first	expression	is	the
alignment	request	in	bytes.		For	example	'.align	8'	advances	the
location	counter	until	it	is	a	multiple	of	8.		If	the	location	counter
is	already	a	multiple	of	8,	no	change	is	needed.		For	the	tic54x,	the
first	expression	is	the	alignment	request	in	words.

			For	other	systems,	including	ppc,	i386	using	a.out	format,	arm	and
strongarm,	it	is	the	number	of	low-order	zero	bits	the	location	counter
must	have	after	advancement.		For	example	'.align	3'	advances	the
location	counter	until	it	a	multiple	of	8.		If	the	location	counter	is
already	a	multiple	of	8,	no	change	is	needed.

			This	inconsistency	is	due	to	the	different	behaviors	of	the	various
native	assemblers	for	these	systems	which	GAS	must	emulate.		GAS	also
provides	'.balign'	and	'.p2align'	directives,	described	later,	which
have	a	consistent	behavior	across	all	architectures	(but	are	specific	to
GAS).

�
File:	as.info,		Node:	Altmacro,		Next:	Ascii,		Prev:	Align,		Up:	Pseudo	Ops

7.4	'.altmacro'
===============

Enable	alternate	macro	mode,	enabling:

'LOCAL	NAME	[,	...]'
					One	additional	directive,	'LOCAL',	is	available.		It	is	used	to
					generate	a	string	replacement	for	each	of	the	NAME	arguments,	and
					replace	any	instances	of	NAME	in	each	macro	expansion.		The
					replacement	string	is	unique	in	the	assembly,	and	different	for
					each	separate	macro	expansion.		'LOCAL'	allows	you	to	write	macros
					that	define	symbols,	without	fear	of	conflict	between	separate
					macro	expansions.

'String	delimiters'
					You	can	write	strings	delimited	in	these	other	ways	besides
					'"STRING"':

					''STRING''
										You	can	delimit	strings	with	single-quote	characters.

					'<STRING>'
										You	can	delimit	strings	with	matching	angle	brackets.

'single-character	string	escape'
					To	include	any	single	character	literally	in	a	string	(even	if	the
					character	would	otherwise	have	some	special	meaning),	you	can
					prefix	the	character	with	'!'	(an	exclamation	mark).		For	example,

3/25/20 as.info 57

					you	can	write	'<4.3	!>	5.4!!>'	to	get	the	literal	text	'4.3	>
					5.4!'.

'Expression	results	as	strings'
					You	can	write	'%EXPR'	to	evaluate	the	expression	EXPR	and	use	the
					result	as	a	string.

�
File:	as.info,		Node:	Ascii,		Next:	Asciz,		Prev:	Altmacro,		Up:	Pseudo	Ops

7.5	'.ascii	"STRING"'...
========================

'.ascii'	expects	zero	or	more	string	literals	(*note	Strings::)
separated	by	commas.		It	assembles	each	string	(with	no	automatic
trailing	zero	byte)	into	consecutive	addresses.

�
File:	as.info,		Node:	Asciz,		Next:	Balign,		Prev:	Ascii,		Up:	Pseudo	Ops

7.6	'.asciz	"STRING"'...
========================

'.asciz'	is	just	like	'.ascii',	but	each	string	is	followed	by	a	zero
byte.		The	"z"	in	'.asciz'	stands	for	"zero".

�
File:	as.info,		Node:	Balign,		Next:	Bundle	directives,		Prev:	Asciz,		Up:	Pseudo	Ops

7.7	'.balign[wl]	ABS-EXPR,	ABS-EXPR,	ABS-EXPR'
==

Pad	the	location	counter	(in	the	current	subsection)	to	a	particular
storage	boundary.		The	first	expression	(which	must	be	absolute)	is	the
alignment	request	in	bytes.		For	example	'.balign	8'	advances	the
location	counter	until	it	is	a	multiple	of	8.		If	the	location	counter
is	already	a	multiple	of	8,	no	change	is	needed.

			The	second	expression	(also	absolute)	gives	the	fill	value	to	be
stored	in	the	padding	bytes.		It	(and	the	comma)	may	be	omitted.		If	it
is	omitted,	the	padding	bytes	are	normally	zero.		However,	on	some
systems,	if	the	section	is	marked	as	containing	code	and	the	fill	value
is	omitted,	the	space	is	filled	with	no-op	instructions.

			The	third	expression	is	also	absolute,	and	is	also	optional.		If	it
is	present,	it	is	the	maximum	number	of	bytes	that	should	be	skipped	by
this	alignment	directive.		If	doing	the	alignment	would	require	skipping
more	bytes	than	the	specified	maximum,	then	the	alignment	is	not	done	at
all.		You	can	omit	the	fill	value	(the	second	argument)	entirely	by
simply	using	two	commas	after	the	required	alignment;	this	can	be	useful
if	you	want	the	alignment	to	be	filled	with	no-op	instructions	when
appropriate.

			The	'.balignw'	and	'.balignl'	directives	are	variants	of	the
'.balign'	directive.		The	'.balignw'	directive	treats	the	fill	pattern
as	a	two	byte	word	value.		The	'.balignl'	directives	treats	the	fill
pattern	as	a	four	byte	longword	value.		For	example,	'.balignw	4,0x368d'
will	align	to	a	multiple	of	4.		If	it	skips	two	bytes,	they	will	be
filled	in	with	the	value	0x368d	(the	exact	placement	of	the	bytes

3/25/20 as.info 58

depends	upon	the	endianness	of	the	processor).		If	it	skips	1	or	3
bytes,	the	fill	value	is	undefined.

�
File:	as.info,		Node:	Bundle	directives,		Next:	Byte,		Prev:	Balign,		Up:	Pseudo	Ops

7.8	Bundle	directives
=====================

7.8.1	'.bundle_align_mode	ABS-EXPR'

'.bundle_align_mode'	enables	or	disables	"aligned	instruction	bundle"
mode.		In	this	mode,	sequences	of	adjacent	instructions	are	grouped	into
fixed-sized	"bundles".		If	the	argument	is	zero,	this	mode	is	disabled
(which	is	the	default	state).		If	the	argument	it	not	zero,	it	gives	the
size	of	an	instruction	bundle	as	a	power	of	two	(as	for	the	'.p2align'
directive,	*note	P2align::).

			For	some	targets,	it's	an	ABI	requirement	that	no	instruction	may
span	a	certain	aligned	boundary.		A	"bundle"	is	simply	a	sequence	of
instructions	that	starts	on	an	aligned	boundary.		For	example,	if
ABS-EXPR	is	'5'	then	the	bundle	size	is	32,	so	each	aligned	chunk	of	32
bytes	is	a	bundle.		When	aligned	instruction	bundle	mode	is	in	effect,
no	single	instruction	may	span	a	boundary	between	bundles.		If	an
instruction	would	start	too	close	to	the	end	of	a	bundle	for	the	length
of	that	particular	instruction	to	fit	within	the	bundle,	then	the	space
at	the	end	of	that	bundle	is	filled	with	no-op	instructions	so	the
instruction	starts	in	the	next	bundle.		As	a	corollary,	it's	an	error	if
any	single	instruction's	encoding	is	longer	than	the	bundle	size.

7.8.2	'.bundle_lock'	and	'.bundle_unlock'

The	'.bundle_lock'	and	directive	'.bundle_unlock'	directives	allow
explicit	control	over	instruction	bundle	padding.		These	directives	are
only	valid	when	'.bundle_align_mode'	has	been	used	to	enable	aligned
instruction	bundle	mode.		It's	an	error	if	they	appear	when
'.bundle_align_mode'	has	not	been	used	at	all,	or	when	the	last
directive	was	'.bundle_align_mode	0'.

			For	some	targets,	it's	an	ABI	requirement	that	certain	instructions
may	appear	only	as	part	of	specified	permissible	sequences	of	multiple
instructions,	all	within	the	same	bundle.		A	pair	of	'.bundle_lock'	and
'.bundle_unlock'	directives	define	a	"bundle-locked"	instruction
sequence.		For	purposes	of	aligned	instruction	bundle	mode,	a	sequence
starting	with	'.bundle_lock'	and	ending	with	'.bundle_unlock'	is	treated
as	a	single	instruction.		That	is,	the	entire	sequence	must	fit	into	a
single	bundle	and	may	not	span	a	bundle	boundary.		If	necessary,	no-op
instructions	will	be	inserted	before	the	first	instruction	of	the
sequence	so	that	the	whole	sequence	starts	on	an	aligned	bundle
boundary.		It's	an	error	if	the	sequence	is	longer	than	the	bundle	size.

			For	convenience	when	using	'.bundle_lock'	and	'.bundle_unlock'	inside
assembler	macros	(*note	Macro::),	bundle-locked	sequences	may	be	nested.
That	is,	a	second	'.bundle_lock'	directive	before	the	next
'.bundle_unlock'	directive	has	no	effect	except	that	it	must	be	matched
by	another	closing	'.bundle_unlock'	so	that	there	is	the	same	number	of
'.bundle_lock'	and	'.bundle_unlock'	directives.

3/25/20 as.info 59

�
File:	as.info,		Node:	Byte,		Next:	CFI	directives,		Prev:	Bundle	directives,		Up:
Pseudo	Ops

7.9	'.byte	EXPRESSIONS'
=======================

'.byte'	expects	zero	or	more	expressions,	separated	by	commas.		Each
expression	is	assembled	into	the	next	byte.

�
File:	as.info,		Node:	CFI	directives,		Next:	Comm,		Prev:	Byte,		Up:	Pseudo	Ops

7.10	CFI	directives
===================

7.10.1	'.cfi_sections	SECTION_LIST'

'.cfi_sections'	may	be	used	to	specify	whether	CFI	directives	should
emit	'.eh_frame'	section	and/or	'.debug_frame'	section.		If	SECTION_LIST
is	'.eh_frame',	'.eh_frame'	is	emitted,	if	SECTION_LIST	is
'.debug_frame',	'.debug_frame'	is	emitted.		To	emit	both	use	'.eh_frame,
.debug_frame'.		The	default	if	this	directive	is	not	used	is
'.cfi_sections	.eh_frame'.

			On	targets	that	support	compact	unwinding	tables	these	can	be
generated	by	specifying	'.eh_frame_entry'	instead	of	'.eh_frame'.

			Some	targets	may	support	an	additional	name,	such	as	'.c6xabi.exidx'
which	is	used	by	the	target.

			The	'.cfi_sections'	directive	can	be	repeated,	with	the	same	or
different	arguments,	provided	that	CFI	generation	has	not	yet	started.
Once	CFI	generation	has	started	however	the	section	list	is	fixed	and
any	attempts	to	redefine	it	will	result	in	an	error.

7.10.2	'.cfi_startproc	[simple]'

'.cfi_startproc'	is	used	at	the	beginning	of	each	function	that	should
have	an	entry	in	'.eh_frame'.		It	initializes	some	internal	data
structures.		Don't	forget	to	close	the	function	by	'.cfi_endproc'.

			Unless	'.cfi_startproc'	is	used	along	with	parameter	'simple'	it	also
emits	some	architecture	dependent	initial	CFI	instructions.

7.10.3	'.cfi_endproc'

'.cfi_endproc'	is	used	at	the	end	of	a	function	where	it	closes	its
unwind	entry	previously	opened	by	'.cfi_startproc',	and	emits	it	to
'.eh_frame'.

7.10.4	'.cfi_personality	ENCODING	[,	EXP]'
--

'.cfi_personality'	defines	personality	routine	and	its	encoding.

3/25/20 as.info 60

ENCODING	must	be	a	constant	determining	how	the	personality	should	be
encoded.		If	it	is	255	('DW_EH_PE_omit'),	second	argument	is	not
present,	otherwise	second	argument	should	be	a	constant	or	a	symbol
name.		When	using	indirect	encodings,	the	symbol	provided	should	be	the
location	where	personality	can	be	loaded	from,	not	the	personality
routine	itself.		The	default	after	'.cfi_startproc'	is	'.cfi_personality
0xff',	no	personality	routine.

7.10.5	'.cfi_personality_id	ID'

'cfi_personality_id'	defines	a	personality	routine	by	its	index	as
defined	in	a	compact	unwinding	format.		Only	valid	when	generating
compact	EH	frames	(i.e.		with	'.cfi_sections	eh_frame_entry'.

7.10.6	'.cfi_fde_data	[OPCODE1	[,	...]]'
--

'cfi_fde_data'	is	used	to	describe	the	compact	unwind	opcodes	to	be	used
for	the	current	function.		These	are	emitted	inline	in	the
'.eh_frame_entry'	section	if	small	enough	and	there	is	no	LSDA,	or	in
the	'.gnu.extab'	section	otherwise.		Only	valid	when	generating	compact
EH	frames	(i.e.		with	'.cfi_sections	eh_frame_entry'.

7.10.7	'.cfi_lsda	ENCODING	[,	EXP]'

'.cfi_lsda'	defines	LSDA	and	its	encoding.		ENCODING	must	be	a	constant
determining	how	the	LSDA	should	be	encoded.		If	it	is	255
('DW_EH_PE_omit'),	the	second	argument	is	not	present,	otherwise	the
second	argument	should	be	a	constant	or	a	symbol	name.		The	default
after	'.cfi_startproc'	is	'.cfi_lsda	0xff',	meaning	that	no	LSDA	is
present.

7.10.8	'.cfi_inline_lsda'	[ALIGN]

'.cfi_inline_lsda'	marks	the	start	of	a	LSDA	data	section	and	switches
to	the	corresponding	'.gnu.extab'	section.		Must	be	preceded	by	a	CFI
block	containing	a	'.cfi_lsda'	directive.		Only	valid	when	generating
compact	EH	frames	(i.e.		with	'.cfi_sections	eh_frame_entry'.

			The	table	header	and	unwinding	opcodes	will	be	generated	at	this
point,	so	that	they	are	immediately	followed	by	the	LSDA	data.		The
symbol	referenced	by	the	'.cfi_lsda'	directive	should	still	be	defined
in	case	a	fallback	FDE	based	encoding	is	used.		The	LSDA	data	is
terminated	by	a	section	directive.

			The	optional	ALIGN	argument	specifies	the	alignment	required.		The
alignment	is	specified	as	a	power	of	two,	as	with	the	'.p2align'
directive.

7.10.9	'.cfi_def_cfa	REGISTER,	OFFSET'

'.cfi_def_cfa'	defines	a	rule	for	computing	CFA	as:	take	address	from
REGISTER	and	add	OFFSET	to	it.

7.10.10	'.cfi_def_cfa_register	REGISTER'

3/25/20 as.info 61

--

'.cfi_def_cfa_register'	modifies	a	rule	for	computing	CFA.	From	now	on
REGISTER	will	be	used	instead	of	the	old	one.		Offset	remains	the	same.

7.10.11	'.cfi_def_cfa_offset	OFFSET'

'.cfi_def_cfa_offset'	modifies	a	rule	for	computing	CFA.	Register
remains	the	same,	but	OFFSET	is	new.		Note	that	it	is	the	absolute
offset	that	will	be	added	to	a	defined	register	to	compute	CFA	address.

7.10.12	'.cfi_adjust_cfa_offset	OFFSET'

Same	as	'.cfi_def_cfa_offset'	but	OFFSET	is	a	relative	value	that	is
added/substracted	from	the	previous	offset.

7.10.13	'.cfi_offset	REGISTER,	OFFSET'

Previous	value	of	REGISTER	is	saved	at	offset	OFFSET	from	CFA.

7.10.14	'.cfi_val_offset	REGISTER,	OFFSET'
--

Previous	value	of	REGISTER	is	CFA	+	OFFSET.

7.10.15	'.cfi_rel_offset	REGISTER,	OFFSET'
--

Previous	value	of	REGISTER	is	saved	at	offset	OFFSET	from	the	current
CFA	register.		This	is	transformed	to	'.cfi_offset'	using	the	known
displacement	of	the	CFA	register	from	the	CFA.	This	is	often	easier	to
use,	because	the	number	will	match	the	code	it's	annotating.

7.10.16	'.cfi_register	REGISTER1,	REGISTER2'
--

Previous	value	of	REGISTER1	is	saved	in	register	REGISTER2.

7.10.17	'.cfi_restore	REGISTER'

'.cfi_restore'	says	that	the	rule	for	REGISTER	is	now	the	same	as	it	was
at	the	beginning	of	the	function,	after	all	initial	instruction	added	by
'.cfi_startproc'	were	executed.

7.10.18	'.cfi_undefined	REGISTER'

From	now	on	the	previous	value	of	REGISTER	can't	be	restored	anymore.

7.10.19	'.cfi_same_value	REGISTER'

Current	value	of	REGISTER	is	the	same	like	in	the	previous	frame,	i.e.
no	restoration	needed.

3/25/20 as.info 62

7.10.20	'.cfi_remember_state'	and	'.cfi_restore_state'
--

'.cfi_remember_state'	pushes	the	set	of	rules	for	every	register	onto	an
implicit	stack,	while	'.cfi_restore_state'	pops	them	off	the	stack	and
places	them	in	the	current	row.		This	is	useful	for	situations	where	you
have	multiple	'.cfi_*'	directives	that	need	to	be	undone	due	to	the
control	flow	of	the	program.		For	example,	we	could	have	something	like
this	(assuming	the	CFA	is	the	value	of	'rbp'):

													je	label
													popq	%rbx
													.cfi_restore	%rbx
													popq	%r12
													.cfi_restore	%r12
													popq	%rbp
													.cfi_restore	%rbp
													.cfi_def_cfa	%rsp,	8
													ret
					label:
													/*	Do	something	else	*/

			Here,	we	want	the	'.cfi'	directives	to	affect	only	the	rows
corresponding	to	the	instructions	before	'label'.		This	means	we'd	have
to	add	multiple	'.cfi'	directives	after	'label'	to	recreate	the	original
save	locations	of	the	registers,	as	well	as	setting	the	CFA	back	to	the
value	of	'rbp'.		This	would	be	clumsy,	and	result	in	a	larger	binary
size.		Instead,	we	can	write:

													je	label
													popq	%rbx
													.cfi_remember_state
													.cfi_restore	%rbx
													popq	%r12
													.cfi_restore	%r12
													popq	%rbp
													.cfi_restore	%rbp
													.cfi_def_cfa	%rsp,	8
													ret
					label:
													.cfi_restore_state
													/*	Do	something	else	*/

			That	way,	the	rules	for	the	instructions	after	'label'	will	be	the
same	as	before	the	first	'.cfi_restore'	without	having	to	use	multiple
'.cfi'	directives.

7.10.21	'.cfi_return_column	REGISTER'

Change	return	column	REGISTER,	i.e.		the	return	address	is	either
directly	in	REGISTER	or	can	be	accessed	by	rules	for	REGISTER.

7.10.22	'.cfi_signal_frame'

Mark	current	function	as	signal	trampoline.

7.10.23	'.cfi_window_save'

3/25/20 as.info 63

SPARC	register	window	has	been	saved.

7.10.24	'.cfi_escape'	EXPRESSION[,	...]

Allows	the	user	to	add	arbitrary	bytes	to	the	unwind	info.		One	might
use	this	to	add	OS-specific	CFI	opcodes,	or	generic	CFI	opcodes	that	GAS
does	not	yet	support.

7.10.25	'.cfi_val_encoded_addr	REGISTER,	ENCODING,	LABEL'

The	current	value	of	REGISTER	is	LABEL.		The	value	of	LABEL	will	be
encoded	in	the	output	file	according	to	ENCODING;	see	the	description	of
'.cfi_personality'	for	details	on	this	encoding.

			The	usefulness	of	equating	a	register	to	a	fixed	label	is	probably
limited	to	the	return	address	register.		Here,	it	can	be	useful	to	mark
a	code	segment	that	has	only	one	return	address	which	is	reached	by	a
direct	branch	and	no	copy	of	the	return	address	exists	in	memory	or
another	register.

�
File:	as.info,		Node:	Comm,		Next:	Data,		Prev:	CFI	directives,		Up:	Pseudo	Ops

7.11	'.comm	SYMBOL	,	LENGTH	'
=============================

'.comm'	declares	a	common	symbol	named	SYMBOL.		When	linking,	a	common
symbol	in	one	object	file	may	be	merged	with	a	defined	or	common	symbol
of	the	same	name	in	another	object	file.		If	'ld'	does	not	see	a
definition	for	the	symbol-just	one	or	more	common	symbols-then	it	will
allocate	LENGTH	bytes	of	uninitialized	memory.		LENGTH	must	be	an
absolute	expression.		If	'ld'	sees	multiple	common	symbols	with	the	same
name,	and	they	do	not	all	have	the	same	size,	it	will	allocate	space
using	the	largest	size.

			When	using	ELF	or	(as	a	GNU	extension)	PE,	the	'.comm'	directive
takes	an	optional	third	argument.		This	is	the	desired	alignment	of	the
symbol,	specified	for	ELF	as	a	byte	boundary	(for	example,	an	alignment
of	16	means	that	the	least	significant	4	bits	of	the	address	should	be
zero),	and	for	PE	as	a	power	of	two	(for	example,	an	alignment	of	5
means	aligned	to	a	32-byte	boundary).		The	alignment	must	be	an	absolute
expression,	and	it	must	be	a	power	of	two.		If	'ld'	allocates
uninitialized	memory	for	the	common	symbol,	it	will	use	the	alignment
when	placing	the	symbol.		If	no	alignment	is	specified,	'as'	will	set
the	alignment	to	the	largest	power	of	two	less	than	or	equal	to	the	size
of	the	symbol,	up	to	a	maximum	of	16	on	ELF,	or	the	default	section
alignment	of	4	on	PE(1).

			The	syntax	for	'.comm'	differs	slightly	on	the	HPPA.	The	syntax	is
'SYMBOL	.comm,	LENGTH';	SYMBOL	is	optional.

			----------	Footnotes	----------

			(1)	This	is	not	the	same	as	the	executable	image	file	alignment
controlled	by	'ld''s	'--section-alignment'	option;	image	file	sections

3/25/20 as.info 64

in	PE	are	aligned	to	multiples	of	4096,	which	is	far	too	large	an
alignment	for	ordinary	variables.		It	is	rather	the	default	alignment
for	(non-debug)	sections	within	object	('*.o')	files,	which	are	less
strictly	aligned.

�
File:	as.info,		Node:	Data,		Next:	Def,		Prev:	Comm,		Up:	Pseudo	Ops

7.12	'.data	SUBSECTION'
=======================

'.data'	tells	'as'	to	assemble	the	following	statements	onto	the	end	of
the	data	subsection	numbered	SUBSECTION	(which	is	an	absolute
expression).		If	SUBSECTION	is	omitted,	it	defaults	to	zero.

�
File:	as.info,		Node:	Def,		Next:	Desc,		Prev:	Data,		Up:	Pseudo	Ops

7.13	'.def	NAME'
================

Begin	defining	debugging	information	for	a	symbol	NAME;	the	definition
extends	until	the	'.endef'	directive	is	encountered.

�
File:	as.info,		Node:	Desc,		Next:	Dim,		Prev:	Def,		Up:	Pseudo	Ops

7.14	'.desc	SYMBOL,	ABS-EXPRESSION'
===================================

This	directive	sets	the	descriptor	of	the	symbol	(*note	Symbol
Attributes::)	to	the	low	16	bits	of	an	absolute	expression.

			The	'.desc'	directive	is	not	available	when	'as'	is	configured	for
COFF	output;	it	is	only	for	'a.out'	or	'b.out'	object	format.		For	the
sake	of	compatibility,	'as'	accepts	it,	but	produces	no	output,	when
configured	for	COFF.

�
File:	as.info,		Node:	Dim,		Next:	Double,		Prev:	Desc,		Up:	Pseudo	Ops

7.15	'.dim'
===========

This	directive	is	generated	by	compilers	to	include	auxiliary	debugging
information	in	the	symbol	table.		It	is	only	permitted	inside
'.def'/'.endef'	pairs.

�
File:	as.info,		Node:	Double,		Next:	Eject,		Prev:	Dim,		Up:	Pseudo	Ops

7.16	'.double	FLONUMS'
======================

'.double'	expects	zero	or	more	flonums,	separated	by	commas.		It
assembles	floating	point	numbers.		The	exact	kind	of	floating	point
numbers	emitted	depends	on	how	'as'	is	configured.		*Note	Machine
Dependencies::.

3/25/20 as.info 65

�
File:	as.info,		Node:	Eject,		Next:	Else,		Prev:	Double,		Up:	Pseudo	Ops

7.17	'.eject'
=============

Force	a	page	break	at	this	point,	when	generating	assembly	listings.

�
File:	as.info,		Node:	Else,		Next:	Elseif,		Prev:	Eject,		Up:	Pseudo	Ops

7.18	'.else'
============

'.else'	is	part	of	the	'as'	support	for	conditional	assembly;	see	*note
'.if':	If.		It	marks	the	beginning	of	a	section	of	code	to	be	assembled
if	the	condition	for	the	preceding	'.if'	was	false.

�
File:	as.info,		Node:	Elseif,		Next:	End,		Prev:	Else,		Up:	Pseudo	Ops

7.19	'.elseif'
==============

'.elseif'	is	part	of	the	'as'	support	for	conditional	assembly;	see
*note	'.if':	If.		It	is	shorthand	for	beginning	a	new	'.if'	block	that
would	otherwise	fill	the	entire	'.else'	section.

�
File:	as.info,		Node:	End,		Next:	Endef,		Prev:	Elseif,		Up:	Pseudo	Ops

7.20	'.end'
===========

'.end'	marks	the	end	of	the	assembly	file.		'as'	does	not	process
anything	in	the	file	past	the	'.end'	directive.

�
File:	as.info,		Node:	Endef,		Next:	Endfunc,		Prev:	End,		Up:	Pseudo	Ops

7.21	'.endef'
=============

This	directive	flags	the	end	of	a	symbol	definition	begun	with	'.def'.

�
File:	as.info,		Node:	Endfunc,		Next:	Endif,		Prev:	Endef,		Up:	Pseudo	Ops

7.22	'.endfunc'
===============

'.endfunc'	marks	the	end	of	a	function	specified	with	'.func'.

�
File:	as.info,		Node:	Endif,		Next:	Equ,		Prev:	Endfunc,		Up:	Pseudo	Ops

7.23	'.endif'
=============

3/25/20 as.info 66

'.endif'	is	part	of	the	'as'	support	for	conditional	assembly;	it	marks
the	end	of	a	block	of	code	that	is	only	assembled	conditionally.		*Note
'.if':	If.

�
File:	as.info,		Node:	Equ,		Next:	Equiv,		Prev:	Endif,		Up:	Pseudo	Ops

7.24	'.equ	SYMBOL,	EXPRESSION'
==============================

This	directive	sets	the	value	of	SYMBOL	to	EXPRESSION.		It	is	synonymous
with	'.set';	see	*note	'.set':	Set.

			The	syntax	for	'equ'	on	the	HPPA	is	'SYMBOL	.equ	EXPRESSION'.

			The	syntax	for	'equ'	on	the	Z80	is	'SYMBOL	equ	EXPRESSION'.		On	the
Z80	it	is	an	eror	if	SYMBOL	is	already	defined,	but	the	symbol	is	not
protected	from	later	redefinition.		Compare	*note	Equiv::.

�
File:	as.info,		Node:	Equiv,		Next:	Eqv,		Prev:	Equ,		Up:	Pseudo	Ops

7.25	'.equiv	SYMBOL,	EXPRESSION'
================================

The	'.equiv'	directive	is	like	'.equ'	and	'.set',	except	that	the
assembler	will	signal	an	error	if	SYMBOL	is	already	defined.		Note	a
symbol	which	has	been	referenced	but	not	actually	defined	is	considered
to	be	undefined.

			Except	for	the	contents	of	the	error	message,	this	is	roughly
equivalent	to
					.ifdef	SYM
					.err
					.endif
					.equ	SYM,VAL
			plus	it	protects	the	symbol	from	later	redefinition.

�
File:	as.info,		Node:	Eqv,		Next:	Err,		Prev:	Equiv,		Up:	Pseudo	Ops

7.26	'.eqv	SYMBOL,	EXPRESSION'
==============================

The	'.eqv'	directive	is	like	'.equiv',	but	no	attempt	is	made	to
evaluate	the	expression	or	any	part	of	it	immediately.		Instead	each
time	the	resulting	symbol	is	used	in	an	expression,	a	snapshot	of	its
current	value	is	taken.

�
File:	as.info,		Node:	Err,		Next:	Error,		Prev:	Eqv,		Up:	Pseudo	Ops

7.27	'.err'
===========

If	'as'	assembles	a	'.err'	directive,	it	will	print	an	error	message
and,	unless	the	'-Z'	option	was	used,	it	will	not	generate	an	object
file.		This	can	be	used	to	signal	an	error	in	conditionally	compiled
code.

3/25/20 as.info 67

�
File:	as.info,		Node:	Error,		Next:	Exitm,		Prev:	Err,		Up:	Pseudo	Ops

7.28	'.error	"STRING"'
======================

Similarly	to	'.err',	this	directive	emits	an	error,	but	you	can	specify
a	string	that	will	be	emitted	as	the	error	message.		If	you	don't
specify	the	message,	it	defaults	to	'".error	directive	invoked	in	source
file"'.		*Note	Error	and	Warning	Messages:	Errors.

						.error	"This	code	has	not	been	assembled	and	tested."

�
File:	as.info,		Node:	Exitm,		Next:	Extern,		Prev:	Error,		Up:	Pseudo	Ops

7.29	'.exitm'
=============

Exit	early	from	the	current	macro	definition.		*Note	Macro::.

�
File:	as.info,		Node:	Extern,		Next:	Fail,		Prev:	Exitm,		Up:	Pseudo	Ops

7.30	'.extern'
==============

'.extern'	is	accepted	in	the	source	program--for	compatibility	with
other	assemblers--but	it	is	ignored.		'as'	treats	all	undefined	symbols
as	external.

�
File:	as.info,		Node:	Fail,		Next:	File,		Prev:	Extern,		Up:	Pseudo	Ops

7.31	'.fail	EXPRESSION'
=======================

Generates	an	error	or	a	warning.		If	the	value	of	the	EXPRESSION	is	500
or	more,	'as'	will	print	a	warning	message.		If	the	value	is	less	than
500,	'as'	will	print	an	error	message.		The	message	will	include	the
value	of	EXPRESSION.		This	can	occasionally	be	useful	inside	complex
nested	macros	or	conditional	assembly.

�
File:	as.info,		Node:	File,		Next:	Fill,		Prev:	Fail,		Up:	Pseudo	Ops

7.32	'.file'
============

There	are	two	different	versions	of	the	'.file'	directive.		Targets	that
support	DWARF2	line	number	information	use	the	DWARF2	version	of
'.file'.		Other	targets	use	the	default	version.

Default	Version

This	version	of	the	'.file'	directive	tells	'as'	that	we	are	about	to
start	a	new	logical	file.		The	syntax	is:

3/25/20 as.info 68

					.file	STRING

			STRING	is	the	new	file	name.		In	general,	the	filename	is	recognized
whether	or	not	it	is	surrounded	by	quotes	'"';	but	if	you	wish	to
specify	an	empty	file	name,	you	must	give	the	quotes-'""'.		This
statement	may	go	away	in	future:	it	is	only	recognized	to	be	compatible
with	old	'as'	programs.

DWARF2	Version

When	emitting	DWARF2	line	number	information,	'.file'	assigns	filenames
to	the	'.debug_line'	file	name	table.		The	syntax	is:

					.file	FILENO	FILENAME

			The	FILENO	operand	should	be	a	unique	positive	integer	to	use	as	the
index	of	the	entry	in	the	table.		The	FILENAME	operand	is	a	C	string
literal.

			The	detail	of	filename	indices	is	exposed	to	the	user	because	the
filename	table	is	shared	with	the	'.debug_info'	section	of	the	DWARF2
debugging	information,	and	thus	the	user	must	know	the	exact	indices
that	table	entries	will	have.

�
File:	as.info,		Node:	Fill,		Next:	Float,		Prev:	File,		Up:	Pseudo	Ops

7.33	'.fill	REPEAT	,	SIZE	,	VALUE'
==================================

REPEAT,	SIZE	and	VALUE	are	absolute	expressions.		This	emits	REPEAT
copies	of	SIZE	bytes.		REPEAT	may	be	zero	or	more.		SIZE	may	be	zero	or
more,	but	if	it	is	more	than	8,	then	it	is	deemed	to	have	the	value	8,
compatible	with	other	people's	assemblers.		The	contents	of	each	REPEAT
bytes	is	taken	from	an	8-byte	number.		The	highest	order	4	bytes	are
zero.		The	lowest	order	4	bytes	are	VALUE	rendered	in	the	byte-order	of
an	integer	on	the	computer	'as'	is	assembling	for.		Each	SIZE	bytes	in	a
repetition	is	taken	from	the	lowest	order	SIZE	bytes	of	this	number.
Again,	this	bizarre	behavior	is	compatible	with	other	people's
assemblers.

			SIZE	and	VALUE	are	optional.		If	the	second	comma	and	VALUE	are
absent,	VALUE	is	assumed	zero.		If	the	first	comma	and	following	tokens
are	absent,	SIZE	is	assumed	to	be	1.

�
File:	as.info,		Node:	Float,		Next:	Func,		Prev:	Fill,		Up:	Pseudo	Ops

7.34	'.float	FLONUMS'
=====================

This	directive	assembles	zero	or	more	flonums,	separated	by	commas.		It
has	the	same	effect	as	'.single'.		The	exact	kind	of	floating	point
numbers	emitted	depends	on	how	'as'	is	configured.		*Note	Machine
Dependencies::.

�

3/25/20 as.info 69

File:	as.info,		Node:	Func,		Next:	Global,		Prev:	Float,		Up:	Pseudo	Ops

7.35	'.func	NAME[,LABEL]'
=========================

'.func'	emits	debugging	information	to	denote	function	NAME,	and	is
ignored	unless	the	file	is	assembled	with	debugging	enabled.		Only
'--gstabs[+]'	is	currently	supported.		LABEL	is	the	entry	point	of	the
function	and	if	omitted	NAME	prepended	with	the	'leading	char'	is	used.
'leading	char'	is	usually	'_'	or	nothing,	depending	on	the	target.		All
functions	are	currently	defined	to	have	'void'	return	type.		The
function	must	be	terminated	with	'.endfunc'.

�
File:	as.info,		Node:	Global,		Next:	Gnu_attribute,		Prev:	Func,		Up:	Pseudo	Ops

7.36	'.global	SYMBOL',	'.globl	SYMBOL'
======================================

'.global'	makes	the	symbol	visible	to	'ld'.		If	you	define	SYMBOL	in
your	partial	program,	its	value	is	made	available	to	other	partial
programs	that	are	linked	with	it.		Otherwise,	SYMBOL	takes	its
attributes	from	a	symbol	of	the	same	name	from	another	file	linked	into
the	same	program.

			Both	spellings	('.globl'	and	'.global')	are	accepted,	for
compatibility	with	other	assemblers.

			On	the	HPPA,	'.global'	is	not	always	enough	to	make	it	accessible	to
other	partial	programs.		You	may	need	the	HPPA-only	'.EXPORT'	directive
as	well.		*Note	HPPA	Assembler	Directives:	HPPA	Directives.

�
File:	as.info,		Node:	Gnu_attribute,		Next:	Hidden,		Prev:	Global,		Up:	Pseudo	Ops

7.37	'.gnu_attribute	TAG,VALUE'
===============================

Record	a	GNU	object	attribute	for	this	file.		*Note	Object	Attributes::.

�
File:	as.info,		Node:	Hidden,		Next:	hword,		Prev:	Gnu_attribute,		Up:	Pseudo	Ops

7.38	'.hidden	NAMES'
====================

This	is	one	of	the	ELF	visibility	directives.		The	other	two	are
'.internal'	(*note	'.internal':	Internal.)	and	'.protected'	(*note
'.protected':	Protected.).

			This	directive	overrides	the	named	symbols	default	visibility	(which
is	set	by	their	binding:	local,	global	or	weak).		The	directive	sets	the
visibility	to	'hidden'	which	means	that	the	symbols	are	not	visible	to
other	components.		Such	symbols	are	always	considered	to	be	'protected'
as	well.

�
File:	as.info,		Node:	hword,		Next:	Ident,		Prev:	Hidden,		Up:	Pseudo	Ops

3/25/20 as.info 70

7.39	'.hword	EXPRESSIONS'
=========================

This	expects	zero	or	more	EXPRESSIONS,	and	emits	a	16	bit	number	for
each.

			This	directive	is	a	synonym	for	'.short';	depending	on	the	target
architecture,	it	may	also	be	a	synonym	for	'.word'.

�
File:	as.info,		Node:	Ident,		Next:	If,		Prev:	hword,		Up:	Pseudo	Ops

7.40	'.ident'
=============

This	directive	is	used	by	some	assemblers	to	place	tags	in	object	files.
The	behavior	of	this	directive	varies	depending	on	the	target.		When
using	the	a.out	object	file	format,	'as'	simply	accepts	the	directive
for	source-file	compatibility	with	existing	assemblers,	but	does	not
emit	anything	for	it.		When	using	COFF,	comments	are	emitted	to	the
'.comment'	or	'.rdata'	section,	depending	on	the	target.		When	using
ELF,	comments	are	emitted	to	the	'.comment'	section.

�
File:	as.info,		Node:	If,		Next:	Incbin,		Prev:	Ident,		Up:	Pseudo	Ops

7.41	'.if	ABSOLUTE	EXPRESSION'
==============================

'.if'	marks	the	beginning	of	a	section	of	code	which	is	only	considered
part	of	the	source	program	being	assembled	if	the	argument	(which	must
be	an	ABSOLUTE	EXPRESSION)	is	non-zero.		The	end	of	the	conditional
section	of	code	must	be	marked	by	'.endif'	(*note	'.endif':	Endif.);
optionally,	you	may	include	code	for	the	alternative	condition,	flagged
by	'.else'	(*note	'.else':	Else.).		If	you	have	several	conditions	to
check,	'.elseif'	may	be	used	to	avoid	nesting	blocks	if/else	within	each
subsequent	'.else'	block.

			The	following	variants	of	'.if'	are	also	supported:
'.ifdef	SYMBOL'
					Assembles	the	following	section	of	code	if	the	specified	SYMBOL	has
					been	defined.		Note	a	symbol	which	has	been	referenced	but	not	yet
					defined	is	considered	to	be	undefined.

'.ifb	TEXT'
					Assembles	the	following	section	of	code	if	the	operand	is	blank
					(empty).

'.ifc	STRING1,STRING2'
					Assembles	the	following	section	of	code	if	the	two	strings	are	the
					same.		The	strings	may	be	optionally	quoted	with	single	quotes.		If
					they	are	not	quoted,	the	first	string	stops	at	the	first	comma,	and
					the	second	string	stops	at	the	end	of	the	line.		Strings	which
					contain	whitespace	should	be	quoted.		The	string	comparison	is	case
					sensitive.

'.ifeq	ABSOLUTE	EXPRESSION'
					Assembles	the	following	section	of	code	if	the	argument	is	zero.

3/25/20 as.info 71

'.ifeqs	STRING1,STRING2'
					Another	form	of	'.ifc'.		The	strings	must	be	quoted	using	double
					quotes.

'.ifge	ABSOLUTE	EXPRESSION'
					Assembles	the	following	section	of	code	if	the	argument	is	greater
					than	or	equal	to	zero.

'.ifgt	ABSOLUTE	EXPRESSION'
					Assembles	the	following	section	of	code	if	the	argument	is	greater
					than	zero.

'.ifle	ABSOLUTE	EXPRESSION'
					Assembles	the	following	section	of	code	if	the	argument	is	less
					than	or	equal	to	zero.

'.iflt	ABSOLUTE	EXPRESSION'
					Assembles	the	following	section	of	code	if	the	argument	is	less
					than	zero.

'.ifnb	TEXT'
					Like	'.ifb',	but	the	sense	of	the	test	is	reversed:	this	assembles
					the	following	section	of	code	if	the	operand	is	non-blank
					(non-empty).

'.ifnc	STRING1,STRING2.'
					Like	'.ifc',	but	the	sense	of	the	test	is	reversed:	this	assembles
					the	following	section	of	code	if	the	two	strings	are	not	the	same.

'.ifndef	SYMBOL'
'.ifnotdef	SYMBOL'
					Assembles	the	following	section	of	code	if	the	specified	SYMBOL	has
					not	been	defined.		Both	spelling	variants	are	equivalent.		Note	a
					symbol	which	has	been	referenced	but	not	yet	defined	is	considered
					to	be	undefined.

'.ifne	ABSOLUTE	EXPRESSION'
					Assembles	the	following	section	of	code	if	the	argument	is	not
					equal	to	zero	(in	other	words,	this	is	equivalent	to	'.if').

'.ifnes	STRING1,STRING2'
					Like	'.ifeqs',	but	the	sense	of	the	test	is	reversed:	this
					assembles	the	following	section	of	code	if	the	two	strings	are	not
					the	same.

�
File:	as.info,		Node:	Incbin,		Next:	Include,		Prev:	If,		Up:	Pseudo	Ops

7.42	'.incbin	"FILE"[,SKIP[,COUNT]]'
====================================

The	'incbin'	directive	includes	FILE	verbatim	at	the	current	location.
You	can	control	the	search	paths	used	with	the	'-I'	command-line	option
(*note	Command-Line	Options:	Invoking.).		Quotation	marks	are	required
around	FILE.

			The	SKIP	argument	skips	a	number	of	bytes	from	the	start	of	the	FILE.
The	COUNT	argument	indicates	the	maximum	number	of	bytes	to	read.		Note
that	the	data	is	not	aligned	in	any	way,	so	it	is	the	user's

3/25/20 as.info 72

responsibility	to	make	sure	that	proper	alignment	is	provided	both
before	and	after	the	'incbin'	directive.

�
File:	as.info,		Node:	Include,		Next:	Int,		Prev:	Incbin,		Up:	Pseudo	Ops

7.43	'.include	"FILE"'
======================

This	directive	provides	a	way	to	include	supporting	files	at	specified
points	in	your	source	program.		The	code	from	FILE	is	assembled	as	if	it
followed	the	point	of	the	'.include';	when	the	end	of	the	included	file
is	reached,	assembly	of	the	original	file	continues.		You	can	control
the	search	paths	used	with	the	'-I'	command-line	option	(*note
Command-Line	Options:	Invoking.).		Quotation	marks	are	required	around
FILE.

�
File:	as.info,		Node:	Int,		Next:	Internal,		Prev:	Include,		Up:	Pseudo	Ops

7.44	'.int	EXPRESSIONS'
=======================

Expect	zero	or	more	EXPRESSIONS,	of	any	section,	separated	by	commas.
For	each	expression,	emit	a	number	that,	at	run	time,	is	the	value	of
that	expression.		The	byte	order	and	bit	size	of	the	number	depends	on
what	kind	of	target	the	assembly	is	for.

�
File:	as.info,		Node:	Internal,		Next:	Irp,		Prev:	Int,		Up:	Pseudo	Ops

7.45	'.internal	NAMES'
======================

This	is	one	of	the	ELF	visibility	directives.		The	other	two	are
'.hidden'	(*note	'.hidden':	Hidden.)	and	'.protected'	(*note
'.protected':	Protected.).

			This	directive	overrides	the	named	symbols	default	visibility	(which
is	set	by	their	binding:	local,	global	or	weak).		The	directive	sets	the
visibility	to	'internal'	which	means	that	the	symbols	are	considered	to
be	'hidden'	(i.e.,	not	visible	to	other	components),	and	that	some
extra,	processor	specific	processing	must	also	be	performed	upon	the
symbols	as	well.

�
File:	as.info,		Node:	Irp,		Next:	Irpc,		Prev:	Internal,		Up:	Pseudo	Ops

7.46	'.irp	SYMBOL,VALUES'...
============================

Evaluate	a	sequence	of	statements	assigning	different	values	to	SYMBOL.
The	sequence	of	statements	starts	at	the	'.irp'	directive,	and	is
terminated	by	an	'.endr'	directive.		For	each	VALUE,	SYMBOL	is	set	to
VALUE,	and	the	sequence	of	statements	is	assembled.		If	no	VALUE	is
listed,	the	sequence	of	statements	is	assembled	once,	with	SYMBOL	set	to
the	null	string.		To	refer	to	SYMBOL	within	the	sequence	of	statements,
use	\SYMBOL.

3/25/20 as.info 73

			For	example,	assembling

													.irp				param,1,2,3
													move				d\param,sp@-
													.endr

			is	equivalent	to	assembling

													move				d1,sp@-
													move				d2,sp@-
													move				d3,sp@-

			For	some	caveats	with	the	spelling	of	SYMBOL,	see	also	*note	Macro::.

�
File:	as.info,		Node:	Irpc,		Next:	Lcomm,		Prev:	Irp,		Up:	Pseudo	Ops

7.47	'.irpc	SYMBOL,VALUES'...
=============================

Evaluate	a	sequence	of	statements	assigning	different	values	to	SYMBOL.
The	sequence	of	statements	starts	at	the	'.irpc'	directive,	and	is
terminated	by	an	'.endr'	directive.		For	each	character	in	VALUE,	SYMBOL
is	set	to	the	character,	and	the	sequence	of	statements	is	assembled.
If	no	VALUE	is	listed,	the	sequence	of	statements	is	assembled	once,
with	SYMBOL	set	to	the	null	string.		To	refer	to	SYMBOL	within	the
sequence	of	statements,	use	\SYMBOL.

			For	example,	assembling

													.irpc				param,123
													move				d\param,sp@-
													.endr

			is	equivalent	to	assembling

													move				d1,sp@-
													move				d2,sp@-
													move				d3,sp@-

			For	some	caveats	with	the	spelling	of	SYMBOL,	see	also	the	discussion
at	*Note	Macro::.

�
File:	as.info,		Node:	Lcomm,		Next:	Lflags,		Prev:	Irpc,		Up:	Pseudo	Ops

7.48	'.lcomm	SYMBOL	,	LENGTH'
=============================

Reserve	LENGTH	(an	absolute	expression)	bytes	for	a	local	common	denoted
by	SYMBOL.		The	section	and	value	of	SYMBOL	are	those	of	the	new	local
common.		The	addresses	are	allocated	in	the	bss	section,	so	that	at
run-time	the	bytes	start	off	zeroed.		SYMBOL	is	not	declared	global
(*note	'.global':	Global.),	so	is	normally	not	visible	to	'ld'.

			Some	targets	permit	a	third	argument	to	be	used	with	'.lcomm'.		This
argument	specifies	the	desired	alignment	of	the	symbol	in	the	bss
section.

3/25/20 as.info 74

			The	syntax	for	'.lcomm'	differs	slightly	on	the	HPPA.	The	syntax	is
'SYMBOL	.lcomm,	LENGTH';	SYMBOL	is	optional.

�
File:	as.info,		Node:	Lflags,		Next:	Line,		Prev:	Lcomm,		Up:	Pseudo	Ops

7.49	'.lflags'
==============

'as'	accepts	this	directive,	for	compatibility	with	other	assemblers,
but	ignores	it.

�
File:	as.info,		Node:	Line,		Next:	Linkonce,		Prev:	Lflags,		Up:	Pseudo	Ops

7.50	'.line	LINE-NUMBER'
========================

Change	the	logical	line	number.		LINE-NUMBER	must	be	an	absolute
expression.		The	next	line	has	that	logical	line	number.		Therefore	any
other	statements	on	the	current	line	(after	a	statement	separator
character)	are	reported	as	on	logical	line	number	LINE-NUMBER	-	1.		One
day	'as'	will	no	longer	support	this	directive:	it	is	recognized	only
for	compatibility	with	existing	assembler	programs.

			Even	though	this	is	a	directive	associated	with	the	'a.out'	or
'b.out'	object-code	formats,	'as'	still	recognizes	it	when	producing
COFF	output,	and	treats	'.line'	as	though	it	were	the	COFF	'.ln'	_if_	it
is	found	outside	a	'.def'/'.endef'	pair.

			Inside	a	'.def',	'.line'	is,	instead,	one	of	the	directives	used	by
compilers	to	generate	auxiliary	symbol	information	for	debugging.

�
File:	as.info,		Node:	Linkonce,		Next:	List,		Prev:	Line,		Up:	Pseudo	Ops

7.51	'.linkonce	[TYPE]'
=======================

Mark	the	current	section	so	that	the	linker	only	includes	a	single	copy
of	it.		This	may	be	used	to	include	the	same	section	in	several
different	object	files,	but	ensure	that	the	linker	will	only	include	it
once	in	the	final	output	file.		The	'.linkonce'	pseudo-op	must	be	used
for	each	instance	of	the	section.		Duplicate	sections	are	detected	based
on	the	section	name,	so	it	should	be	unique.

			This	directive	is	only	supported	by	a	few	object	file	formats;	as	of
this	writing,	the	only	object	file	format	which	supports	it	is	the
Portable	Executable	format	used	on	Windows	NT.

			The	TYPE	argument	is	optional.		If	specified,	it	must	be	one	of	the
following	strings.		For	example:
					.linkonce	same_size
			Not	all	types	may	be	supported	on	all	object	file	formats.

'discard'
					Silently	discard	duplicate	sections.		This	is	the	default.

'one_only'

3/25/20 as.info 75

					Warn	if	there	are	duplicate	sections,	but	still	keep	only	one	copy.

'same_size'
					Warn	if	any	of	the	duplicates	have	different	sizes.

'same_contents'
					Warn	if	any	of	the	duplicates	do	not	have	exactly	the	same
					contents.

�
File:	as.info,		Node:	List,		Next:	Ln,		Prev:	Linkonce,		Up:	Pseudo	Ops

7.52	'.list'
============

Control	(in	conjunction	with	the	'.nolist'	directive)	whether	or	not
assembly	listings	are	generated.		These	two	directives	maintain	an
internal	counter	(which	is	zero	initially).		'.list'	increments	the
counter,	and	'.nolist'	decrements	it.		Assembly	listings	are	generated
whenever	the	counter	is	greater	than	zero.

			By	default,	listings	are	disabled.		When	you	enable	them	(with	the
'-a'	command	line	option;	*note	Command-Line	Options:	Invoking.),	the
initial	value	of	the	listing	counter	is	one.

�
File:	as.info,		Node:	Ln,		Next:	Loc,		Prev:	List,		Up:	Pseudo	Ops

7.53	'.ln	LINE-NUMBER'
======================

'.ln'	is	a	synonym	for	'.line'.

�
File:	as.info,		Node:	Loc,		Next:	Loc_mark_labels,		Prev:	Ln,		Up:	Pseudo	Ops

7.54	'.loc	FILENO	LINENO	[COLUMN]	[OPTIONS]'
==

When	emitting	DWARF2	line	number	information,	the	'.loc'	directive	will
add	a	row	to	the	'.debug_line'	line	number	matrix	corresponding	to	the
immediately	following	assembly	instruction.		The	FILENO,	LINENO,	and
optional	COLUMN	arguments	will	be	applied	to	the	'.debug_line'	state
machine	before	the	row	is	added.

			The	OPTIONS	are	a	sequence	of	the	following	tokens	in	any	order:

'basic_block'
					This	option	will	set	the	'basic_block'	register	in	the
					'.debug_line'	state	machine	to	'true'.

'prologue_end'
					This	option	will	set	the	'prologue_end'	register	in	the
					'.debug_line'	state	machine	to	'true'.

'epilogue_begin'
					This	option	will	set	the	'epilogue_begin'	register	in	the
					'.debug_line'	state	machine	to	'true'.

3/25/20 as.info 76

'is_stmt	VALUE'
					This	option	will	set	the	'is_stmt'	register	in	the	'.debug_line'
					state	machine	to	'value',	which	must	be	either	0	or	1.

'isa	VALUE'
					This	directive	will	set	the	'isa'	register	in	the	'.debug_line'
					state	machine	to	VALUE,	which	must	be	an	unsigned	integer.

'discriminator	VALUE'
					This	directive	will	set	the	'discriminator'	register	in	the
					'.debug_line'	state	machine	to	VALUE,	which	must	be	an	unsigned
					integer.

�
File:	as.info,		Node:	Loc_mark_labels,		Next:	Local,		Prev:	Loc,		Up:	Pseudo	Ops

7.55	'.loc_mark_labels	ENABLE'
==============================

When	emitting	DWARF2	line	number	information,	the	'.loc_mark_labels'
directive	makes	the	assembler	emit	an	entry	to	the	'.debug_line'	line
number	matrix	with	the	'basic_block'	register	in	the	state	machine	set
whenever	a	code	label	is	seen.		The	ENABLE	argument	should	be	either	1
or	0,	to	enable	or	disable	this	function	respectively.

�
File:	as.info,		Node:	Local,		Next:	Long,		Prev:	Loc_mark_labels,		Up:	Pseudo	Ops

7.56	'.local	NAMES'
===================

This	directive,	which	is	available	for	ELF	targets,	marks	each	symbol	in
the	comma-separated	list	of	'names'	as	a	local	symbol	so	that	it	will
not	be	externally	visible.		If	the	symbols	do	not	already	exist,	they
will	be	created.

			For	targets	where	the	'.lcomm'	directive	(*note	Lcomm::)	does	not
accept	an	alignment	argument,	which	is	the	case	for	most	ELF	targets,
the	'.local'	directive	can	be	used	in	combination	with	'.comm'	(*note
Comm::)	to	define	aligned	local	common	data.

�
File:	as.info,		Node:	Long,		Next:	Macro,		Prev:	Local,		Up:	Pseudo	Ops

7.57	'.long	EXPRESSIONS'
========================

'.long'	is	the	same	as	'.int'.		*Note	'.int':	Int.

�
File:	as.info,		Node:	Macro,		Next:	MRI,		Prev:	Long,		Up:	Pseudo	Ops

7.58	'.macro'
=============

The	commands	'.macro'	and	'.endm'	allow	you	to	define	macros	that
generate	assembly	output.		For	example,	this	definition	specifies	a
macro	'sum'	that	puts	a	sequence	of	numbers	into	memory:

3/25/20 as.info 77

													.macro		sum	from=0,	to=5
													.long			\from
													.if					\to-\from
													sum					"(\from+1)",\to
													.endif
													.endm

With	that	definition,	'SUM	0,5'	is	equivalent	to	this	assembly	input:

													.long			0
													.long			1
													.long			2
													.long			3
													.long			4
													.long			5

'.macro	MACNAME'
'.macro	MACNAME	MACARGS	...'
					Begin	the	definition	of	a	macro	called	MACNAME.		If	your	macro
					definition	requires	arguments,	specify	their	names	after	the	macro
					name,	separated	by	commas	or	spaces.		You	can	qualify	the	macro
					argument	to	indicate	whether	all	invocations	must	specify	a
					non-blank	value	(through	':'req''),	or	whether	it	takes	all	of	the
					remaining	arguments	(through	':'vararg'').		You	can	supply	a
					default	value	for	any	macro	argument	by	following	the	name	with
					'=DEFLT'.		You	cannot	define	two	macros	with	the	same	MACNAME
					unless	it	has	been	subject	to	the	'.purgem'	directive	(*note
					Purgem::)	between	the	two	definitions.		For	example,	these	are	all
					valid	'.macro'	statements:

					'.macro	comm'
										Begin	the	definition	of	a	macro	called	'comm',	which	takes	no
										arguments.

					'.macro	plus1	p,	p1'
					'.macro	plus1	p	p1'
										Either	statement	begins	the	definition	of	a	macro	called
										'plus1',	which	takes	two	arguments;	within	the	macro
										definition,	write	'\p'	or	'\p1'	to	evaluate	the	arguments.

					'.macro	reserve_str	p1=0	p2'
										Begin	the	definition	of	a	macro	called	'reserve_str',	with	two
										arguments.		The	first	argument	has	a	default	value,	but	not
										the	second.		After	the	definition	is	complete,	you	can	call
										the	macro	either	as	'reserve_str	A,B'	(with	'\p1'	evaluating
										to	A	and	'\p2'	evaluating	to	B),	or	as	'reserve_str	,B'	(with
										'\p1'	evaluating	as	the	default,	in	this	case	'0',	and	'\p2'
										evaluating	to	B).

					'.macro	m	p1:req,	p2=0,	p3:vararg'
										Begin	the	definition	of	a	macro	called	'm',	with	at	least
										three	arguments.		The	first	argument	must	always	have	a	value
										specified,	but	not	the	second,	which	instead	has	a	default
										value.		The	third	formal	will	get	assigned	all	remaining
										arguments	specified	at	invocation	time.

										When	you	call	a	macro,	you	can	specify	the	argument	values
										either	by	position,	or	by	keyword.		For	example,	'sum	9,17'	is
										equivalent	to	'sum	to=17,	from=9'.

3/25/20 as.info 78

					Note	that	since	each	of	the	MACARGS	can	be	an	identifier	exactly	as
					any	other	one	permitted	by	the	target	architecture,	there	may	be
					occasional	problems	if	the	target	hand-crafts	special	meanings	to
					certain	characters	when	they	occur	in	a	special	position.		For
					example,	if	the	colon	(':')	is	generally	permitted	to	be	part	of	a
					symbol	name,	but	the	architecture	specific	code	special-cases	it
					when	occurring	as	the	final	character	of	a	symbol	(to	denote	a
					label),	then	the	macro	parameter	replacement	code	will	have	no	way
					of	knowing	that	and	consider	the	whole	construct	(including	the
					colon)	an	identifier,	and	check	only	this	identifier	for	being	the
					subject	to	parameter	substitution.		So	for	example	this	macro
					definition:

										 .macro	label	l
										\l:
										 .endm

					might	not	work	as	expected.		Invoking	'label	foo'	might	not	create
					a	label	called	'foo'	but	instead	just	insert	the	text	'\l:'	into
					the	assembler	source,	probably	generating	an	error	about	an
					unrecognised	identifier.

					Similarly	problems	might	occur	with	the	period	character	('.')
					which	is	often	allowed	inside	opcode	names	(and	hence	identifier
					names).		So	for	example	constructing	a	macro	to	build	an	opcode
					from	a	base	name	and	a	length	specifier	like	this:

										 .macro	opcode	base	length
																		\base.\length
										 .endm

					and	invoking	it	as	'opcode	store	l'	will	not	create	a	'store.l'
					instruction	but	instead	generate	some	kind	of	error	as	the
					assembler	tries	to	interpret	the	text	'\base.\length'.

					There	are	several	possible	ways	around	this	problem:

					'Insert	white	space'
										If	it	is	possible	to	use	white	space	characters	then	this	is
										the	simplest	solution.		eg:

															 .macro	label	l
															\l	:
															 .endm

					'Use	'\()''
										The	string	'\()'	can	be	used	to	separate	the	end	of	a	macro
										argument	from	the	following	text.		eg:

															 .macro	opcode	base	length
																							\base\().\length
															 .endm

					'Use	the	alternate	macro	syntax	mode'
										In	the	alternative	macro	syntax	mode	the	ampersand	character
										('&')	can	be	used	as	a	separator.		eg:

															 .altmacro

3/25/20 as.info 79

															 .macro	label	l
															l&:
															 .endm

					Note:	this	problem	of	correctly	identifying	string	parameters	to
					pseudo	ops	also	applies	to	the	identifiers	used	in	'.irp'	(*note
					Irp::)	and	'.irpc'	(*note	Irpc::)	as	well.

'.endm'
					Mark	the	end	of	a	macro	definition.

'.exitm'
					Exit	early	from	the	current	macro	definition.

'\@'
					'as'	maintains	a	counter	of	how	many	macros	it	has	executed	in	this
					pseudo-variable;	you	can	copy	that	number	to	your	output	with	'\@',
					but	_only	within	a	macro	definition_.

'LOCAL	NAME	[,	...]'
					_Warning:	'LOCAL'	is	only	available	if	you	select	"alternate	macro
					syntax"	with	'--alternate'	or	'.altmacro'._		*Note	'.altmacro':
					Altmacro.

�
File:	as.info,		Node:	MRI,		Next:	Noaltmacro,		Prev:	Macro,		Up:	Pseudo	Ops

7.59	'.mri	VAL'
===============

If	VAL	is	non-zero,	this	tells	'as'	to	enter	MRI	mode.		If	VAL	is	zero,
this	tells	'as'	to	exit	MRI	mode.		This	change	affects	code	assembled
until	the	next	'.mri'	directive,	or	until	the	end	of	the	file.		*Note
MRI	mode:	M.

�
File:	as.info,		Node:	Noaltmacro,		Next:	Nolist,		Prev:	MRI,		Up:	Pseudo	Ops

7.60	'.noaltmacro'
==================

Disable	alternate	macro	mode.		*Note	Altmacro::.

�
File:	as.info,		Node:	Nolist,		Next:	Octa,		Prev:	Noaltmacro,		Up:	Pseudo	Ops

7.61	'.nolist'
==============

Control	(in	conjunction	with	the	'.list'	directive)	whether	or	not
assembly	listings	are	generated.		These	two	directives	maintain	an
internal	counter	(which	is	zero	initially).		'.list'	increments	the
counter,	and	'.nolist'	decrements	it.		Assembly	listings	are	generated
whenever	the	counter	is	greater	than	zero.

�
File:	as.info,		Node:	Octa,		Next:	Offset,		Prev:	Nolist,		Up:	Pseudo	Ops

7.62	'.octa	BIGNUMS'

3/25/20 as.info 80

====================

This	directive	expects	zero	or	more	bignums,	separated	by	commas.		For
each	bignum,	it	emits	a	16-byte	integer.

			The	term	"octa"	comes	from	contexts	in	which	a	"word"	is	two	bytes;
hence	_octa_-word	for	16	bytes.

�
File:	as.info,		Node:	Offset,		Next:	Org,		Prev:	Octa,		Up:	Pseudo	Ops

7.63	'.offset	LOC'
==================

Set	the	location	counter	to	LOC	in	the	absolute	section.		LOC	must	be	an
absolute	expression.		This	directive	may	be	useful	for	defining	symbols
with	absolute	values.		Do	not	confuse	it	with	the	'.org'	directive.

�
File:	as.info,		Node:	Org,		Next:	P2align,		Prev:	Offset,		Up:	Pseudo	Ops

7.64	'.org	NEW-LC	,	FILL'
=========================

Advance	the	location	counter	of	the	current	section	to	NEW-LC.		NEW-LC
is	either	an	absolute	expression	or	an	expression	with	the	same	section
as	the	current	subsection.		That	is,	you	can't	use	'.org'	to	cross
sections:	if	NEW-LC	has	the	wrong	section,	the	'.org'	directive	is
ignored.		To	be	compatible	with	former	assemblers,	if	the	section	of
NEW-LC	is	absolute,	'as'	issues	a	warning,	then	pretends	the	section	of
NEW-LC	is	the	same	as	the	current	subsection.

			'.org'	may	only	increase	the	location	counter,	or	leave	it	unchanged;
you	cannot	use	'.org'	to	move	the	location	counter	backwards.

			Because	'as'	tries	to	assemble	programs	in	one	pass,	NEW-LC	may	not
be	undefined.		If	you	really	detest	this	restriction	we	eagerly	await	a
chance	to	share	your	improved	assembler.

			Beware	that	the	origin	is	relative	to	the	start	of	the	section,	not
to	the	start	of	the	subsection.		This	is	compatible	with	other	people's
assemblers.

			When	the	location	counter	(of	the	current	subsection)	is	advanced,
the	intervening	bytes	are	filled	with	FILL	which	should	be	an	absolute
expression.		If	the	comma	and	FILL	are	omitted,	FILL	defaults	to	zero.

�
File:	as.info,		Node:	P2align,		Next:	PopSection,		Prev:	Org,		Up:	Pseudo	Ops

7.65	'.p2align[wl]	ABS-EXPR,	ABS-EXPR,	ABS-EXPR'
==

Pad	the	location	counter	(in	the	current	subsection)	to	a	particular
storage	boundary.		The	first	expression	(which	must	be	absolute)	is	the
number	of	low-order	zero	bits	the	location	counter	must	have	after
advancement.		For	example	'.p2align	3'	advances	the	location	counter
until	it	a	multiple	of	8.		If	the	location	counter	is	already	a	multiple
of	8,	no	change	is	needed.

3/25/20 as.info 81

			The	second	expression	(also	absolute)	gives	the	fill	value	to	be
stored	in	the	padding	bytes.		It	(and	the	comma)	may	be	omitted.		If	it
is	omitted,	the	padding	bytes	are	normally	zero.		However,	on	some
systems,	if	the	section	is	marked	as	containing	code	and	the	fill	value
is	omitted,	the	space	is	filled	with	no-op	instructions.

			The	third	expression	is	also	absolute,	and	is	also	optional.		If	it
is	present,	it	is	the	maximum	number	of	bytes	that	should	be	skipped	by
this	alignment	directive.		If	doing	the	alignment	would	require	skipping
more	bytes	than	the	specified	maximum,	then	the	alignment	is	not	done	at
all.		You	can	omit	the	fill	value	(the	second	argument)	entirely	by
simply	using	two	commas	after	the	required	alignment;	this	can	be	useful
if	you	want	the	alignment	to	be	filled	with	no-op	instructions	when
appropriate.

			The	'.p2alignw'	and	'.p2alignl'	directives	are	variants	of	the
'.p2align'	directive.		The	'.p2alignw'	directive	treats	the	fill	pattern
as	a	two	byte	word	value.		The	'.p2alignl'	directives	treats	the	fill
pattern	as	a	four	byte	longword	value.		For	example,	'.p2alignw
2,0x368d'	will	align	to	a	multiple	of	4.		If	it	skips	two	bytes,	they
will	be	filled	in	with	the	value	0x368d	(the	exact	placement	of	the
bytes	depends	upon	the	endianness	of	the	processor).		If	it	skips	1	or	3
bytes,	the	fill	value	is	undefined.

�
File:	as.info,		Node:	PopSection,		Next:	Previous,		Prev:	P2align,		Up:	Pseudo	Ops

7.66	'.popsection'
==================

This	is	one	of	the	ELF	section	stack	manipulation	directives.		The
others	are	'.section'	(*note	Section::),	'.subsection'	(*note
SubSection::),	'.pushsection'	(*note	PushSection::),	and	'.previous'
(*note	Previous::).

			This	directive	replaces	the	current	section	(and	subsection)	with	the
top	section	(and	subsection)	on	the	section	stack.		This	section	is
popped	off	the	stack.

�
File:	as.info,		Node:	Previous,		Next:	Print,		Prev:	PopSection,		Up:	Pseudo	Ops

7.67	'.previous'
================

This	is	one	of	the	ELF	section	stack	manipulation	directives.		The
others	are	'.section'	(*note	Section::),	'.subsection'	(*note
SubSection::),	'.pushsection'	(*note	PushSection::),	and	'.popsection'
(*note	PopSection::).

			This	directive	swaps	the	current	section	(and	subsection)	with	most
recently	referenced	section/subsection	pair	prior	to	this	one.		Multiple
'.previous'	directives	in	a	row	will	flip	between	two	sections	(and
their	subsections).		For	example:

					.section	A
						.subsection	1
							.word	0x1234

3/25/20 as.info 82

						.subsection	2
							.word	0x5678
					.previous
						.word	0x9abc

			Will	place	0x1234	and	0x9abc	into	subsection	1	and	0x5678	into
subsection	2	of	section	A.	Whilst:

					.section	A
					.subsection	1
							#	Now	in	section	A	subsection	1
							.word	0x1234
					.section	B
					.subsection	0
							#	Now	in	section	B	subsection	0
							.word	0x5678
					.subsection	1
							#	Now	in	section	B	subsection	1
							.word	0x9abc
					.previous
							#	Now	in	section	B	subsection	0
							.word	0xdef0

			Will	place	0x1234	into	section	A,	0x5678	and	0xdef0	into	subsection	0
of	section	B	and	0x9abc	into	subsection	1	of	section	B.

			In	terms	of	the	section	stack,	this	directive	swaps	the	current
section	with	the	top	section	on	the	section	stack.

�
File:	as.info,		Node:	Print,		Next:	Protected,		Prev:	Previous,		Up:	Pseudo	Ops

7.68	'.print	STRING'
====================

'as'	will	print	STRING	on	the	standard	output	during	assembly.		You	must
put	STRING	in	double	quotes.

�
File:	as.info,		Node:	Protected,		Next:	Psize,		Prev:	Print,		Up:	Pseudo	Ops

7.69	'.protected	NAMES'
=======================

This	is	one	of	the	ELF	visibility	directives.		The	other	two	are
'.hidden'	(*note	Hidden::)	and	'.internal'	(*note	Internal::).

			This	directive	overrides	the	named	symbols	default	visibility	(which
is	set	by	their	binding:	local,	global	or	weak).		The	directive	sets	the
visibility	to	'protected'	which	means	that	any	references	to	the	symbols
from	within	the	components	that	defines	them	must	be	resolved	to	the
definition	in	that	component,	even	if	a	definition	in	another	component
would	normally	preempt	this.

�
File:	as.info,		Node:	Psize,		Next:	Purgem,		Prev:	Protected,		Up:	Pseudo	Ops

7.70	'.psize	LINES	,	COLUMNS'
=============================

3/25/20 as.info 83

Use	this	directive	to	declare	the	number	of	lines--and,	optionally,	the
number	of	columns--to	use	for	each	page,	when	generating	listings.

			If	you	do	not	use	'.psize',	listings	use	a	default	line-count	of	60.
You	may	omit	the	comma	and	COLUMNS	specification;	the	default	width	is
200	columns.

			'as'	generates	formfeeds	whenever	the	specified	number	of	lines	is
exceeded	(or	whenever	you	explicitly	request	one,	using	'.eject').

			If	you	specify	LINES	as	'0',	no	formfeeds	are	generated	save	those
explicitly	specified	with	'.eject'.

�
File:	as.info,		Node:	Purgem,		Next:	PushSection,		Prev:	Psize,		Up:	Pseudo	Ops

7.71	'.purgem	NAME'
===================

Undefine	the	macro	NAME,	so	that	later	uses	of	the	string	will	not	be
expanded.		*Note	Macro::.

�
File:	as.info,		Node:	PushSection,		Next:	Quad,		Prev:	Purgem,		Up:	Pseudo	Ops

7.72	'.pushsection	NAME	[,	SUBSECTION]	[,	"FLAGS"[,	@TYPE[,ARGUMENTS]]]'
==

This	is	one	of	the	ELF	section	stack	manipulation	directives.		The
others	are	'.section'	(*note	Section::),	'.subsection'	(*note
SubSection::),	'.popsection'	(*note	PopSection::),	and	'.previous'
(*note	Previous::).

			This	directive	pushes	the	current	section	(and	subsection)	onto	the
top	of	the	section	stack,	and	then	replaces	the	current	section	and
subsection	with	'name'	and	'subsection'.		The	optional	'flags',	'type'
and	'arguments'	are	treated	the	same	as	in	the	'.section'	(*note
Section::)	directive.

�
File:	as.info,		Node:	Quad,		Next:	Reloc,		Prev:	PushSection,		Up:	Pseudo	Ops

7.73	'.quad	BIGNUMS'
====================

'.quad'	expects	zero	or	more	bignums,	separated	by	commas.		For	each
bignum,	it	emits	an	8-byte	integer.		If	the	bignum	won't	fit	in	8	bytes,
it	prints	a	warning	message;	and	just	takes	the	lowest	order	8	bytes	of
the	bignum.

			The	term	"quad"	comes	from	contexts	in	which	a	"word"	is	two	bytes;
hence	_quad_-word	for	8	bytes.

�
File:	as.info,		Node:	Reloc,		Next:	Rept,		Prev:	Quad,		Up:	Pseudo	Ops

7.74	'.reloc	OFFSET,	RELOC_NAME[,	EXPRESSION]'
==

3/25/20 as.info 84

Generate	a	relocation	at	OFFSET	of	type	RELOC_NAME	with	value
EXPRESSION.		If	OFFSET	is	a	number,	the	relocation	is	generated	in	the
current	section.		If	OFFSET	is	an	expression	that	resolves	to	a	symbol
plus	offset,	the	relocation	is	generated	in	the	given	symbol's	section.
EXPRESSION,	if	present,	must	resolve	to	a	symbol	plus	addend	or	to	an
absolute	value,	but	note	that	not	all	targets	support	an	addend.		e.g.
ELF	REL	targets	such	as	i386	store	an	addend	in	the	section	contents
rather	than	in	the	relocation.		This	low	level	interface	does	not
support	addends	stored	in	the	section.

�
File:	as.info,		Node:	Rept,		Next:	Sbttl,		Prev:	Reloc,		Up:	Pseudo	Ops

7.75	'.rept	COUNT'
==================

Repeat	the	sequence	of	lines	between	the	'.rept'	directive	and	the	next
'.endr'	directive	COUNT	times.

			For	example,	assembling

													.rept			3
													.long			0
													.endr

			is	equivalent	to	assembling

													.long			0
													.long			0
													.long			0

�
File:	as.info,		Node:	Sbttl,		Next:	Scl,		Prev:	Rept,		Up:	Pseudo	Ops

7.76	'.sbttl	"SUBHEADING"'
==========================

Use	SUBHEADING	as	the	title	(third	line,	immediately	after	the	title
line)	when	generating	assembly	listings.

			This	directive	affects	subsequent	pages,	as	well	as	the	current	page
if	it	appears	within	ten	lines	of	the	top	of	a	page.

�
File:	as.info,		Node:	Scl,		Next:	Section,		Prev:	Sbttl,		Up:	Pseudo	Ops

7.77	'.scl	CLASS'
=================

Set	the	storage-class	value	for	a	symbol.		This	directive	may	only	be
used	inside	a	'.def'/'.endef'	pair.		Storage	class	may	flag	whether	a
symbol	is	static	or	external,	or	it	may	record	further	symbolic
debugging	information.

�
File:	as.info,		Node:	Section,		Next:	Set,		Prev:	Scl,		Up:	Pseudo	Ops

7.78	'.section	NAME'

3/25/20 as.info 85

====================

Use	the	'.section'	directive	to	assemble	the	following	code	into	a
section	named	NAME.

			This	directive	is	only	supported	for	targets	that	actually	support
arbitrarily	named	sections;	on	'a.out'	targets,	for	example,	it	is	not
accepted,	even	with	a	standard	'a.out'	section	name.

COFF	Version

For	COFF	targets,	the	'.section'	directive	is	used	in	one	of	the
following	ways:

					.section	NAME[,	"FLAGS"]
					.section	NAME[,	SUBSECTION]

			If	the	optional	argument	is	quoted,	it	is	taken	as	flags	to	use	for
the	section.		Each	flag	is	a	single	character.		The	following	flags	are
recognized:

'b'
					bss	section	(uninitialized	data)
'n'
					section	is	not	loaded
'w'
					writable	section
'd'
					data	section
'e'
					exclude	section	from	linking
'r'
					read-only	section
'x'
					executable	section
's'
					shared	section	(meaningful	for	PE	targets)
'a'
					ignored.		(For	compatibility	with	the	ELF	version)
'y'
					section	is	not	readable	(meaningful	for	PE	targets)
'0-9'
					single-digit	power-of-two	section	alignment	(GNU	extension)

			If	no	flags	are	specified,	the	default	flags	depend	upon	the	section
name.		If	the	section	name	is	not	recognized,	the	default	will	be	for
the	section	to	be	loaded	and	writable.		Note	the	'n'	and	'w'	flags
remove	attributes	from	the	section,	rather	than	adding	them,	so	if	they
are	used	on	their	own	it	will	be	as	if	no	flags	had	been	specified	at
all.

			If	the	optional	argument	to	the	'.section'	directive	is	not	quoted,
it	is	taken	as	a	subsection	number	(*note	Sub-Sections::).

ELF	Version

This	is	one	of	the	ELF	section	stack	manipulation	directives.		The

3/25/20 as.info 86

others	are	'.subsection'	(*note	SubSection::),	'.pushsection'	(*note
PushSection::),	'.popsection'	(*note	PopSection::),	and	'.previous'
(*note	Previous::).

			For	ELF	targets,	the	'.section'	directive	is	used	like	this:

					.section	NAME	[,	"FLAGS"[,	@TYPE[,FLAG_SPECIFIC_ARGUMENTS]]]

			If	the	'--sectname-subst'	command-line	option	is	provided,	the	NAME
argument	may	contain	a	substitution	sequence.		Only	'%S'	is	supported	at
the	moment,	and	substitutes	the	current	section	name.		For	example:

					.macro	exception_code
					.section	%S.exception
					[exception	code	here]
					.previous
					.endm

					.text
					[code]
					exception_code
					[...]

					.section	.init
					[init	code]
					exception_code
					[...]

			The	two	'exception_code'	invocations	above	would	create	the
'.text.exception'	and	'.init.exception'	sections	respectively.		This	is
useful	e.g.		to	discriminate	between	anciliary	sections	that	are	tied	to
setup	code	to	be	discarded	after	use	from	anciliary	sections	that	need
to	stay	resident	without	having	to	define	multiple	'exception_code'
macros	just	for	that	purpose.

			The	optional	FLAGS	argument	is	a	quoted	string	which	may	contain	any
combination	of	the	following	characters:

'a'
					section	is	allocatable
'e'
					section	is	excluded	from	executable	and	shared	library.
'w'
					section	is	writable
'x'
					section	is	executable
'M'
					section	is	mergeable
'S'
					section	contains	zero	terminated	strings
'G'
					section	is	a	member	of	a	section	group
'T'
					section	is	used	for	thread-local-storage
'?'
					section	is	a	member	of	the	previously-current	section's	group,	if
					any
'<number>'
					a	numeric	value	indicating	the	bits	to	be	set	in	the	ELF	section

3/25/20 as.info 87

					header's	flags	field.		Note	-	if	one	or	more	of	the	alphabetic
					characters	described	above	is	also	included	in	the	flags	field,
					their	bit	values	will	be	ORed	into	the	resulting	value.
'<target	specific>'
					some	targets	extend	this	list	with	their	own	flag	characters

			Note	-	once	a	section's	flags	have	been	set	they	cannot	be	changed.
There	are	a	few	exceptions	to	this	rule	however.		Processor	and
application	specific	flags	can	be	added	to	an	already	defined	section.
The	'.interp',	'.strtab'	and	'.symtab'	sections	can	have	the	allocate
flag	('a')	set	after	they	are	initially	defined,	and	the
'.note-GNU-stack'	section	may	have	the	executable	('x')	flag	added.

			The	optional	TYPE	argument	may	contain	one	of	the	following
constants:

'@progbits'
					section	contains	data
'@nobits'
					section	does	not	contain	data	(i.e.,	section	only	occupies	space)
'@note'
					section	contains	data	which	is	used	by	things	other	than	the
					program
'@init_array'
					section	contains	an	array	of	pointers	to	init	functions
'@fini_array'
					section	contains	an	array	of	pointers	to	finish	functions
'@preinit_array'
					section	contains	an	array	of	pointers	to	pre-init	functions
'@<number>'
					a	numeric	value	to	be	set	as	the	ELF	section	header's	type	field.
'@<target	specific>'
					some	targets	extend	this	list	with	their	own	types

			Many	targets	only	support	the	first	three	section	types.		The	type
may	be	enclosed	in	double	quotes	if	necessary.

			Note	on	targets	where	the	'@'	character	is	the	start	of	a	comment	(eg
ARM)	then	another	character	is	used	instead.		For	example	the	ARM	port
uses	the	'%'	character.

			Note	-	some	sections,	eg	'.text'	and	'.data'	are	considered	to	be
special	and	have	fixed	types.		Any	attempt	to	declare	them	with	a
different	type	will	generate	an	error	from	the	assembler.

			If	FLAGS	contains	the	'M'	symbol	then	the	TYPE	argument	must	be
specified	as	well	as	an	extra	argument--ENTSIZE--like	this:

					.section	NAME	,	"FLAGS"M,	@TYPE,	ENTSIZE

			Sections	with	the	'M'	flag	but	not	'S'	flag	must	contain	fixed	size
constants,	each	ENTSIZE	octets	long.		Sections	with	both	'M'	and	'S'
must	contain	zero	terminated	strings	where	each	character	is	ENTSIZE
bytes	long.		The	linker	may	remove	duplicates	within	sections	with	the
same	name,	same	entity	size	and	same	flags.		ENTSIZE	must	be	an	absolute
expression.		For	sections	with	both	'M'	and	'S',	a	string	which	is	a
suffix	of	a	larger	string	is	considered	a	duplicate.		Thus	'"def"'	will
be	merged	with	'"abcdef"';	A	reference	to	the	first	'"def"'	will	be
changed	to	a	reference	to	'"abcdef"+3'.

3/25/20 as.info 88

			If	FLAGS	contains	the	'G'	symbol	then	the	TYPE	argument	must	be
present	along	with	an	additional	field	like	this:

					.section	NAME	,	"FLAGS"G,	@TYPE,	GROUPNAME[,	LINKAGE]

			The	GROUPNAME	field	specifies	the	name	of	the	section	group	to	which
this	particular	section	belongs.		The	optional	linkage	field	can
contain:

'comdat'
					indicates	that	only	one	copy	of	this	section	should	be	retained
'.gnu.linkonce'
					an	alias	for	comdat

			Note:	if	both	the	M	and	G	flags	are	present	then	the	fields	for	the
Merge	flag	should	come	first,	like	this:

					.section	NAME	,	"FLAGS"MG,	@TYPE,	ENTSIZE,	GROUPNAME[,	LINKAGE]

			If	FLAGS	contains	the	'?'	symbol	then	it	may	not	also	contain	the	'G'
symbol	and	the	GROUPNAME	or	LINKAGE	fields	should	not	be	present.
Instead,	'?'	says	to	consider	the	section	that's	current	before	this
directive.		If	that	section	used	'G',	then	the	new	section	will	use	'G'
with	those	same	GROUPNAME	and	LINKAGE	fields	implicitly.		If	not,	then
the	'?'	symbol	has	no	effect.

			If	no	flags	are	specified,	the	default	flags	depend	upon	the	section
name.		If	the	section	name	is	not	recognized,	the	default	will	be	for
the	section	to	have	none	of	the	above	flags:	it	will	not	be	allocated	in
memory,	nor	writable,	nor	executable.		The	section	will	contain	data.

			For	ELF	targets,	the	assembler	supports	another	type	of	'.section'
directive	for	compatibility	with	the	Solaris	assembler:

					.section	"NAME"[,	FLAGS...]

			Note	that	the	section	name	is	quoted.		There	may	be	a	sequence	of
comma	separated	flags:

'#alloc'
					section	is	allocatable
'#write'
					section	is	writable
'#execinstr'
					section	is	executable
'#exclude'
					section	is	excluded	from	executable	and	shared	library.
'#tls'
					section	is	used	for	thread	local	storage

			This	directive	replaces	the	current	section	and	subsection.		See	the
contents	of	the	gas	testsuite	directory	'gas/testsuite/gas/elf'	for	some
examples	of	how	this	directive	and	the	other	section	stack	directives
work.

�
File:	as.info,		Node:	Set,		Next:	Short,		Prev:	Section,		Up:	Pseudo	Ops

3/25/20 as.info 89

7.79	'.set	SYMBOL,	EXPRESSION'
==============================

Set	the	value	of	SYMBOL	to	EXPRESSION.		This	changes	SYMBOL's	value	and
type	to	conform	to	EXPRESSION.		If	SYMBOL	was	flagged	as	external,	it
remains	flagged	(*note	Symbol	Attributes::).

			You	may	'.set'	a	symbol	many	times	in	the	same	assembly	provided	that
the	values	given	to	the	symbol	are	constants.		Values	that	are	based	on
expressions	involving	other	symbols	are	allowed,	but	some	targets	may
restrict	this	to	only	being	done	once	per	assembly.		This	is	because
those	targets	do	not	set	the	addresses	of	symbols	at	assembly	time,	but
rather	delay	the	assignment	until	a	final	link	is	performed.		This
allows	the	linker	a	chance	to	change	the	code	in	the	files,	changing	the
location	of,	and	the	relative	distance	between,	various	different
symbols.

			If	you	'.set'	a	global	symbol,	the	value	stored	in	the	object	file	is
the	last	value	stored	into	it.

			On	Z80	'set'	is	a	real	instruction,	use	'SYMBOL	defl	EXPRESSION'
instead.

�
File:	as.info,		Node:	Short,		Next:	Single,		Prev:	Set,		Up:	Pseudo	Ops

7.80	'.short	EXPRESSIONS'
=========================

'.short'	is	normally	the	same	as	'.word'.		*Note	'.word':	Word.

			In	some	configurations,	however,	'.short'	and	'.word'	generate
numbers	of	different	lengths.		*Note	Machine	Dependencies::.

�
File:	as.info,		Node:	Single,		Next:	Size,		Prev:	Short,		Up:	Pseudo	Ops

7.81	'.single	FLONUMS'
======================

This	directive	assembles	zero	or	more	flonums,	separated	by	commas.		It
has	the	same	effect	as	'.float'.		The	exact	kind	of	floating	point
numbers	emitted	depends	on	how	'as'	is	configured.		*Note	Machine
Dependencies::.

�
File:	as.info,		Node:	Size,		Next:	Skip,		Prev:	Single,		Up:	Pseudo	Ops

7.82	'.size'
============

This	directive	is	used	to	set	the	size	associated	with	a	symbol.

COFF	Version

For	COFF	targets,	the	'.size'	directive	is	only	permitted	inside
'.def'/'.endef'	pairs.		It	is	used	like	this:

3/25/20 as.info 90

					.size	EXPRESSION

ELF	Version

For	ELF	targets,	the	'.size'	directive	is	used	like	this:

					.size	NAME	,	EXPRESSION

			This	directive	sets	the	size	associated	with	a	symbol	NAME.		The	size
in	bytes	is	computed	from	EXPRESSION	which	can	make	use	of	label
arithmetic.		This	directive	is	typically	used	to	set	the	size	of
function	symbols.

�
File:	as.info,		Node:	Skip,		Next:	Sleb128,		Prev:	Size,		Up:	Pseudo	Ops

7.83	'.skip	SIZE	,	FILL'
========================

This	directive	emits	SIZE	bytes,	each	of	value	FILL.		Both	SIZE	and	FILL
are	absolute	expressions.		If	the	comma	and	FILL	are	omitted,	FILL	is
assumed	to	be	zero.		This	is	the	same	as	'.space'.

�
File:	as.info,		Node:	Sleb128,		Next:	Space,		Prev:	Skip,		Up:	Pseudo	Ops

7.84	'.sleb128	EXPRESSIONS'
===========================

SLEB128	stands	for	"signed	little	endian	base	128."		This	is	a	compact,
variable	length	representation	of	numbers	used	by	the	DWARF	symbolic
debugging	format.		*Note	'.uleb128':	Uleb128.

�
File:	as.info,		Node:	Space,		Next:	Stab,		Prev:	Sleb128,		Up:	Pseudo	Ops

7.85	'.space	SIZE	,	FILL'
=========================

This	directive	emits	SIZE	bytes,	each	of	value	FILL.		Both	SIZE	and	FILL
are	absolute	expressions.		If	the	comma	and	FILL	are	omitted,	FILL	is
assumed	to	be	zero.		This	is	the	same	as	'.skip'.

					Warning:	'.space'	has	a	completely	different	meaning	for	HPPA
					targets;	use	'.block'	as	a	substitute.		See	'HP9000	Series	800
					Assembly	Language	Reference	Manual'	(HP	92432-90001)	for	the
					meaning	of	the	'.space'	directive.		*Note	HPPA	Assembler
					Directives:	HPPA	Directives,	for	a	summary.

�
File:	as.info,		Node:	Stab,		Next:	String,		Prev:	Space,		Up:	Pseudo	Ops

7.86	'.stabd,	.stabn,	.stabs'
=============================

There	are	three	directives	that	begin	'.stab'.		All	emit	symbols	(*note
Symbols::),	for	use	by	symbolic	debuggers.		The	symbols	are	not	entered
in	the	'as'	hash	table:	they	cannot	be	referenced	elsewhere	in	the

3/25/20 as.info 91

source	file.		Up	to	five	fields	are	required:

STRING
					This	is	the	symbol's	name.		It	may	contain	any	character	except
					'\000',	so	is	more	general	than	ordinary	symbol	names.		Some
					debuggers	used	to	code	arbitrarily	complex	structures	into	symbol
					names	using	this	field.

TYPE
					An	absolute	expression.		The	symbol's	type	is	set	to	the	low	8	bits
					of	this	expression.		Any	bit	pattern	is	permitted,	but	'ld'	and
					debuggers	choke	on	silly	bit	patterns.

OTHER
					An	absolute	expression.		The	symbol's	"other"	attribute	is	set	to
					the	low	8	bits	of	this	expression.

DESC
					An	absolute	expression.		The	symbol's	descriptor	is	set	to	the	low
					16	bits	of	this	expression.

VALUE
					An	absolute	expression	which	becomes	the	symbol's	value.

			If	a	warning	is	detected	while	reading	a	'.stabd',	'.stabn',	or
'.stabs'	statement,	the	symbol	has	probably	already	been	created;	you
get	a	half-formed	symbol	in	your	object	file.		This	is	compatible	with
earlier	assemblers!

'.stabd	TYPE	,	OTHER	,	DESC'

					The	"name"	of	the	symbol	generated	is	not	even	an	empty	string.		It
					is	a	null	pointer,	for	compatibility.		Older	assemblers	used	a	null
					pointer	so	they	didn't	waste	space	in	object	files	with	empty
					strings.

					The	symbol's	value	is	set	to	the	location	counter,	relocatably.
					When	your	program	is	linked,	the	value	of	this	symbol	is	the
					address	of	the	location	counter	when	the	'.stabd'	was	assembled.

'.stabn	TYPE	,	OTHER	,	DESC	,	VALUE'
					The	name	of	the	symbol	is	set	to	the	empty	string	'""'.

'.stabs	STRING	,	TYPE	,	OTHER	,	DESC	,	VALUE'
					All	five	fields	are	specified.

�
File:	as.info,		Node:	String,		Next:	Struct,		Prev:	Stab,		Up:	Pseudo	Ops

7.87	'.string'	"STR",	'.string8'	"STR",	'.string16'
===

"STR",	'.string32'	"STR",	'.string64'	"STR"

			Copy	the	characters	in	STR	to	the	object	file.		You	may	specify	more
than	one	string	to	copy,	separated	by	commas.		Unless	otherwise
specified	for	a	particular	machine,	the	assembler	marks	the	end	of	each
string	with	a	0	byte.		You	can	use	any	of	the	escape	sequences	described
in	*note	Strings:	Strings.

3/25/20 as.info 92

			The	variants	'string16',	'string32'	and	'string64'	differ	from	the
'string'	pseudo	opcode	in	that	each	8-bit	character	from	STR	is	copied
and	expanded	to	16,	32	or	64	bits	respectively.		The	expanded	characters
are	stored	in	target	endianness	byte	order.

			Example:
					 .string32	"BYE"
					expands	to:
					 .string			"B\0\0\0Y\0\0\0E\0\0\0"		/*	On	little	endian	targets.		*/
					 .string			"\0\0\0B\0\0\0Y\0\0\0E"		/*	On	big	endian	targets.		*/

�
File:	as.info,		Node:	Struct,		Next:	SubSection,		Prev:	String,		Up:	Pseudo	Ops

7.88	'.struct	EXPRESSION'
=========================

Switch	to	the	absolute	section,	and	set	the	section	offset	to
EXPRESSION,	which	must	be	an	absolute	expression.		You	might	use	this	as
follows:
													.struct	0
					field1:
													.struct	field1	+	4
					field2:
													.struct	field2	+	4
					field3:
			This	would	define	the	symbol	'field1'	to	have	the	value	0,	the	symbol
'field2'	to	have	the	value	4,	and	the	symbol	'field3'	to	have	the	value
8.		Assembly	would	be	left	in	the	absolute	section,	and	you	would	need
to	use	a	'.section'	directive	of	some	sort	to	change	to	some	other
section	before	further	assembly.

�
File:	as.info,		Node:	SubSection,		Next:	Symver,		Prev:	Struct,		Up:	Pseudo	Ops

7.89	'.subsection	NAME'
=======================

This	is	one	of	the	ELF	section	stack	manipulation	directives.		The
others	are	'.section'	(*note	Section::),	'.pushsection'	(*note
PushSection::),	'.popsection'	(*note	PopSection::),	and	'.previous'
(*note	Previous::).

			This	directive	replaces	the	current	subsection	with	'name'.		The
current	section	is	not	changed.		The	replaced	subsection	is	put	onto	the
section	stack	in	place	of	the	then	current	top	of	stack	subsection.

�
File:	as.info,		Node:	Symver,		Next:	Tag,		Prev:	SubSection,		Up:	Pseudo	Ops

7.90	'.symver'
==============

Use	the	'.symver'	directive	to	bind	symbols	to	specific	version	nodes
within	a	source	file.		This	is	only	supported	on	ELF	platforms,	and	is
typically	used	when	assembling	files	to	be	linked	into	a	shared	library.
There	are	cases	where	it	may	make	sense	to	use	this	in	objects	to	be
bound	into	an	application	itself	so	as	to	override	a	versioned	symbol

3/25/20 as.info 93

from	a	shared	library.

			For	ELF	targets,	the	'.symver'	directive	can	be	used	like	this:
					.symver	NAME,	NAME2@NODENAME
			If	the	symbol	NAME	is	defined	within	the	file	being	assembled,	the
'.symver'	directive	effectively	creates	a	symbol	alias	with	the	name
NAME2@NODENAME,	and	in	fact	the	main	reason	that	we	just	don't	try	and
create	a	regular	alias	is	that	the	@	character	isn't	permitted	in	symbol
names.		The	NAME2	part	of	the	name	is	the	actual	name	of	the	symbol	by
which	it	will	be	externally	referenced.		The	name	NAME	itself	is	merely
a	name	of	convenience	that	is	used	so	that	it	is	possible	to	have
definitions	for	multiple	versions	of	a	function	within	a	single	source
file,	and	so	that	the	compiler	can	unambiguously	know	which	version	of	a
function	is	being	mentioned.		The	NODENAME	portion	of	the	alias	should
be	the	name	of	a	node	specified	in	the	version	script	supplied	to	the
linker	when	building	a	shared	library.		If	you	are	attempting	to
override	a	versioned	symbol	from	a	shared	library,	then	NODENAME	should
correspond	to	the	nodename	of	the	symbol	you	are	trying	to	override.

			If	the	symbol	NAME	is	not	defined	within	the	file	being	assembled,
all	references	to	NAME	will	be	changed	to	NAME2@NODENAME.		If	no
reference	to	NAME	is	made,	NAME2@NODENAME	will	be	removed	from	the
symbol	table.

			Another	usage	of	the	'.symver'	directive	is:
					.symver	NAME,	NAME2@@NODENAME
			In	this	case,	the	symbol	NAME	must	exist	and	be	defined	within	the
file	being	assembled.		It	is	similar	to	NAME2@NODENAME.		The	difference
is	NAME2@@NODENAME	will	also	be	used	to	resolve	references	to	NAME2	by
the	linker.

			The	third	usage	of	the	'.symver'	directive	is:
					.symver	NAME,	NAME2@@@NODENAME
			When	NAME	is	not	defined	within	the	file	being	assembled,	it	is
treated	as	NAME2@NODENAME.		When	NAME	is	defined	within	the	file	being
assembled,	the	symbol	name,	NAME,	will	be	changed	to	NAME2@@NODENAME.

�
File:	as.info,		Node:	Tag,		Next:	Text,		Prev:	Symver,		Up:	Pseudo	Ops

7.91	'.tag	STRUCTNAME'
======================

This	directive	is	generated	by	compilers	to	include	auxiliary	debugging
information	in	the	symbol	table.		It	is	only	permitted	inside
'.def'/'.endef'	pairs.		Tags	are	used	to	link	structure	definitions	in
the	symbol	table	with	instances	of	those	structures.

�
File:	as.info,		Node:	Text,		Next:	Title,		Prev:	Tag,		Up:	Pseudo	Ops

7.92	'.text	SUBSECTION'
=======================

Tells	'as'	to	assemble	the	following	statements	onto	the	end	of	the	text
subsection	numbered	SUBSECTION,	which	is	an	absolute	expression.		If
SUBSECTION	is	omitted,	subsection	number	zero	is	used.

�

3/25/20 as.info 94

File:	as.info,		Node:	Title,		Next:	Type,		Prev:	Text,		Up:	Pseudo	Ops

7.93	'.title	"HEADING"'
=======================

Use	HEADING	as	the	title	(second	line,	immediately	after	the	source	file
name	and	pagenumber)	when	generating	assembly	listings.

			This	directive	affects	subsequent	pages,	as	well	as	the	current	page
if	it	appears	within	ten	lines	of	the	top	of	a	page.

�
File:	as.info,		Node:	Type,		Next:	Uleb128,		Prev:	Title,		Up:	Pseudo	Ops

7.94	'.type'
============

This	directive	is	used	to	set	the	type	of	a	symbol.

COFF	Version

For	COFF	targets,	this	directive	is	permitted	only	within
'.def'/'.endef'	pairs.		It	is	used	like	this:

					.type	INT

			This	records	the	integer	INT	as	the	type	attribute	of	a	symbol	table
entry.

ELF	Version

For	ELF	targets,	the	'.type'	directive	is	used	like	this:

					.type	NAME	,	TYPE	DESCRIPTION

			This	sets	the	type	of	symbol	NAME	to	be	either	a	function	symbol	or
an	object	symbol.		There	are	five	different	syntaxes	supported	for	the
TYPE	DESCRIPTION	field,	in	order	to	provide	compatibility	with	various
other	assemblers.

			Because	some	of	the	characters	used	in	these	syntaxes	(such	as	'@'
and	'#')	are	comment	characters	for	some	architectures,	some	of	the
syntaxes	below	do	not	work	on	all	architectures.		The	first	variant	will
be	accepted	by	the	GNU	assembler	on	all	architectures	so	that	variant
should	be	used	for	maximum	portability,	if	you	do	not	need	to	assemble
your	code	with	other	assemblers.

			The	syntaxes	supported	are:

							.type	<name>	STT_<TYPE_IN_UPPER_CASE>
							.type	<name>,#<type>
							.type	<name>,@<type>
							.type	<name>,%<type>
							.type	<name>,"<type>"

			The	types	supported	are:

3/25/20 as.info 95

'STT_FUNC'
'function'
					Mark	the	symbol	as	being	a	function	name.

'STT_GNU_IFUNC'
'gnu_indirect_function'
					Mark	the	symbol	as	an	indirect	function	when	evaluated	during	reloc
					processing.		(This	is	only	supported	on	assemblers	targeting	GNU
					systems).

'STT_OBJECT'
'object'
					Mark	the	symbol	as	being	a	data	object.

'STT_TLS'
'tls_object'
					Mark	the	symbol	as	being	a	thead-local	data	object.

'STT_COMMON'
'common'
					Mark	the	symbol	as	being	a	common	data	object.

'STT_NOTYPE'
'notype'
					Does	not	mark	the	symbol	in	any	way.		It	is	supported	just	for
					completeness.

'gnu_unique_object'
					Marks	the	symbol	as	being	a	globally	unique	data	object.		The
					dynamic	linker	will	make	sure	that	in	the	entire	process	there	is
					just	one	symbol	with	this	name	and	type	in	use.		(This	is	only
					supported	on	assemblers	targeting	GNU	systems).

			Note:	Some	targets	support	extra	types	in	addition	to	those	listed
above.

�
File:	as.info,		Node:	Uleb128,		Next:	Val,		Prev:	Type,		Up:	Pseudo	Ops

7.95	'.uleb128	EXPRESSIONS'
===========================

ULEB128	stands	for	"unsigned	little	endian	base	128."		This	is	a
compact,	variable	length	representation	of	numbers	used	by	the	DWARF
symbolic	debugging	format.		*Note	'.sleb128':	Sleb128.

�
File:	as.info,		Node:	Val,		Next:	Version,		Prev:	Uleb128,		Up:	Pseudo	Ops

7.96	'.val	ADDR'
================

This	directive,	permitted	only	within	'.def'/'.endef'	pairs,	records	the
address	ADDR	as	the	value	attribute	of	a	symbol	table	entry.

�
File:	as.info,		Node:	Version,		Next:	VTableEntry,		Prev:	Val,		Up:	Pseudo	Ops

7.97	'.version	"STRING"'

3/25/20 as.info 96

========================

This	directive	creates	a	'.note'	section	and	places	into	it	an	ELF
formatted	note	of	type	NT_VERSION.	The	note's	name	is	set	to	'string'.

�
File:	as.info,		Node:	VTableEntry,		Next:	VTableInherit,		Prev:	Version,		Up:	Pseudo
Ops

7.98	'.vtable_entry	TABLE,	OFFSET'
==================================

This	directive	finds	or	creates	a	symbol	'table'	and	creates	a
'VTABLE_ENTRY'	relocation	for	it	with	an	addend	of	'offset'.

�
File:	as.info,		Node:	VTableInherit,		Next:	Warning,		Prev:	VTableEntry,		Up:	Pseudo
Ops

7.99	'.vtable_inherit	CHILD,	PARENT'
====================================

This	directive	finds	the	symbol	'child'	and	finds	or	creates	the	symbol
'parent'	and	then	creates	a	'VTABLE_INHERIT'	relocation	for	the	parent
whose	addend	is	the	value	of	the	child	symbol.		As	a	special	case	the
parent	name	of	'0'	is	treated	as	referring	to	the	'*ABS*'	section.

�
File:	as.info,		Node:	Warning,		Next:	Weak,		Prev:	VTableInherit,		Up:	Pseudo	Ops

7.100	'.warning	"STRING"'
=========================

Similar	to	the	directive	'.error'	(*note	'.error	"STRING"':	Error.),	but
just	emits	a	warning.

�
File:	as.info,		Node:	Weak,		Next:	Weakref,		Prev:	Warning,		Up:	Pseudo	Ops

7.101	'.weak	NAMES'
===================

This	directive	sets	the	weak	attribute	on	the	comma	separated	list	of
symbol	'names'.		If	the	symbols	do	not	already	exist,	they	will	be
created.

			On	COFF	targets	other	than	PE,	weak	symbols	are	a	GNU	extension.
This	directive	sets	the	weak	attribute	on	the	comma	separated	list	of
symbol	'names'.		If	the	symbols	do	not	already	exist,	they	will	be
created.

			On	the	PE	target,	weak	symbols	are	supported	natively	as	weak
aliases.		When	a	weak	symbol	is	created	that	is	not	an	alias,	GAS
creates	an	alternate	symbol	to	hold	the	default	value.

�
File:	as.info,		Node:	Weakref,		Next:	Word,		Prev:	Weak,		Up:	Pseudo	Ops

7.102	'.weakref	ALIAS,	TARGET'

3/25/20 as.info 97

==============================

This	directive	creates	an	alias	to	the	target	symbol	that	enables	the
symbol	to	be	referenced	with	weak-symbol	semantics,	but	without	actually
making	it	weak.		If	direct	references	or	definitions	of	the	symbol	are
present,	then	the	symbol	will	not	be	weak,	but	if	all	references	to	it
are	through	weak	references,	the	symbol	will	be	marked	as	weak	in	the
symbol	table.

			The	effect	is	equivalent	to	moving	all	references	to	the	alias	to	a
separate	assembly	source	file,	renaming	the	alias	to	the	symbol	in	it,
declaring	the	symbol	as	weak	there,	and	running	a	reloadable	link	to
merge	the	object	files	resulting	from	the	assembly	of	the	new	source
file	and	the	old	source	file	that	had	the	references	to	the	alias
removed.

			The	alias	itself	never	makes	to	the	symbol	table,	and	is	entirely
handled	within	the	assembler.

�
File:	as.info,		Node:	Word,		Next:	Zero,		Prev:	Weakref,		Up:	Pseudo	Ops

7.103	'.word	EXPRESSIONS'
=========================

This	directive	expects	zero	or	more	EXPRESSIONS,	of	any	section,
separated	by	commas.

			The	size	of	the	number	emitted,	and	its	byte	order,	depend	on	what
target	computer	the	assembly	is	for.

					Warning:	Special	Treatment	to	support	Compilers

			Machines	with	a	32-bit	address	space,	but	that	do	less	than	32-bit
addressing,	require	the	following	special	treatment.		If	the	machine	of
interest	to	you	does	32-bit	addressing	(or	doesn't	require	it;	*note
Machine	Dependencies::),	you	can	ignore	this	issue.

			In	order	to	assemble	compiler	output	into	something	that	works,	'as'
occasionally	does	strange	things	to	'.word'	directives.		Directives	of
the	form	'.word	sym1-sym2'	are	often	emitted	by	compilers	as	part	of
jump	tables.		Therefore,	when	'as'	assembles	a	directive	of	the	form
'.word	sym1-sym2',	and	the	difference	between	'sym1'	and	'sym2'	does	not
fit	in	16	bits,	'as'	creates	a	"secondary	jump	table",	immediately
before	the	next	label.		This	secondary	jump	table	is	preceded	by	a
short-jump	to	the	first	byte	after	the	secondary	table.		This	short-jump
prevents	the	flow	of	control	from	accidentally	falling	into	the	new
table.		Inside	the	table	is	a	long-jump	to	'sym2'.		The	original	'.word'
contains	'sym1'	minus	the	address	of	the	long-jump	to	'sym2'.

			If	there	were	several	occurrences	of	'.word	sym1-sym2'	before	the
secondary	jump	table,	all	of	them	are	adjusted.		If	there	was	a	'.word
sym3-sym4',	that	also	did	not	fit	in	sixteen	bits,	a	long-jump	to	'sym4'
is	included	in	the	secondary	jump	table,	and	the	'.word'	directives	are
adjusted	to	contain	'sym3'	minus	the	address	of	the	long-jump	to	'sym4';
and	so	on,	for	as	many	entries	in	the	original	jump	table	as	necessary.

�
File:	as.info,		Node:	Zero,		Next:	Deprecated,		Prev:	Word,		Up:	Pseudo	Ops

3/25/20 as.info 98

7.104	'.zero	SIZE'
==================

This	directive	emits	SIZE	0-valued	bytes.		SIZE	must	be	an	absolute
expression.		This	directive	is	actually	an	alias	for	the	'.skip'
directive	so	in	can	take	an	optional	second	argument	of	the	value	to
store	in	the	bytes	instead	of	zero.		Using	'.zero'	in	this	way	would	be
confusing	however.

�
File:	as.info,		Node:	Deprecated,		Prev:	Zero,		Up:	Pseudo	Ops

7.105	Deprecated	Directives
===========================

One	day	these	directives	won't	work.		They	are	included	for
compatibility	with	older	assemblers.
.abort
.line

�
File:	as.info,		Node:	Object	Attributes,		Next:	Machine	Dependencies,		Prev:	Pseudo
Ops,		Up:	Top

8	Object	Attributes

'as'	assembles	source	files	written	for	a	specific	architecture	into
object	files	for	that	architecture.		But	not	all	object	files	are	alike.
Many	architectures	support	incompatible	variations.		For	instance,
floating	point	arguments	might	be	passed	in	floating	point	registers	if
the	object	file	requires	hardware	floating	point	support--or	floating
point	arguments	might	be	passed	in	integer	registers	if	the	object	file
supports	processors	with	no	hardware	floating	point	unit.		Or,	if	two
objects	are	built	for	different	generations	of	the	same	architecture,
the	combination	may	require	the	newer	generation	at	run-time.

			This	information	is	useful	during	and	after	linking.		At	link	time,
'ld'	can	warn	about	incompatible	object	files.		After	link	time,	tools
like	'gdb'	can	use	it	to	process	the	linked	file	correctly.

			Compatibility	information	is	recorded	as	a	series	of	object
attributes.		Each	attribute	has	a	"vendor",	"tag",	and	"value".		The
vendor	is	a	string,	and	indicates	who	sets	the	meaning	of	the	tag.		The
tag	is	an	integer,	and	indicates	what	property	the	attribute	describes.
The	value	may	be	a	string	or	an	integer,	and	indicates	how	the	property
affects	this	object.		Missing	attributes	are	the	same	as	attributes	with
a	zero	value	or	empty	string	value.

			Object	attributes	were	developed	as	part	of	the	ABI	for	the	ARM
Architecture.		The	file	format	is	documented	in	'ELF	for	the	ARM
Architecture'.

*	Menu:

*	GNU	Object	Attributes::															GNU	Object	Attributes
*	Defining	New	Object	Attributes::						Defining	New	Object	Attributes

3/25/20 as.info 99

�
File:	as.info,		Node:	GNU	Object	Attributes,		Next:	Defining	New	Object	Attributes,
Up:	Object	Attributes

8.1	GNU	Object	Attributes
=========================

The	'.gnu_attribute'	directive	records	an	object	attribute	with	vendor
'gnu'.

			Except	for	'Tag_compatibility',	which	has	both	an	integer	and	a
string	for	its	value,	GNU	attributes	have	a	string	value	if	the	tag
number	is	odd	and	an	integer	value	if	the	tag	number	is	even.		The
second	bit	('TAG	&	2'	is	set	for	architecture-independent	attributes	and
clear	for	architecture-dependent	ones.

8.1.1	Common	GNU	attributes

These	attributes	are	valid	on	all	architectures.

Tag_compatibility	(32)
					The	compatibility	attribute	takes	an	integer	flag	value	and	a
					vendor	name.		If	the	flag	value	is	0,	the	file	is	compatible	with
					other	toolchains.		If	it	is	1,	then	the	file	is	only	compatible
					with	the	named	toolchain.		If	it	is	greater	than	1,	the	file	can
					only	be	processed	by	other	toolchains	under	some	private
					arrangement	indicated	by	the	flag	value	and	the	vendor	name.

8.1.2	MIPS	Attributes

Tag_GNU_MIPS_ABI_FP	(4)
					The	floating-point	ABI	used	by	this	object	file.		The	value	will
					be:

								*	0	for	files	not	affected	by	the	floating-point	ABI.
								*	1	for	files	using	the	hardware	floating-point	ABI	with	a
										standard	double-precision	FPU.
								*	2	for	files	using	the	hardware	floating-point	ABI	with	a
										single-precision	FPU.
								*	3	for	files	using	the	software	floating-point	ABI.
								*	4	for	files	using	the	deprecated	hardware	floating-point	ABI
										which	used	64-bit	floating-point	registers,	32-bit
										general-purpose	registers	and	increased	the	number	of
										callee-saved	floating-point	registers.
								*	5	for	files	using	the	hardware	floating-point	ABI	with	a
										double-precision	FPU	with	either	32-bit	or	64-bit
										floating-point	registers	and	32-bit	general-purpose	registers.
								*	6	for	files	using	the	hardware	floating-point	ABI	with	64-bit
										floating-point	registers	and	32-bit	general-purpose	registers.
								*	7	for	files	using	the	hardware	floating-point	ABI	with	64-bit
										floating-point	registers,	32-bit	general-purpose	registers	and
										a	rule	that	forbids	the	direct	use	of	odd-numbered
										single-precision	floating-point	registers.

8.1.3	PowerPC	Attributes

3/25/20 as.info 100

Tag_GNU_Power_ABI_FP	(4)
					The	floating-point	ABI	used	by	this	object	file.		The	value	will
					be:

								*	0	for	files	not	affected	by	the	floating-point	ABI.
								*	1	for	files	using	double-precision	hardware	floating-point
										ABI.
								*	2	for	files	using	the	software	floating-point	ABI.
								*	3	for	files	using	single-precision	hardware	floating-point
										ABI.

Tag_GNU_Power_ABI_Vector	(8)
					The	vector	ABI	used	by	this	object	file.		The	value	will	be:

								*	0	for	files	not	affected	by	the	vector	ABI.
								*	1	for	files	using	general	purpose	registers	to	pass	vectors.
								*	2	for	files	using	AltiVec	registers	to	pass	vectors.
								*	3	for	files	using	SPE	registers	to	pass	vectors.

8.1.4	IBM	z	Systems	Attributes

Tag_GNU_S390_ABI_Vector	(8)
					The	vector	ABI	used	by	this	object	file.		The	value	will	be:

								*	0	for	files	not	affected	by	the	vector	ABI.
								*	1	for	files	using	software	vector	ABI.
								*	2	for	files	using	hardware	vector	ABI.

�
File:	as.info,		Node:	Defining	New	Object	Attributes,		Prev:	GNU	Object	Attributes,
Up:	Object	Attributes

8.2	Defining	New	Object	Attributes
==================================

If	you	want	to	define	a	new	GNU	object	attribute,	here	are	the	places
you	will	need	to	modify.		New	attributes	should	be	discussed	on	the
'binutils'	mailing	list.

			*	This	manual,	which	is	the	official	register	of	attributes.
			*	The	header	for	your	architecture	'include/elf',	to	define	the	tag.
			*	The	'bfd'	support	file	for	your	architecture,	to	merge	the
					attribute	and	issue	any	appropriate	link	warnings.
			*	Test	cases	in	'ld/testsuite'	for	merging	and	link	warnings.
			*	'binutils/readelf.c'	to	display	your	attribute.
			*	GCC,	if	you	want	the	compiler	to	mark	the	attribute	automatically.

�
File:	as.info,		Node:	Machine	Dependencies,		Next:	Reporting	Bugs,		Prev:	Object
Attributes,		Up:	Top

9	Machine	Dependent	Features

The	machine	instruction	sets	are	(almost	by	definition)	different	on
each	machine	where	'as'	runs.		Floating	point	representations	vary	as
well,	and	'as'	often	supports	a	few	additional	directives	or
command-line	options	for	compatibility	with	other	assemblers	on	a

3/25/20 as.info 101

particular	platform.		Finally,	some	versions	of	'as'	support	special
pseudo-instructions	for	branch	optimization.

			This	chapter	discusses	most	of	these	differences,	though	it	does	not
include	details	on	any	machine's	instruction	set.		For	details	on	that
subject,	see	the	hardware	manufacturer's	manual.

*	Menu:

*	AArch64-Dependent:: AArch64	Dependent	Features
*	Alpha-Dependent:: Alpha	Dependent	Features
*	ARC-Dependent::															ARC	Dependent	Features
*	ARM-Dependent::															ARM	Dependent	Features
*	AVR-Dependent::															AVR	Dependent	Features
*	Blackfin-Dependent:: Blackfin	Dependent	Features
*	CR16-Dependent::														CR16	Dependent	Features
*	CRIS-Dependent::														CRIS	Dependent	Features
*	D10V-Dependent::														D10V	Dependent	Features
*	D30V-Dependent::														D30V	Dependent	Features
*	Epiphany-Dependent::										EPIPHANY	Dependent	Features
*	H8/300-Dependent::												Renesas	H8/300	Dependent	Features
*	HPPA-Dependent::														HPPA	Dependent	Features
*	ESA/390-Dependent::											IBM	ESA/390	Dependent	Features
*	i386-Dependent::														Intel	80386	and	AMD	x86-64	Dependent	Features
*	i860-Dependent::														Intel	80860	Dependent	Features
*	i960-Dependent::														Intel	80960	Dependent	Features
*	IA-64-Dependent::													Intel	IA-64	Dependent	Features
*	IP2K-Dependent::														IP2K	Dependent	Features
*	LM32-Dependent::														LM32	Dependent	Features
*	M32C-Dependent::														M32C	Dependent	Features
*	M32R-Dependent::														M32R	Dependent	Features
*	M68K-Dependent::														M680x0	Dependent	Features
*	M68HC11-Dependent::											M68HC11	and	68HC12	Dependent	Features
*	Meta-Dependent	::													Meta	Dependent	Features
*	MicroBlaze-Dependent:: MICROBLAZE	Dependent	Features
*	MIPS-Dependent::														MIPS	Dependent	Features
*	MMIX-Dependent::														MMIX	Dependent	Features
*	MSP430-Dependent:: MSP430	Dependent	Features
*	NDS32-Dependent::													Andes	NDS32	Dependent	Features
*	NiosII-Dependent::												Altera	Nios	II	Dependent	Features
*	NS32K-Dependent:: NS32K	Dependent	Features
*	PDP-11-Dependent::												PDP-11	Dependent	Features
*	PJ-Dependent::																picoJava	Dependent	Features
*	PPC-Dependent::															PowerPC	Dependent	Features
*	RL78-Dependent::														RL78	Dependent	Features
*	RISC-V-Dependent::												RISC-V	Dependent	Features
*	RX-Dependent::																RX	Dependent	Features
*	S/390-Dependent::													IBM	S/390	Dependent	Features
*	SCORE-Dependent::													SCORE	Dependent	Features
*	SH-Dependent::																Renesas	/	SuperH	SH	Dependent	Features
*	SH64-Dependent::														SuperH	SH64	Dependent	Features
*	Sparc-Dependent::													SPARC	Dependent	Features
*	TIC54X-Dependent::												TI	TMS320C54x	Dependent	Features
*	TIC6X-Dependent	::												TI	TMS320C6x	Dependent	Features
*	TILE-Gx-Dependent	::										Tilera	TILE-Gx	Dependent	Features
*	TILEPro-Dependent	::										Tilera	TILEPro	Dependent	Features
*	V850-Dependent::														V850	Dependent	Features
*	Vax-Dependent::															VAX	Dependent	Features
*	Visium-Dependent::												Visium	Dependent	Features

3/25/20 as.info 102

*	XGATE-Dependent::													XGATE	Features
*	XSTORMY16-Dependent::									XStormy16	Dependent	Features
*	Xtensa-Dependent::												Xtensa	Dependent	Features
*	Z80-Dependent::															Z80	Dependent	Features
*	Z8000-Dependent::													Z8000	Dependent	Features

�
File:	as.info,		Node:	AArch64-Dependent,		Next:	Alpha-Dependent,		Up:	Machine
Dependencies

9.1	AArch64	Dependent	Features
==============================

*	Menu:

*	AArch64	Options::														Options
*	AArch64	Extensions:: 	Extensions
*	AArch64	Syntax::															Syntax
*	AArch64	Floating	Point::							Floating	Point
*	AArch64	Directives::											AArch64	Machine	Directives
*	AArch64	Opcodes::														Opcodes
*	AArch64	Mapping	Symbols::						Mapping	Symbols

�
File:	as.info,		Node:	AArch64	Options,		Next:	AArch64	Extensions,		Up:	AArch64-
Dependent

9.1.1	Options

'-EB'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	being	encoded	for	a	big-endian	processor.

'-EL'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	being	encoded	for	a	little-endian	processor.

'-mabi=ABI'
					Specify	which	ABI	the	source	code	uses.		The	recognized	arguments
					are:	'ilp32'	and	'lp64',	which	decides	the	generated	object	file	in
					ELF32	and	ELF64	format	respectively.		The	default	is	'lp64'.

'-mcpu=PROCESSOR[+EXTENSION...]'
					This	option	specifies	the	target	processor.		The	assembler	will
					issue	an	error	message	if	an	attempt	is	made	to	assemble	an
					instruction	which	will	not	execute	on	the	target	processor.		The
					following	processor	names	are	recognized:	'cortex-a35',
					'cortex-a53',	'cortex-a57',	'cortex-a72',	'cortex-a73',
					'exynos-m1',	'falkor',	'qdf24xx',	'thunderx',	'vulcan',	'xgene1'
					and	'xgene2'.		The	special	name	'all'	may	be	used	to	allow	the
					assembler	to	accept	instructions	valid	for	any	supported	processor,
					including	all	optional	extensions.

					In	addition	to	the	basic	instruction	set,	the	assembler	can	be	told
					to	accept,	or	restrict,	various	extension	mnemonics	that	extend	the
					processor.		*Note	AArch64	Extensions::.

					If	some	implementations	of	a	particular	processor	can	have	an

3/25/20 as.info 103

					extension,	then	then	those	extensions	are	automatically	enabled.
					Consequently,	you	will	not	normally	have	to	specify	any	additional
					extensions.

'-march=ARCHITECTURE[+EXTENSION...]'
					This	option	specifies	the	target	architecture.		The	assembler	will
					issue	an	error	message	if	an	attempt	is	made	to	assemble	an
					instruction	which	will	not	execute	on	the	target	architecture.		The
					following	architecture	names	are	recognized:	'armv8-a',
					'armv8.1-a',	'armv8.2-a'	and	'armv8.3-a'.

					If	both	'-mcpu'	and	'-march'	are	specified,	the	assembler	will	use
					the	setting	for	'-mcpu'.		If	neither	are	specified,	the	assembler
					will	default	to	'-mcpu=all'.

					The	architecture	option	can	be	extended	with	the	same	instruction
					set	extension	options	as	the	'-mcpu'	option.		Unlike	'-mcpu',
					extensions	are	not	always	enabled	by	default,	*Note	AArch64
					Extensions::.

'-mverbose-error'
					This	option	enables	verbose	error	messages	for	AArch64	gas.		This
					option	is	enabled	by	default.

'-mno-verbose-error'
					This	option	disables	verbose	error	messages	in	AArch64	gas.

�
File:	as.info,		Node:	AArch64	Extensions,		Next:	AArch64	Syntax,		Prev:	AArch64
Options,		Up:	AArch64-Dependent

9.1.2	Architecture	Extensions

The	table	below	lists	the	permitted	architecture	extensions	that	are
supported	by	the	assembler	and	the	conditions	under	which	they	are
automatically	enabled.

			Multiple	extensions	may	be	specified,	separated	by	a	'+'.		Extension
mnemonics	may	also	be	removed	from	those	the	assembler	accepts.		This	is
done	by	prepending	'no'	to	the	option	that	adds	the	extension.
Extensions	that	are	removed	must	be	listed	after	all	extensions	that
have	been	added.

			Enabling	an	extension	that	requires	other	extensions	will
automatically	cause	those	extensions	to	be	enabled.		Similarly,
disabling	an	extension	that	is	required	by	other	extensions	will
automatically	cause	those	extensions	to	be	disabled.

Extension	Minimum						Enabled	by			Description
										Architecture	default
--
'compnum'	ARMv8.2-A				ARMv8.3-A				Enable	the	complex	number	SIMD
																							or	later					extensions.		This	implies	'fp16'	and
																																				'simd'.
'crc'					ARMv8-A						ARMv8.1-A				Enable	CRC	instructions.
																							or	later
'crypto'		ARMv8-A						No											Enable	cryptographic	extensions.
																																				This	implies	'fp'	and	'simd'.

3/25/20 as.info 104

'fp'						ARMv8-A						ARMv8-A	or			Enable	floating-point	extensions.
																							later
'fp16'				ARMv8.2-A				ARMv8.2-A				Enable	ARMv8.2	16-bit	floating-point
																							or	later					support.		This	implies	'fp'.
'lor'					ARMv8-A						ARMv8.1-A				Enable	Limited	Ordering	Regions
																							or	later					extensions.
'lse'					ARMv8-A						ARMv8.1-A				Enable	Large	System	extensions.
																							or	later
'pan'					ARMv8-A						ARMv8.1-A				Enable	Privileged	Access	Never
																							or	later					support.
'profile'	ARMv8.2-A				No											Enable	statistical	profiling
																																				extensions.
'ras'					ARMv8-A						ARMv8.2-A				Enable	the	Reliability,	Availability
																							or	later					and	Serviceability	extension.
'rdma'				ARMv8-A						ARMv8.1-A				Enable	ARMv8.1	Advanced	SIMD
																							or	later					extensions.		This	implies	'simd'.
'simd'				ARMv8-A						ARMv8-A	or			Enable	Advanced	SIMD	extensions.
																							later								This	implies	'fp'.
'sve'					ARMv8.2-A				No											Enable	the	Scalable	Vector
																																				Extensions.		This	implies	'fp16',
																																				'simd'	and	'compnum'.

�
File:	as.info,		Node:	AArch64	Syntax,		Next:	AArch64	Floating	Point,		Prev:	AArch64
Extensions,		Up:	AArch64-Dependent

9.1.3	Syntax

*	Menu:

*	AArch64-Chars::																Special	Characters
*	AArch64-Regs::																	Register	Names
*	AArch64-Relocations:: 					Relocations

�
File:	as.info,		Node:	AArch64-Chars,		Next:	AArch64-Regs,		Up:	AArch64	Syntax

9.1.3.1	Special	Characters
..........................

The	presence	of	a	'//'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.		If	a	'#'	appears	as	the	first
character	of	a	line,	the	whole	line	is	treated	as	a	comment.

			The	';'	character	can	be	used	instead	of	a	newline	to	separate
statements.

			The	'#'	can	be	optionally	used	to	indicate	immediate	operands.

�
File:	as.info,		Node:	AArch64-Regs,		Next:	AArch64-Relocations,		Prev:	AArch64-Chars,
Up:	AArch64	Syntax

9.1.3.2	Register	Names
......................

Please	refer	to	the	section	'4.4	Register	Names'	of	'ARMv8	Instruction
Set	Overview',	which	is	available	at	<http://infocenter.arm.com>.

3/25/20 as.info 105

�
File:	as.info,		Node:	AArch64-Relocations,		Prev:	AArch64-Regs,		Up:	AArch64	Syntax

9.1.3.3	Relocations
...................

Relocations	for	'MOVZ'	and	'MOVK'	instructions	can	be	generated	by
prefixing	the	label	with	'#:abs_g2:'	etc.		For	example	to	load	the
48-bit	absolute	address	of	FOO	into	x0:

													movz	x0,	#:abs_g2:foo //	bits	32-47,	overflow	check
													movk	x0,	#:abs_g1_nc:foo //	bits	16-31,	no	overflow	check
													movk	x0,	#:abs_g0_nc:foo //	bits		0-15,	no	overflow	check

			Relocations	for	'ADRP',	and	'ADD',	'LDR'	or	'STR'	instructions	can	be
generated	by	prefixing	the	label	with	':pg_hi21:'	and	'#:lo12:'
respectively.

			For	example	to	use	33-bit	(+/-4GB)	pc-relative	addressing	to	load	the
address	of	FOO	into	x0:

													adrp	x0,	:pg_hi21:foo
													add		x0,	x0,	#:lo12:foo

			Or	to	load	the	value	of	FOO	into	x0:

													adrp	x0,	:pg_hi21:foo
													ldr		x0,	[x0,	#:lo12:foo]

			Note	that	':pg_hi21:'	is	optional.

													adrp	x0,	foo

			is	equivalent	to

													adrp	x0,	:pg_hi21:foo

�
File:	as.info,		Node:	AArch64	Floating	Point,		Next:	AArch64	Directives,		Prev:
AArch64	Syntax,		Up:	AArch64-Dependent

9.1.4	Floating	Point

The	AArch64	architecture	uses	IEEE	floating-point	numbers.

�
File:	as.info,		Node:	AArch64	Directives,		Next:	AArch64	Opcodes,		Prev:	AArch64
Floating	Point,		Up:	AArch64-Dependent

9.1.5	AArch64	Machine	Directives

'.arch	NAME'
					Select	the	target	architecture.		Valid	values	for	NAME	are	the	same
					as	for	the	'-march'	commandline	option.

					Specifying	'.arch'	clears	any	previously	selected	architecture

3/25/20 as.info 106

					extensions.

'.arch_extension	NAME'
					Add	or	remove	an	architecture	extension	to	the	target	architecture.
					Valid	values	for	NAME	are	the	same	as	those	accepted	as
					architectural	extensions	by	the	'-mcpu'	commandline	option.

					'.arch_extension'	may	be	used	multiple	times	to	add	or	remove
					extensions	incrementally	to	the	architecture	being	compiled	for.

'.bss'
					This	directive	switches	to	the	'.bss'	section.

'.cpu	NAME'
					Set	the	target	processor.		Valid	values	for	NAME	are	the	same	as
					those	accepted	by	the	'-mcpu='	command	line	option.

'.dword	EXPRESSIONS'
					The	'.dword'	directive	produces	64	bit	values.

'.even'
					The	'.even'	directive	aligns	the	output	on	the	next	even	byte
					boundary.

'.inst	EXPRESSIONS'
					Inserts	the	expressions	into	the	output	as	if	they	were
					instructions,	rather	than	data.

'.ltorg'
					This	directive	causes	the	current	contents	of	the	literal	pool	to
					be	dumped	into	the	current	section	(which	is	assumed	to	be	the
					.text	section)	at	the	current	location	(aligned	to	a	word
					boundary).		GAS	maintains	a	separate	literal	pool	for	each	section
					and	each	sub-section.		The	'.ltorg'	directive	will	only	affect	the
					literal	pool	of	the	current	section	and	sub-section.		At	the	end	of
					assembly	all	remaining,	un-empty	literal	pools	will	automatically
					be	dumped.

					Note	-	older	versions	of	GAS	would	dump	the	current	literal	pool
					any	time	a	section	change	occurred.		This	is	no	longer	done,	since
					it	prevents	accurate	control	of	the	placement	of	literal	pools.

'.pool'
					This	is	a	synonym	for	.ltorg.

'NAME	.req	REGISTER	NAME'
					This	creates	an	alias	for	REGISTER	NAME	called	NAME.		For	example:

																		foo	.req	w0

'.tlsdescadd'
					Emits	a	TLSDESC_ADD	reloc	on	the	next	instruction.

'.tlsdesccall'
					Emits	a	TLSDESC_CALL	reloc	on	the	next	instruction.

'.tlsdescldr'
					Emits	a	TLSDESC_LDR	reloc	on	the	next	instruction.

3/25/20 as.info 107

'.unreq	ALIAS-NAME'
					This	undefines	a	register	alias	which	was	previously	defined	using
					the	'req'	directive.		For	example:

																		foo	.req	w0
																		.unreq	foo

					An	error	occurs	if	the	name	is	undefined.		Note	-	this	pseudo	op
					can	be	used	to	delete	builtin	in	register	name	aliases	(eg	'w0').
					This	should	only	be	done	if	it	is	really	necessary.

'.xword	EXPRESSIONS'
					The	'.xword'	directive	produces	64	bit	values.		This	is	the	same	as
					the	'.dword'	directive.

�
File:	as.info,		Node:	AArch64	Opcodes,		Next:	AArch64	Mapping	Symbols,		Prev:	AArch64
Directives,		Up:	AArch64-Dependent

9.1.6	Opcodes

GAS	implements	all	the	standard	AArch64	opcodes.		It	also	implements
several	pseudo	opcodes,	including	several	synthetic	load	instructions.

'LDR	='
												ldr	<register>	,	=<expression>

					The	constant	expression	will	be	placed	into	the	nearest	literal
					pool	(if	it	not	already	there)	and	a	PC-relative	LDR	instruction
					will	be	generated.

			For	more	information	on	the	AArch64	instruction	set	and	assembly
language	notation,	see	'ARMv8	Instruction	Set	Overview'	available	at
<http://infocenter.arm.com>.

�
File:	as.info,		Node:	AArch64	Mapping	Symbols,		Prev:	AArch64	Opcodes,		Up:	AArch64-
Dependent

9.1.7	Mapping	Symbols

The	AArch64	ELF	specification	requires	that	special	symbols	be	inserted
into	object	files	to	mark	certain	features:

'$x'
					At	the	start	of	a	region	of	code	containing	AArch64	instructions.

'$d'
					At	the	start	of	a	region	of	data.

�
File:	as.info,		Node:	Alpha-Dependent,		Next:	ARC-Dependent,		Prev:	AArch64-
Dependent,		Up:	Machine	Dependencies

9.2	Alpha	Dependent	Features
============================

3/25/20 as.info 108

*	Menu:

*	Alpha	Notes::																Notes
*	Alpha	Options::														Options
*	Alpha	Syntax::															Syntax
*	Alpha	Floating	Point::							Floating	Point
*	Alpha	Directives::											Alpha	Machine	Directives
*	Alpha	Opcodes::														Opcodes

�
File:	as.info,		Node:	Alpha	Notes,		Next:	Alpha	Options,		Up:	Alpha-Dependent

9.2.1	Notes

The	documentation	here	is	primarily	for	the	ELF	object	format.		'as'
also	supports	the	ECOFF	and	EVAX	formats,	but	features	specific	to	these
formats	are	not	yet	documented.

�
File:	as.info,		Node:	Alpha	Options,		Next:	Alpha	Syntax,		Prev:	Alpha	Notes,		Up:
Alpha-Dependent

9.2.2	Options

'-mCPU'
					This	option	specifies	the	target	processor.		If	an	attempt	is	made
					to	assemble	an	instruction	which	will	not	execute	on	the	target
					processor,	the	assembler	may	either	expand	the	instruction	as	a
					macro	or	issue	an	error	message.		This	option	is	equivalent	to	the
					'.arch'	directive.

					The	following	processor	names	are	recognized:	'21064',	'21064a',
					'21066',	'21068',	'21164',	'21164a',	'21164pc',	'21264',	'21264a',
					'21264b',	'ev4',	'ev5',	'lca45',	'ev5',	'ev56',	'pca56',	'ev6',
					'ev67',	'ev68'.		The	special	name	'all'	may	be	used	to	allow	the
					assembler	to	accept	instructions	valid	for	any	Alpha	processor.

					In	order	to	support	existing	practice	in	OSF/1	with	respect	to
					'.arch',	and	existing	practice	within	'MILO'	(the	Linux	ARC
					bootloader),	the	numbered	processor	names	(e.g.	21064)	enable	the
					processor-specific	PALcode	instructions,	while	the	"electro-vlasic"
					names	(e.g.	'ev4')	do	not.

'-mdebug'
'-no-mdebug'
					Enables	or	disables	the	generation	of	'.mdebug'	encapsulation	for
					stabs	directives	and	procedure	descriptors.		The	default	is	to
					automatically	enable	'.mdebug'	when	the	first	stabs	directive	is
					seen.

'-relax'
					This	option	forces	all	relocations	to	be	put	into	the	object	file,
					instead	of	saving	space	and	resolving	some	relocations	at	assembly
					time.		Note	that	this	option	does	not	propagate	all	symbol
					arithmetic	into	the	object	file,	because	not	all	symbol	arithmetic
					can	be	represented.		However,	the	option	can	still	be	useful	in
					specific	applications.

3/25/20 as.info 109

'-replace'
'-noreplace'
					Enables	or	disables	the	optimization	of	procedure	calls,	both	at
					assemblage	and	at	link	time.		These	options	are	only	available	for
					VMS	targets	and	'-replace'	is	the	default.		See	section	1.4.1	of
					the	OpenVMS	Linker	Utility	Manual.

'-g'
					This	option	is	used	when	the	compiler	generates	debug	information.
					When	'gcc'	is	using	'mips-tfile'	to	generate	debug	information	for
					ECOFF,	local	labels	must	be	passed	through	to	the	object	file.
					Otherwise	this	option	has	no	effect.

'-GSIZE'
					A	local	common	symbol	larger	than	SIZE	is	placed	in	'.bss',	while
					smaller	symbols	are	placed	in	'.sbss'.

'-F'
'-32addr'
					These	options	are	ignored	for	backward	compatibility.

�
File:	as.info,		Node:	Alpha	Syntax,		Next:	Alpha	Floating	Point,		Prev:	Alpha
Options,		Up:	Alpha-Dependent

9.2.3	Syntax

The	assembler	syntax	closely	follow	the	Alpha	Reference	Manual;
assembler	directives	and	general	syntax	closely	follow	the	OSF/1	and
OpenVMS	syntax,	with	a	few	differences	for	ELF.

*	Menu:

*	Alpha-Chars::																Special	Characters
*	Alpha-Regs::																	Register	Names
*	Alpha-Relocs::															Relocations

�
File:	as.info,		Node:	Alpha-Chars,		Next:	Alpha-Regs,		Up:	Alpha	Syntax

9.2.3.1	Special	Characters
..........................

'#'	is	the	line	comment	character.		Note	that	if	'#'	is	the	first
character	on	a	line	then	it	can	also	be	a	logical	line	number	directive
(*note	Comments::)	or	a	preprocessor	control	command	(*note
Preprocessing::).

			';'	can	be	used	instead	of	a	newline	to	separate	statements.

�
File:	as.info,		Node:	Alpha-Regs,		Next:	Alpha-Relocs,		Prev:	Alpha-Chars,		Up:	Alpha
Syntax

9.2.3.2	Register	Names
......................

3/25/20 as.info 110

The	32	integer	registers	are	referred	to	as	'$N'	or	'$rN'.		In	addition,
registers	15,	28,	29,	and	30	may	be	referred	to	by	the	symbols	'$fp',
'$at',	'$gp',	and	'$sp'	respectively.

			The	32	floating-point	registers	are	referred	to	as	'$fN'.

�
File:	as.info,		Node:	Alpha-Relocs,		Prev:	Alpha-Regs,		Up:	Alpha	Syntax

9.2.3.3	Relocations
...................

Some	of	these	relocations	are	available	for	ECOFF,	but	mostly	only	for
ELF.	They	are	modeled	after	the	relocation	format	introduced	in	Digital
Unix	4.0,	but	there	are	additions.

			The	format	is	'!TAG'	or	'!TAG!NUMBER'	where	TAG	is	the	name	of	the
relocation.		In	some	cases	NUMBER	is	used	to	relate	specific
instructions.

			The	relocation	is	placed	at	the	end	of	the	instruction	like	so:

					ldah		$0,a($29)				!gprelhigh
					lda			$0,a($0)					!gprellow
					ldq			$1,b($29)				!literal!100
					ldl			$2,0($1)					!lituse_base!100

'!literal'
'!literal!N'
					Used	with	an	'ldq'	instruction	to	load	the	address	of	a	symbol	from
					the	GOT.

					A	sequence	number	N	is	optional,	and	if	present	is	used	to	pair
					'lituse'	relocations	with	this	'literal'	relocation.		The	'lituse'
					relocations	are	used	by	the	linker	to	optimize	the	code	based	on
					the	final	location	of	the	symbol.

					Note	that	these	optimizations	are	dependent	on	the	data	flow	of	the
					program.		Therefore,	if	_any_	'lituse'	is	paired	with	a	'literal'
					relocation,	then	_all_	uses	of	the	register	set	by	the	'literal'
					instruction	must	also	be	marked	with	'lituse'	relocations.		This	is
					because	the	original	'literal'	instruction	may	be	deleted	or
					transformed	into	another	instruction.

					Also	note	that	there	may	be	a	one-to-many	relationship	between
					'literal'	and	'lituse',	but	not	a	many-to-one.		That	is,	if	there
					are	two	code	paths	that	load	up	the	same	address	and	feed	the	value
					to	a	single	use,	then	the	use	may	not	use	a	'lituse'	relocation.

'!lituse_base!N'
					Used	with	any	memory	format	instruction	(e.g.	'ldl')	to	indicate
					that	the	literal	is	used	for	an	address	load.		The	offset	field	of
					the	instruction	must	be	zero.		During	relaxation,	the	code	may	be
					altered	to	use	a	gp-relative	load.

'!lituse_jsr!N'
					Used	with	a	register	branch	format	instruction	(e.g.	'jsr')	to
					indicate	that	the	literal	is	used	for	a	call.		During	relaxation,
					the	code	may	be	altered	to	use	a	direct	branch	(e.g.	'bsr').

3/25/20 as.info 111

'!lituse_jsrdirect!N'
					Similar	to	'lituse_jsr',	but	also	that	this	call	cannot	be	vectored
					through	a	PLT	entry.		This	is	useful	for	functions	with	special
					calling	conventions	which	do	not	allow	the	normal	call-clobbered
					registers	to	be	clobbered.

'!lituse_bytoff!N'
					Used	with	a	byte	mask	instruction	(e.g.	'extbl')	to	indicate	that
					only	the	low	3	bits	of	the	address	are	relevant.		During
					relaxation,	the	code	may	be	altered	to	use	an	immediate	instead	of
					a	register	shift.

'!lituse_addr!N'
					Used	with	any	other	instruction	to	indicate	that	the	original
					address	is	in	fact	used,	and	the	original	'ldq'	instruction	may	not
					be	altered	or	deleted.		This	is	useful	in	conjunction	with
					'lituse_jsr'	to	test	whether	a	weak	symbol	is	defined.

										ldq		$27,foo($29)			!literal!1
										beq		$27,is_undef			!lituse_addr!1
										jsr		$26,($27),foo		!lituse_jsr!1

'!lituse_tlsgd!N'
					Used	with	a	register	branch	format	instruction	to	indicate	that	the
					literal	is	the	call	to	'__tls_get_addr'	used	to	compute	the	address
					of	the	thread-local	storage	variable	whose	descriptor	was	loaded
					with	'!tlsgd!N'.

'!lituse_tlsldm!N'
					Used	with	a	register	branch	format	instruction	to	indicate	that	the
					literal	is	the	call	to	'__tls_get_addr'	used	to	compute	the	address
					of	the	base	of	the	thread-local	storage	block	for	the	current
					module.		The	descriptor	for	the	module	must	have	been	loaded	with
					'!tlsldm!N'.

'!gpdisp!N'
					Used	with	'ldah'	and	'lda'	to	load	the	GP	from	the	current	address,
					a-la	the	'ldgp'	macro.		The	source	register	for	the	'ldah'
					instruction	must	contain	the	address	of	the	'ldah'	instruction.
					There	must	be	exactly	one	'lda'	instruction	paired	with	the	'ldah'
					instruction,	though	it	may	appear	anywhere	in	the	instruction
					stream.		The	immediate	operands	must	be	zero.

										bsr		$26,foo
										ldah	$29,0($26)					!gpdisp!1
										lda		$29,0($29)					!gpdisp!1

'!gprelhigh'
					Used	with	an	'ldah'	instruction	to	add	the	high	16	bits	of	a	32-bit
					displacement	from	the	GP.

'!gprellow'
					Used	with	any	memory	format	instruction	to	add	the	low	16	bits	of	a
					32-bit	displacement	from	the	GP.

'!gprel'
					Used	with	any	memory	format	instruction	to	add	a	16-bit
					displacement	from	the	GP.

3/25/20 as.info 112

'!samegp'
					Used	with	any	branch	format	instruction	to	skip	the	GP	load	at	the
					target	address.		The	referenced	symbol	must	have	the	same	GP	as	the
					source	object	file,	and	it	must	be	declared	to	either	not	use	'$27'
					or	perform	a	standard	GP	load	in	the	first	two	instructions	via	the
					'.prologue'	directive.

'!tlsgd'
'!tlsgd!N'
					Used	with	an	'lda'	instruction	to	load	the	address	of	a	TLS
					descriptor	for	a	symbol	in	the	GOT.

					The	sequence	number	N	is	optional,	and	if	present	it	used	to	pair
					the	descriptor	load	with	both	the	'literal'	loading	the	address	of
					the	'__tls_get_addr'	function	and	the	'lituse_tlsgd'	marking	the
					call	to	that	function.

					For	proper	relaxation,	both	the	'tlsgd',	'literal'	and	'lituse'
					relocations	must	be	in	the	same	extended	basic	block.		That	is,	the
					relocation	with	the	lowest	address	must	be	executed	first	at
					runtime.

'!tlsldm'
'!tlsldm!N'
					Used	with	an	'lda'	instruction	to	load	the	address	of	a	TLS
					descriptor	for	the	current	module	in	the	GOT.

					Similar	in	other	respects	to	'tlsgd'.

'!gotdtprel'
					Used	with	an	'ldq'	instruction	to	load	the	offset	of	the	TLS	symbol
					within	its	module's	thread-local	storage	block.		Also	known	as	the
					dynamic	thread	pointer	offset	or	dtp-relative	offset.

'!dtprelhi'
'!dtprello'
'!dtprel'
					Like	'gprel'	relocations	except	they	compute	dtp-relative	offsets.

'!gottprel'
					Used	with	an	'ldq'	instruction	to	load	the	offset	of	the	TLS	symbol
					from	the	thread	pointer.		Also	known	as	the	tp-relative	offset.

'!tprelhi'
'!tprello'
'!tprel'
					Like	'gprel'	relocations	except	they	compute	tp-relative	offsets.

�
File:	as.info,		Node:	Alpha	Floating	Point,		Next:	Alpha	Directives,		Prev:	Alpha
Syntax,		Up:	Alpha-Dependent

9.2.4	Floating	Point

The	Alpha	family	uses	both	IEEE	and	VAX	floating-point	numbers.

�

3/25/20 as.info 113

File:	as.info,		Node:	Alpha	Directives,		Next:	Alpha	Opcodes,		Prev:	Alpha	Floating
Point,		Up:	Alpha-Dependent

9.2.5	Alpha	Assembler	Directives

'as'	for	the	Alpha	supports	many	additional	directives	for	compatibility
with	the	native	assembler.		This	section	describes	them	only	briefly.

			These	are	the	additional	directives	in	'as'	for	the	Alpha:

'.arch	CPU'
					Specifies	the	target	processor.		This	is	equivalent	to	the	'-mCPU'
					command-line	option.		*Note	Options:	Alpha	Options,	for	a	list	of
					values	for	CPU.

'.ent	FUNCTION[,	N]'
					Mark	the	beginning	of	FUNCTION.		An	optional	number	may	follow	for
					compatibility	with	the	OSF/1	assembler,	but	is	ignored.		When
					generating	'.mdebug'	information,	this	will	create	a	procedure
					descriptor	for	the	function.		In	ELF,	it	will	mark	the	symbol	as	a
					function	a-la	the	generic	'.type'	directive.

'.end	FUNCTION'
					Mark	the	end	of	FUNCTION.		In	ELF,	it	will	set	the	size	of	the
					symbol	a-la	the	generic	'.size'	directive.

'.mask	MASK,	OFFSET'
					Indicate	which	of	the	integer	registers	are	saved	in	the	current
					function's	stack	frame.		MASK	is	interpreted	a	bit	mask	in	which
					bit	N	set	indicates	that	register	N	is	saved.		The	registers	are
					saved	in	a	block	located	OFFSET	bytes	from	the	"canonical	frame
					address"	(CFA)	which	is	the	value	of	the	stack	pointer	on	entry	to
					the	function.		The	registers	are	saved	sequentially,	except	that
					the	return	address	register	(normally	'$26')	is	saved	first.

					This	and	the	other	directives	that	describe	the	stack	frame	are
					currently	only	used	when	generating	'.mdebug'	information.		They
					may	in	the	future	be	used	to	generate	DWARF2	'.debug_frame'	unwind
					information	for	hand	written	assembly.

'.fmask	MASK,	OFFSET'
					Indicate	which	of	the	floating-point	registers	are	saved	in	the
					current	stack	frame.		The	MASK	and	OFFSET	parameters	are
					interpreted	as	with	'.mask'.

'.frame	FRAMEREG,	FRAMEOFFSET,	RETREG[,	ARGOFFSET]'
					Describes	the	shape	of	the	stack	frame.		The	frame	pointer	in	use
					is	FRAMEREG;	normally	this	is	either	'$fp'	or	'$sp'.		The	frame
					pointer	is	FRAMEOFFSET	bytes	below	the	CFA.	The	return	address	is
					initially	located	in	RETREG	until	it	is	saved	as	indicated	in
					'.mask'.		For	compatibility	with	OSF/1	an	optional	ARGOFFSET
					parameter	is	accepted	and	ignored.		It	is	believed	to	indicate	the
					offset	from	the	CFA	to	the	saved	argument	registers.

'.prologue	N'
					Indicate	that	the	stack	frame	is	set	up	and	all	registers	have	been
					spilled.		The	argument	N	indicates	whether	and	how	the	function
					uses	the	incoming	"procedure	vector"	(the	address	of	the	called

3/25/20 as.info 114

					function)	in	'$27'.		0	indicates	that	'$27'	is	not	used;	1
					indicates	that	the	first	two	instructions	of	the	function	use	'$27'
					to	perform	a	load	of	the	GP	register;	2	indicates	that	'$27'	is
					used	in	some	non-standard	way	and	so	the	linker	cannot	elide	the
					load	of	the	procedure	vector	during	relaxation.

'.usepv	FUNCTION,	WHICH'
					Used	to	indicate	the	use	of	the	'$27'	register,	similar	to
					'.prologue',	but	without	the	other	semantics	of	needing	to	be
					inside	an	open	'.ent'/'.end'	block.

					The	WHICH	argument	should	be	either	'no',	indicating	that	'$27'	is
					not	used,	or	'std',	indicating	that	the	first	two	instructions	of
					the	function	perform	a	GP	load.

					One	might	use	this	directive	instead	of	'.prologue'	if	you	are	also
					using	dwarf2	CFI	directives.

'.gprel32	EXPRESSION'
					Computes	the	difference	between	the	address	in	EXPRESSION	and	the
					GP	for	the	current	object	file,	and	stores	it	in	4	bytes.		In
					addition	to	being	smaller	than	a	full	8	byte	address,	this	also
					does	not	require	a	dynamic	relocation	when	used	in	a	shared
					library.

'.t_floating	EXPRESSION'
					Stores	EXPRESSION	as	an	IEEE	double	precision	value.

'.s_floating	EXPRESSION'
					Stores	EXPRESSION	as	an	IEEE	single	precision	value.

'.f_floating	EXPRESSION'
					Stores	EXPRESSION	as	a	VAX	F	format	value.

'.g_floating	EXPRESSION'
					Stores	EXPRESSION	as	a	VAX	G	format	value.

'.d_floating	EXPRESSION'
					Stores	EXPRESSION	as	a	VAX	D	format	value.

'.set	FEATURE'
					Enables	or	disables	various	assembler	features.		Using	the	positive
					name	of	the	feature	enables	while	using	'noFEATURE'	disables.

					'at'
										Indicates	that	macro	expansions	may	clobber	the	"assembler
										temporary"	('$at'	or	'$28')	register.		Some	macros	may	not	be
										expanded	without	this	and	will	generate	an	error	message	if
										'noat'	is	in	effect.		When	'at'	is	in	effect,	a	warning	will
										be	generated	if	'$at'	is	used	by	the	programmer.

					'macro'
										Enables	the	expansion	of	macro	instructions.		Note	that
										variants	of	real	instructions,	such	as	'br	label'	vs	'br
										$31,label'	are	considered	alternate	forms	and	not	macros.

					'move'
					'reorder'
					'volatile'

3/25/20 as.info 115

										These	control	whether	and	how	the	assembler	may	re-order
										instructions.		Accepted	for	compatibility	with	the	OSF/1
										assembler,	but	'as'	does	not	do	instruction	scheduling,	so
										these	features	are	ignored.

			The	following	directives	are	recognized	for	compatibility	with	the
OSF/1	assembler	but	are	ignored.

					.proc											.aproc
					.reguse									.livereg
					.option									.aent
					.ugen											.eflag
					.alias										.noalias

�
File:	as.info,		Node:	Alpha	Opcodes,		Prev:	Alpha	Directives,		Up:	Alpha-Dependent

9.2.6	Opcodes

For	detailed	information	on	the	Alpha	machine	instruction	set,	see	the
Alpha	Architecture	Handbook
(ftp://ftp.digital.com/pub/Digital/info/semiconductor/literature/alphaahb.pdf).

�
File:	as.info,		Node:	ARC-Dependent,		Next:	ARM-Dependent,		Prev:	Alpha-Dependent,
Up:	Machine	Dependencies

9.3	ARC	Dependent	Features
==========================

*	Menu:

*	ARC	Options::														Options
*	ARC	Syntax::															Syntax
*	ARC	Directives::											ARC	Machine	Directives
*	ARC	Modifiers::												ARC	Assembler	Modifiers
*	ARC	Symbols::														ARC	Pre-defined	Symbols
*	ARC	Opcodes::														Opcodes

�
File:	as.info,		Node:	ARC	Options,		Next:	ARC	Syntax,		Up:	ARC-Dependent

9.3.1	Options

The	following	options	control	the	type	of	CPU	for	which	code	is
assembled,	and	generic	constraints	on	the	code	generated:

'-mcpu=CPU'
					Set	architecture	type	and	register	usage	for	CPU.		There	are	also
					shortcut	alias	options	available	for	backward	compatibility	and
					convenience.		Supported	values	for	CPU	are

					'arc600'
										Assemble	for	ARC	600.		Aliases:	'-mA6',	'-mARC600'.

					'arc600_norm'
										Assemble	for	ARC	600	with	norm	instructions.

3/25/20 as.info 116

					'arc600_mul64'
										Assemble	for	ARC	600	with	mul64	instructions.

					'arc600_mul32x16'
										Assemble	for	ARC	600	with	mul32x16	instructions.

					'arc601'
										Assemble	for	ARC	601.		Alias:	'-mARC601'.

					'arc601_norm'
										Assemble	for	ARC	601	with	norm	instructions.

					'arc601_mul64'
										Assemble	for	ARC	601	with	mul64	instructions.

					'arc601_mul32x16'
										Assemble	for	ARC	601	with	mul32x16	instructions.

					'arc700'
										Assemble	for	ARC	700.		Aliases:	'-mA7',	'-mARC700'.

					'arcem'
										Assemble	for	ARC	EM.	Aliases:	'-mEM'

					'em'
										Assemble	for	ARC	EM,	identical	as	arcem	variant.

					'em4'
										Assemble	for	ARC	EM	with	code-density	instructions.

					'em4_dmips'
										Assemble	for	ARC	EM	with	code-density	instructions.

					'em4_fpus'
										Assemble	for	ARC	EM	with	code-density	instructions.

					'em4_fpuda'
										Assemble	for	ARC	EM	with	code-density,	and	double-precision
										assist	instructions.

					'quarkse_em'
										Assemble	for	QuarkSE-EM	cpu.

					'archs'
										Assemble	for	ARC	HS.	Aliases:	'-mHS',	'-mav2hs'.

					'hs'
										Assemble	for	ARC	HS.

					'hs34'
										Assemble	for	ARC	HS34.

					'hs38'
										Assemble	for	ARC	HS38.

					'hs38_linux'
										Assemble	for	ARC	HS38	with	floating	point	support	on.

3/25/20 as.info 117

					'nps400'
										Assemble	for	ARC	700	with	NPS-400	extended	instructions.

					Note:	the	'.cpu'	directive	(*note	ARC	Directives::)	can	to	be	used
					to	select	a	core	variant	from	within	assembly	code.

'-EB'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	being	encoded	for	a	big-endian	processor.

'-EL'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	being	encoded	for	a	little-endian	processor	-
					this	is	the	default.

'-mcode-density'
					This	option	turns	on	Code	Density	instructions.		Only	valid	for	ARC
					EM	processors.

'-mrelax'
					Enable	support	for	assembly-time	relaxation.		The	assembler	will
					replace	a	longer	version	of	an	instruction	with	a	shorter	one,
					whenever	it	is	possible.

'-mnps400'
					Enable	support	for	NPS-400	extended	instructions.

'-mspfp'
					Enable	support	for	single-precision	floating	point	instructions.

'-mdpfp'
					Enable	support	for	double-precision	floating	point	instructions.

'-mfpuda'
					Enable	support	for	double-precision	assist	floating	point
					instructions.		Only	valid	for	ARC	EM	processors.

�
File:	as.info,		Node:	ARC	Syntax,		Next:	ARC	Directives,		Prev:	ARC	Options,		Up:
ARC-Dependent

9.3.2	Syntax

*	Menu:

*	ARC-Chars::																Special	Characters
*	ARC-Regs::																	Register	Names

�
File:	as.info,		Node:	ARC-Chars,		Next:	ARC-Regs,		Up:	ARC	Syntax

9.3.2.1	Special	Characters
..........................

'%'
					A	register	name	can	optionally	be	prefixed	by	a	'%'	character.		So
					register	'%r0'	is	equivalent	to	'r0'	in	the	assembly	code.

3/25/20 as.info 118

'#'
					The	presence	of	a	'#'	character	within	a	line	(but	not	at	the	start
					of	a	line)	indicates	the	start	of	a	comment	that	extends	to	the	end
					of	the	current	line.

					Note:	if	a	line	starts	with	a	'#'	character	then	it	can	also	be	a
					logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
					control	command	(*note	Preprocessing::).

'@'
					Prefixing	an	operand	with	an	'@'	specifies	that	the	operand	is	a
					symbol	and	not	a	register.		This	is	how	the	assembler	disambiguates
					the	use	of	an	ARC	register	name	as	a	symbol.		So	the	instruction
										mov	r0,	@r0
					moves	the	address	of	symbol	'r0'	into	register	'r0'.

'`'
					The	'`'	(backtick)	character	is	used	to	separate	statements	on	a
					single	line.

'-'
					Used	as	a	separator	to	obtain	a	sequence	of	commands	from	a	C
					preprocessor	macro.

�
File:	as.info,		Node:	ARC-Regs,		Prev:	ARC-Chars,		Up:	ARC	Syntax

9.3.2.2	Register	Names
......................

The	ARC	assembler	uses	the	following	register	names	for	its	core
registers:

'r0-r31'
					The	core	general	registers.		Registers	'r26'	through	'r31'	have
					special	functions,	and	are	usually	referred	to	by	those	synonyms.

'gp'
					The	global	pointer	and	a	synonym	for	'r26'.

'fp'
					The	frame	pointer	and	a	synonym	for	'r27'.

'sp'
					The	stack	pointer	and	a	synonym	for	'r28'.

'ilink1'
					For	ARC	600	and	ARC	700,	the	level	1	interrupt	link	register	and	a
					synonym	for	'r29'.		Not	supported	for	ARCv2.

'ilink'
					For	ARCv2,	the	interrupt	link	register	and	a	synonym	for	'r29'.
					Not	supported	for	ARC	600	and	ARC	700.

'ilink2'
					For	ARC	600	and	ARC	700,	the	level	2	interrupt	link	register	and	a
					synonym	for	'r30'.		Not	supported	for	ARC	v2.

'blink'

3/25/20 as.info 119

					The	link	register	and	a	synonym	for	'r31'.

'r32-r59'
					The	extension	core	registers.

'lp_count'
					The	loop	count	register.

'pcl'
					The	word	aligned	program	counter.

			In	addition	the	ARC	processor	has	a	large	number	of	_auxiliary
registers_.		The	precise	set	depends	on	the	extensions	being	supported,
but	the	following	baseline	set	are	always	defined:

'identity'
					Processor	Identification	register.		Auxiliary	register	address	0x4.

'pc'
					Program	Counter.		Auxiliary	register	address	0x6.

'status32'
					Status	register.		Auxiliary	register	address	0x0a.

'bta'
					Branch	Target	Address.		Auxiliary	register	address	0x412.

'ecr'
					Exception	Cause	Register.		Auxiliary	register	address	0x403.

'int_vector_base'
					Interrupt	Vector	Base	address.		Auxiliary	register	address	0x25.

'status32_p0'
					Stored	STATUS32	register	on	entry	to	level	P0	interrupts.
					Auxiliary	register	address	0xb.

'aux_user_sp'
					Saved	User	Stack	Pointer.		Auxiliary	register	address	0xd.

'eret'
					Exception	Return	Address.		Auxiliary	register	address	0x400.

'erbta'
					BTA	saved	on	exception	entry.		Auxiliary	register	address	0x401.

'erstatus'
					STATUS32	saved	on	exception.		Auxiliary	register	address	0x402.

'bcr_ver'
					Build	Configuration	Registers	Version.		Auxiliary	register	address
					0x60.

'bta_link_build'
					Build	configuration	for:	BTA	Registers.		Auxiliary	register	address
					0x63.

'vecbase_ac_build'
					Build	configuration	for:	Interrupts.		Auxiliary	register	address

3/25/20 as.info 120

					0x68.

'rf_build'
					Build	configuration	for:	Core	Registers.		Auxiliary	register
					address	0x6e.

'dccm_build'
					DCCM	RAM	Configuration	Register.		Auxiliary	register	address	0xc1.

			Additional	auxiliary	register	names	are	defined	according	to	the
processor	architecture	version	and	extensions	selected	by	the	options.

�
File:	as.info,		Node:	ARC	Directives,		Next:	ARC	Modifiers,		Prev:	ARC	Syntax,		Up:
ARC-Dependent

9.3.3	ARC	Machine	Directives

The	ARC	version	of	'as'	supports	the	following	additional	machine
directives:

'.lcomm	SYMBOL,	LENGTH[,	ALIGNMENT]'
					Reserve	LENGTH	(an	absolute	expression)	bytes	for	a	local	common
					denoted	by	SYMBOL.		The	section	and	value	of	SYMBOL	are	those	of
					the	new	local	common.		The	addresses	are	allocated	in	the	bss
					section,	so	that	at	run-time	the	bytes	start	off	zeroed.		Since
					SYMBOL	is	not	declared	global,	it	is	normally	not	visible	to	'ld'.
					The	optional	third	parameter,	ALIGNMENT,	specifies	the	desired
					alignment	of	the	symbol	in	the	bss	section,	specified	as	a	byte
					boundary	(for	example,	an	alignment	of	16	means	that	the	least
					significant	4	bits	of	the	address	should	be	zero).		The	alignment
					must	be	an	absolute	expression,	and	it	must	be	a	power	of	two.		If
					no	alignment	is	specified,	as	will	set	the	alignment	to	the	largest
					power	of	two	less	than	or	equal	to	the	size	of	the	symbol,	up	to	a
					maximum	of	16.

'.lcommon	SYMBOL,	LENGTH[,	ALIGNMENT]'
					The	same	as	'lcomm'	directive.

'.cpu	CPU'
					The	'.cpu'	directive	must	be	followed	by	the	desired	core	version.
					Permitted	values	for	CPU	are:
					'ARC600'
										Assemble	for	the	ARC600	instruction	set.

					'arc600_norm'
										Assemble	for	ARC	600	with	norm	instructions.

					'arc600_mul64'
										Assemble	for	ARC	600	with	mul64	instructions.

					'arc600_mul32x16'
										Assemble	for	ARC	600	with	mul32x16	instructions.

					'arc601'
										Assemble	for	ARC	601	instruction	set.

					'arc601_norm'

3/25/20 as.info 121

										Assemble	for	ARC	601	with	norm	instructions.

					'arc601_mul64'
										Assemble	for	ARC	601	with	mul64	instructions.

					'arc601_mul32x16'
										Assemble	for	ARC	601	with	mul32x16	instructions.

					'ARC700'
										Assemble	for	the	ARC700	instruction	set.

					'NPS400'
										Assemble	for	the	NPS400	instruction	set.

					'EM'
										Assemble	for	the	ARC	EM	instruction	set.

					'arcem'
										Assemble	for	ARC	EM	instruction	set

					'em4'
										Assemble	for	ARC	EM	with	code-density	instructions.

					'em4_dmips'
										Assemble	for	ARC	EM	with	code-density	instructions.

					'em4_fpus'
										Assemble	for	ARC	EM	with	code-density	instructions.

					'em4_fpuda'
										Assemble	for	ARC	EM	with	code-density,	and	double-precision
										assist	instructions.

					'quarkse_em'
										Assemble	for	QuarkSE-EM	instruction	set.

					'HS'
										Assemble	for	the	ARC	HS	instruction	set.

					'archs'
										Assemble	for	ARC	HS	instruction	set.

					'hs'
										Assemble	for	ARC	HS	instruction	set.

					'hs34'
										Assemble	for	ARC	HS34	instruction	set.

					'hs38'
										Assemble	for	ARC	HS38	instruction	set.

					'hs38_linux'
										Assemble	for	ARC	HS38	with	floating	point	support	on.

					Note:	the	'.cpu'	directive	overrides	the	command	line	option
					'-mcpu=CPU';	a	warning	is	emitted	when	the	version	is	not
					consistent	between	the	two.

'.extAuxRegister	NAME,	ADDR,	MODE'

3/25/20 as.info 122

					Auxiliary	registers	can	be	defined	in	the	assembler	source	code	by
					using	this	directive.		The	first	parameter,	NAME,	is	the	name	of
					the	new	auxiliary	register.		The	second	parameter,	ADDR,	is	address
					the	of	the	auxiliary	register.		The	third	parameter,	MODE,
					specifies	whether	the	register	is	readable	and/or	writable	and	is
					one	of:
					'r'
										Read	only;

					'w'
										Write	only;

					'r|w'
										Read	and	write.

					For	example:
										 .extAuxRegister	mulhi,	0x12,	w
					specifies	a	write	only	extension	auxiliary	register,	MULHI	at
					address	0x12.

'.extCondCode	SUFFIX,	VAL'
					ARC	supports	extensible	condition	codes.		This	directive	defines	a
					new	condition	code,	to	be	known	by	the	suffix,	SUFFIX	and	will
					depend	on	the	value,	VAL	in	the	condition	code.

					For	example:
										 .extCondCode	is_busy,0x14
										 add.is_busy		r1,r2,r3
					will	only	execute	the	'add'	instruction	if	the	condition	code	value
					is	0x14.

'.extCoreRegister	NAME,	REGNUM,	MODE,	SHORTCUT'
					Specifies	an	extension	core	register	named	NAME	as	a	synonym	for
					the	register	numbered	REGNUM.		The	register	number	must	be	between
					32	and	59.		The	third	argument,	MODE,	indicates	whether	the
					register	is	readable	and/or	writable	and	is	one	of:
					'r'
										Read	only;

					'w'
										Write	only;

					'r|w'
										Read	and	write.

					The	final	parameter,	SHORTCUT	indicates	whether	the	register	has	a
					short	cut	in	the	pipeline.		The	valid	values	are:
					'can_shortcut'
										The	register	has	a	short	cut	in	the	pipeline;

					'cannot_shortcut'
										The	register	does	not	have	a	short	cut	in	the	pipeline.

					For	example:
										 .extCoreRegister	mlo,	57,	r	,	can_shortcut
					defines	a	read	only	extension	core	register,	'mlo',	which	is
					register	57,	and	can	short	cut	the	pipeline.

'.extInstruction	NAME,	OPCODE,	SUBOPCODE,	SUFFIXCLASS,	SYNTAXCLASS'

3/25/20 as.info 123

					ARC	allows	the	user	to	specify	extension	instructions.		These
					extension	instructions	are	not	macros;	the	assembler	creates
					encodings	for	use	of	these	instructions	according	to	the
					specification	by	the	user.

					The	first	argument,	NAME,	gives	the	name	of	the	instruction.

					The	second	argument,	OPCODE,	is	the	opcode	to	be	used	(bits	31:27
					in	the	encoding).

					The	third	argument,	SUBOPCODE,	is	the	sub-opcode	to	be	used,	but
					the	correct	value	also	depends	on	the	fifth	argument,	SYNTAXCLASS

					The	fourth	argument,	SUFFIXCLASS,	determines	the	kinds	of	suffixes
					to	be	allowed.		Valid	values	are:
					'SUFFIX_NONE'
										No	suffixes	are	permitted;

					'SUFFIX_COND'
										Conditional	suffixes	are	permitted;

					'SUFFIX_FLAG'
										Flag	setting	suffixes	are	permitted.

					'SUFFIX_COND|SUFFIX_FLAG'
										Both	conditional	and	flag	setting	suffices	are	permitted.

					The	fifth	and	final	argument,	SYNTAXCLASS,	determines	the	syntax
					class	for	the	instruction.		It	can	have	the	following	values:
					'SYNTAX_2OP'
										Two	Operand	Instruction;

					'SYNTAX_3OP'
										Three	Operand	Instruction.

					'SYNTAX_1OP'
										One	Operand	Instruction.

					'SYNTAX_NOP'
										No	Operand	Instruction.

					The	syntax	class	may	be	followed	by	'|'	and	one	of	the	following
					modifiers.

					'OP1_MUST_BE_IMM'
										Modifies	syntax	class	'SYNTAX_3OP',	specifying	that	the	first
										operand	of	a	three-operand	instruction	must	be	an	immediate
										(i.e.,	the	result	is	discarded).		This	is	usually	used	to	set
										the	flags	using	specific	instructions	and	not	retain	results.

					'OP1_IMM_IMPLIED'
										Modifies	syntax	class	'SYNTAX_20P',	specifying	that	there	is
										an	implied	immediate	destination	operand	which	does	not	appear
										in	the	syntax.

										For	example,	if	the	source	code	contains	an	instruction	like:
															inst	r1,r2
										the	first	argument	is	an	implied	immediate	(that	is,	the
										result	is	discarded).		This	is	the	same	as	though	the	source

3/25/20 as.info 124

										code	were:	inst	0,r1,r2.

					For	example,	defining	a	64-bit	multiplier	with	immediate	operands:
										 .extInstruction		mp64,	0x07,	0x2d,	SUFFIX_COND|SUFFIX_FLAG,
										 	SYNTAX_3OP|OP1_MUST_BE_IMM
					which	specifies	an	extension	instruction	named	'mp64'	with	3
					operands.		It	sets	the	flags	and	can	be	used	with	a	condition	code,
					for	which	the	first	operand	is	an	immediate,	i.e.		equivalent	to
					discarding	the	result	of	the	operation.

					A	two	operands	instruction	variant	would	be:
										 .extInstruction	mul64,	0x07,	0x2d,	SUFFIX_COND,
										 SYNTAX_2OP|OP1_IMM_IMPLIED
					which	describes	a	two	operand	instruction	with	an	implicit	first
					immediate	operand.		The	result	of	this	operation	would	be
					discarded.

�
File:	as.info,		Node:	ARC	Modifiers,		Next:	ARC	Symbols,		Prev:	ARC	Directives,		Up:
ARC-Dependent

9.3.4	ARC	Assembler	Modifiers

The	following	additional	assembler	modifiers	have	been	added	for
position-independent	code.		These	modifiers	are	available	only	with	the
ARC	700	and	above	processors	and	generate	relocation	entries,	which	are
interpreted	by	the	linker	as	follows:

'@pcl(SYMBOL)'
					Relative	distance	of	SYMBOL's	from	the	current	program	counter
					location.

'@gotpc(SYMBOL)'
					Relative	distance	of	SYMBOL's	Global	Offset	Table	entry	from	the
					current	program	counter	location.

'@gotoff(SYMBOL)'
					Distance	of	SYMBOL	from	the	base	of	the	Global	Offset	Table.

'@plt(SYMBOL)'
					Distance	of	SYMBOL's	Procedure	Linkage	Table	entry	from	the	current
					program	counter.		This	is	valid	only	with	branch	and	link
					instructions	and	PC-relative	calls.

'@sda(SYMBOL)'
					Relative	distance	of	SYMBOL	from	the	base	of	the	Small	Data
					Pointer.

�
File:	as.info,		Node:	ARC	Symbols,		Next:	ARC	Opcodes,		Prev:	ARC	Modifiers,		Up:
ARC-Dependent

9.3.5	ARC	Pre-defined	Symbols

The	following	assembler	symbols	will	prove	useful	when	developing
position-independent	code.		These	symbols	are	available	only	with	the
ARC	700	and	above	processors.

3/25/20 as.info 125

'__GLOBAL_OFFSET_TABLE__'
					Symbol	referring	to	the	base	of	the	Global	Offset	Table.

'__DYNAMIC__'
					An	alias	for	the	Global	Offset	Table	'Base__GLOBAL_OFFSET_TABLE__'.
					It	can	be	used	only	with	'@gotpc'	modifiers.

�
File:	as.info,		Node:	ARC	Opcodes,		Prev:	ARC	Symbols,		Up:	ARC-Dependent

9.3.6	Opcodes

For	information	on	the	ARC	instruction	set,	see	'ARC	Programmers
Reference	Manual',	available	where	you	download	the	processor	IP
library.

�
File:	as.info,		Node:	ARM-Dependent,		Next:	AVR-Dependent,		Prev:	ARC-Dependent,		Up:
Machine	Dependencies

9.4	ARM	Dependent	Features
==========================

*	Menu:

*	ARM	Options::														Options
*	ARM	Syntax::															Syntax
*	ARM	Floating	Point::							Floating	Point
*	ARM	Directives::											ARM	Machine	Directives
*	ARM	Opcodes::														Opcodes
*	ARM	Mapping	Symbols::						Mapping	Symbols
*	ARM	Unwinding	Tutorial::			Unwinding

�
File:	as.info,		Node:	ARM	Options,		Next:	ARM	Syntax,		Up:	ARM-Dependent

9.4.1	Options

'-mcpu=PROCESSOR[+EXTENSION...]'
					This	option	specifies	the	target	processor.		The	assembler	will
					issue	an	error	message	if	an	attempt	is	made	to	assemble	an
					instruction	which	will	not	execute	on	the	target	processor.		The
					following	processor	names	are	recognized:	'arm1',	'arm2',	'arm250',
					'arm3',	'arm6',	'arm60',	'arm600',	'arm610',	'arm620',	'arm7',
					'arm7m',	'arm7d',	'arm7dm',	'arm7di',	'arm7dmi',	'arm70',	'arm700',
					'arm700i',	'arm710',	'arm710t',	'arm720',	'arm720t',	'arm740t',
					'arm710c',	'arm7100',	'arm7500',	'arm7500fe',	'arm7t',	'arm7tdmi',
					'arm7tdmi-s',	'arm8',	'arm810',	'strongarm',	'strongarm1',
					'strongarm110',	'strongarm1100',	'strongarm1110',	'arm9',	'arm920',
					'arm920t',	'arm922t',	'arm940t',	'arm9tdmi',	'fa526'	(Faraday	FA526
					processor),	'fa626'	(Faraday	FA626	processor),	'arm9e',	'arm926e',
					'arm926ej-s',	'arm946e-r0',	'arm946e',	'arm946e-s',	'arm966e-r0',
					'arm966e',	'arm966e-s',	'arm968e-s',	'arm10t',	'arm10tdmi',
					'arm10e',	'arm1020',	'arm1020t',	'arm1020e',	'arm1022e',
					'arm1026ej-s',	'fa606te'	(Faraday	FA606TE	processor),	'fa616te'
					(Faraday	FA616TE	processor),	'fa626te'	(Faraday	FA626TE	processor),

3/25/20 as.info 126

					'fmp626'	(Faraday	FMP626	processor),	'fa726te'	(Faraday	FA726TE
					processor),	'arm1136j-s',	'arm1136jf-s',	'arm1156t2-s',
					'arm1156t2f-s',	'arm1176jz-s',	'arm1176jzf-s',	'mpcore',
					'mpcorenovfp',	'cortex-a5',	'cortex-a7',	'cortex-a8',	'cortex-a9',
					'cortex-a15',	'cortex-a17',	'cortex-a32',	'cortex-a35',
					'cortex-a53',	'cortex-a57',	'cortex-a72',	'cortex-a73',
					'cortex-r4',	'cortex-r4f',	'cortex-r5',	'cortex-r7',	'cortex-r8',
					'cortex-m33',	'cortex-m23',	'cortex-m7',	'cortex-m4',	'cortex-m3',
					'cortex-m1',	'cortex-m0',	'cortex-m0plus',	'exynos-m1',
					'marvell-pj4',	'marvell-whitney',	'falkor',	'qdf24xx',	'xgene1',
					'xgene2',	'ep9312'	(ARM920	with	Cirrus	Maverick	coprocessor),
					'i80200'	(Intel	XScale	processor)	'iwmmxt'	(Intel(r)	XScale
					processor	with	Wireless	MMX(tm)	technology	coprocessor)	and
					'xscale'.		The	special	name	'all'	may	be	used	to	allow	the
					assembler	to	accept	instructions	valid	for	any	ARM	processor.

					In	addition	to	the	basic	instruction	set,	the	assembler	can	be	told
					to	accept	various	extension	mnemonics	that	extend	the	processor
					using	the	co-processor	instruction	space.		For	example,
					'-mcpu=arm920+maverick'	is	equivalent	to	specifying	'-mcpu=ep9312'.

					Multiple	extensions	may	be	specified,	separated	by	a	'+'.		The
					extensions	should	be	specified	in	ascending	alphabetical	order.

					Some	extensions	may	be	restricted	to	particular	architectures;	this
					is	documented	in	the	list	of	extensions	below.

					Extension	mnemonics	may	also	be	removed	from	those	the	assembler
					accepts.		This	is	done	be	prepending	'no'	to	the	option	that	adds
					the	extension.		Extensions	that	are	removed	should	be	listed	after
					all	extensions	which	have	been	added,	again	in	ascending
					alphabetical	order.		For	example,	'-mcpu=ep9312+nomaverick'	is
					equivalent	to	specifying	'-mcpu=arm920'.

					The	following	extensions	are	currently	supported:	'crc'	'crypto'
					(Cryptography	Extensions	for	v8-A	architecture,	implies	'fp+simd'),
					'fp'	(Floating	Point	Extensions	for	v8-A	architecture),	'idiv'
					(Integer	Divide	Extensions	for	v7-A	and	v7-R	architectures),
					'iwmmxt',	'iwmmxt2',	'xscale',	'maverick',	'mp'	(Multiprocessing
					Extensions	for	v7-A	and	v7-R	architectures),	'os'	(Operating	System
					for	v6M	architecture),	'sec'	(Security	Extensions	for	v6K	and	v7-A
					architectures),	'simd'	(Advanced	SIMD	Extensions	for	v8-A
					architecture,	implies	'fp'),	'virt'	(Virtualization	Extensions	for
					v7-A	architecture,	implies	'idiv'),	'pan'	(Priviliged	Access	Never
					Extensions	for	v8-A	architecture),	'ras'	(Reliability,	Availability
					and	Serviceability	extensions	for	v8-A	architecture),	'rdma'
					(ARMv8.1	Advanced	SIMD	extensions	for	v8-A	architecture,	implies
					'simd')	and	'xscale'.

'-march=ARCHITECTURE[+EXTENSION...]'
					This	option	specifies	the	target	architecture.		The	assembler	will
					issue	an	error	message	if	an	attempt	is	made	to	assemble	an
					instruction	which	will	not	execute	on	the	target	architecture.		The
					following	architecture	names	are	recognized:	'armv1',	'armv2',
					'armv2a',	'armv2s',	'armv3',	'armv3m',	'armv4',	'armv4xm',
					'armv4t',	'armv4txm',	'armv5',	'armv5t',	'armv5txm',	'armv5te',
					'armv5texp',	'armv6',	'armv6j',	'armv6k',	'armv6z',	'armv6kz',
					'armv6-m',	'armv6s-m',	'armv7',	'armv7-a',	'armv7ve',	'armv7-r',
					'armv7-m',	'armv7e-m',	'armv8-a',	'armv8.1-a',	'armv8.2-a',

3/25/20 as.info 127

					'armv8.3-a',	'iwmmxt'	'iwmmxt2'	and	'xscale'.		If	both	'-mcpu'	and
					'-march'	are	specified,	the	assembler	will	use	the	setting	for
					'-mcpu'.

					The	architecture	option	can	be	extended	with	the	same	instruction
					set	extension	options	as	the	'-mcpu'	option.

'-mfpu=FLOATING-POINT-FORMAT'

					This	option	specifies	the	floating	point	format	to	assemble	for.
					The	assembler	will	issue	an	error	message	if	an	attempt	is	made	to
					assemble	an	instruction	which	will	not	execute	on	the	target
					floating	point	unit.		The	following	format	options	are	recognized:
					'softfpa',	'fpe',	'fpe2',	'fpe3',	'fpa',	'fpa10',	'fpa11',
					'arm7500fe',	'softvfp',	'softvfp+vfp',	'vfp',	'vfp10',	'vfp10-r0',
					'vfp9',	'vfpxd',	'vfpv2',	'vfpv3',	'vfpv3-fp16',	'vfpv3-d16',
					'vfpv3-d16-fp16',	'vfpv3xd',	'vfpv3xd-d16',	'vfpv4',	'vfpv4-d16',
					'fpv4-sp-d16',	'fpv5-sp-d16',	'fpv5-d16',	'fp-armv8',	'arm1020t',
					'arm1020e',	'arm1136jf-s',	'maverick',	'neon',	'neon-vfpv4',
					'neon-fp-armv8',	'crypto-neon-fp-armv8',	'neon-fp-armv8.1'	and
					'crypto-neon-fp-armv8.1'.

					In	addition	to	determining	which	instructions	are	assembled,	this
					option	also	affects	the	way	in	which	the	'.double'	assembler
					directive	behaves	when	assembling	little-endian	code.

					The	default	is	dependent	on	the	processor	selected.		For
					Architecture	5	or	later,	the	default	is	to	assembler	for	VFP
					instructions;	for	earlier	architectures	the	default	is	to	assemble
					for	FPA	instructions.

'-mthumb'
					This	option	specifies	that	the	assembler	should	start	assembling
					Thumb	instructions;	that	is,	it	should	behave	as	though	the	file
					starts	with	a	'.code	16'	directive.

'-mthumb-interwork'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	supporting	interworking.

'-mimplicit-it=never'
'-mimplicit-it=always'
'-mimplicit-it=arm'
'-mimplicit-it=thumb'
					The	'-mimplicit-it'	option	controls	the	behavior	of	the	assembler
					when	conditional	instructions	are	not	enclosed	in	IT	blocks.		There
					are	four	possible	behaviors.		If	'never'	is	specified,	such
					constructs	cause	a	warning	in	ARM	code	and	an	error	in	Thumb-2
					code.		If	'always'	is	specified,	such	constructs	are	accepted	in
					both	ARM	and	Thumb-2	code,	where	the	IT	instruction	is	added
					implicitly.		If	'arm'	is	specified,	such	constructs	are	accepted	in
					ARM	code	and	cause	an	error	in	Thumb-2	code.		If	'thumb'	is
					specified,	such	constructs	cause	a	warning	in	ARM	code	and	are
					accepted	in	Thumb-2	code.		If	you	omit	this	option,	the	behavior	is
					equivalent	to	'-mimplicit-it=arm'.

'-mapcs-26'
'-mapcs-32'
					These	options	specify	that	the	output	generated	by	the	assembler

3/25/20 as.info 128

					should	be	marked	as	supporting	the	indicated	version	of	the	Arm
					Procedure.		Calling	Standard.

'-matpcs'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	supporting	the	Arm/Thumb	Procedure	Calling
					Standard.		If	enabled	this	option	will	cause	the	assembler	to
					create	an	empty	debugging	section	in	the	object	file	called
					.arm.atpcs.		Debuggers	can	use	this	to	determine	the	ABI	being	used
					by.

'-mapcs-float'
					This	indicates	the	floating	point	variant	of	the	APCS	should	be
					used.		In	this	variant	floating	point	arguments	are	passed	in	FP
					registers	rather	than	integer	registers.

'-mapcs-reentrant'
					This	indicates	that	the	reentrant	variant	of	the	APCS	should	be
					used.		This	variant	supports	position	independent	code.

'-mfloat-abi=ABI'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	using	specified	floating	point	ABI.	The
					following	values	are	recognized:	'soft',	'softfp'	and	'hard'.

'-meabi=VER'
					This	option	specifies	which	EABI	version	the	produced	object	files
					should	conform	to.		The	following	values	are	recognized:	'gnu',	'4'
					and	'5'.

'-EB'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	being	encoded	for	a	big-endian	processor.

					Note:	If	a	program	is	being	built	for	a	system	with	big-endian	data
					and	little-endian	instructions	then	it	should	be	assembled	with	the
					'-EB'	option,	(all	of	it,	code	and	data)	and	then	linked	with	the
					'--be8'	option.		This	will	reverse	the	endianness	of	the
					instructions	back	to	little-endian,	but	leave	the	data	as
					big-endian.

'-EL'
					This	option	specifies	that	the	output	generated	by	the	assembler
					should	be	marked	as	being	encoded	for	a	little-endian	processor.

'-k'
					This	option	specifies	that	the	output	of	the	assembler	should	be
					marked	as	position-independent	code	(PIC).

'--fix-v4bx'
					Allow	'BX'	instructions	in	ARMv4	code.		This	is	intended	for	use
					with	the	linker	option	of	the	same	name.

'-mwarn-deprecated'
'-mno-warn-deprecated'
					Enable	or	disable	warnings	about	using	deprecated	options	or
					features.		The	default	is	to	warn.

'-mccs'

3/25/20 as.info 129

					Turns	on	CodeComposer	Studio	assembly	syntax	compatibility	mode.

'-mwarn-syms'
'-mno-warn-syms'
					Enable	or	disable	warnings	about	symbols	that	match	the	names	of
					ARM	instructions.		The	default	is	to	warn.

�
File:	as.info,		Node:	ARM	Syntax,		Next:	ARM	Floating	Point,		Prev:	ARM	Options,		Up:
ARM-Dependent

9.4.2	Syntax

*	Menu:

*	ARM-Instruction-Set::						Instruction	Set
*	ARM-Chars::																Special	Characters
*	ARM-Regs::																	Register	Names
*	ARM-Relocations:: 					Relocations
*	ARM-Neon-Alignment:: 					NEON	Alignment	Specifiers

�
File:	as.info,		Node:	ARM-Instruction-Set,		Next:	ARM-Chars,		Up:	ARM	Syntax

9.4.2.1	Instruction	Set	Syntax
..............................

Two	slightly	different	syntaxes	are	support	for	ARM	and	THUMB
instructions.		The	default,	'divided',	uses	the	old	style	where	ARM	and
THUMB	instructions	had	their	own,	separate	syntaxes.		The	new,	'unified'
syntax,	which	can	be	selected	via	the	'.syntax'	directive,	and	has	the
following	main	features:

			*	Immediate	operands	do	not	require	a	'#'	prefix.

			*	The	'IT'	instruction	may	appear,	and	if	it	does	it	is	validated
					against	subsequent	conditional	affixes.		In	ARM	mode	it	does	not
					generate	machine	code,	in	THUMB	mode	it	does.

			*	For	ARM	instructions	the	conditional	affixes	always	appear	at	the
					end	of	the	instruction.		For	THUMB	instructions	conditional	affixes
					can	be	used,	but	only	inside	the	scope	of	an	'IT'	instruction.

			*	All	of	the	instructions	new	to	the	V6T2	architecture	(and	later)
					are	available.		(Only	a	few	such	instructions	can	be	written	in	the
					'divided'	syntax).

			*	The	'.N'	and	'.W'	suffixes	are	recognized	and	honored.

			*	All	instructions	set	the	flags	if	and	only	if	they	have	an	's'
					affix.

�
File:	as.info,		Node:	ARM-Chars,		Next:	ARM-Regs,		Prev:	ARM-Instruction-Set,		Up:
ARM	Syntax

9.4.2.2	Special	Characters
..........................

3/25/20 as.info 130

The	presence	of	a	'@'	anywhere	on	a	line	indicates	the	start	of	a
comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			The	';'	character	can	be	used	instead	of	a	newline	to	separate
statements.

			Either	'#'	or	'$'	can	be	used	to	indicate	immediate	operands.

			TODO	Explain	about	/data	modifier	on	symbols.

�
File:	as.info,		Node:	ARM-Regs,		Next:	ARM-Relocations,		Prev:	ARM-Chars,		Up:	ARM
Syntax

9.4.2.3	Register	Names
......................

TODO	Explain	about	ARM	register	naming,	and	the	predefined	names.

�
File:	as.info,		Node:	ARM-Relocations,		Next:	ARM-Neon-Alignment,		Prev:	ARM-Regs,
Up:	ARM	Syntax

9.4.2.4	ARM	relocation	generation
.................................

Specific	data	relocations	can	be	generated	by	putting	the	relocation
name	in	parentheses	after	the	symbol	name.		For	example:

													.word	foo(TARGET1)

			This	will	generate	an	'R_ARM_TARGET1'	relocation	against	the	symbol
FOO.		The	following	relocations	are	supported:	'GOT',	'GOTOFF',
'TARGET1',	'TARGET2',	'SBREL',	'TLSGD',	'TLSLDM',	'TLSLDO',	'TLSDESC',
'TLSCALL',	'GOTTPOFF',	'GOT_PREL'	and	'TPOFF'.

			For	compatibility	with	older	toolchains	the	assembler	also	accepts
'(PLT)'	after	branch	targets.		On	legacy	targets	this	will	generate	the
deprecated	'R_ARM_PLT32'	relocation.		On	EABI	targets	it	will	encode
either	the	'R_ARM_CALL'	or	'R_ARM_JUMP24'	relocation,	as	appropriate.

			Relocations	for	'MOVW'	and	'MOVT'	instructions	can	be	generated	by
prefixing	the	value	with	'#:lower16:'	and	'#:upper16'	respectively.		For
example	to	load	the	32-bit	address	of	foo	into	r0:

													MOVW	r0,	#:lower16:foo
													MOVT	r0,	#:upper16:foo

			Relocations	'R_ARM_THM_ALU_ABS_G0_NC',	'R_ARM_THM_ALU_ABS_G1_NC',
'R_ARM_THM_ALU_ABS_G2_NC'	and	'R_ARM_THM_ALU_ABS_G3_NC'	can	be	generated
by	prefixing	the	value	with	'#:lower0_7:#',	'#:lower8_15:#',
'#:upper0_7:#'	and	'#:upper8_15:#'	respectively.		For	example	to	load
the	32-bit	address	of	foo	into	r0:

3/25/20 as.info 131

													MOVS	r0,	#:upper8_15:#foo
													LSLS	r0,	r0,	#8
													ADDS	r0,	#:upper0_7:#foo
													LSLS	r0,	r0,	#8
													ADDS	r0,	#:lower8_15:#foo
													LSLS	r0,	r0,	#8
													ADDS	r0,	#:lower0_7:#foo

�
File:	as.info,		Node:	ARM-Neon-Alignment,		Prev:	ARM-Relocations,		Up:	ARM	Syntax

9.4.2.5	NEON	Alignment	Specifiers
.................................

Some	NEON	load/store	instructions	allow	an	optional	address	alignment
qualifier.		The	ARM	documentation	specifies	that	this	is	indicated	by	'@
ALIGN'.		However	GAS	already	interprets	the	'@'	character	as	a	"line
comment"	start,	so	':	ALIGN'	is	used	instead.		For	example:

													vld1.8	{q0},	[r0,	:128]

�
File:	as.info,		Node:	ARM	Floating	Point,		Next:	ARM	Directives,		Prev:	ARM	Syntax,
Up:	ARM-Dependent

9.4.3	Floating	Point

The	ARM	family	uses	IEEE	floating-point	numbers.

�
File:	as.info,		Node:	ARM	Directives,		Next:	ARM	Opcodes,		Prev:	ARM	Floating	Point,
Up:	ARM-Dependent

9.4.4	ARM	Machine	Directives

'.2byte	EXPRESSION	[,	EXPRESSION]*'
'.4byte	EXPRESSION	[,	EXPRESSION]*'
'.8byte	EXPRESSION	[,	EXPRESSION]*'
					These	directives	write	2,	4	or	8	byte	values	to	the	output	section.

'.align	EXPRESSION	[,	EXPRESSION]'
					This	is	the	generic	.ALIGN	directive.		For	the	ARM	however	if	the
					first	argument	is	zero	(ie	no	alignment	is	needed)	the	assembler
					will	behave	as	if	the	argument	had	been	2	(ie	pad	to	the	next	four
					byte	boundary).		This	is	for	compatibility	with	ARM's	own
					assembler.

'.arch	NAME'
					Select	the	target	architecture.		Valid	values	for	NAME	are	the	same
					as	for	the	'-march'	commandline	option.

					Specifying	'.arch'	clears	any	previously	selected	architecture
					extensions.

'.arch_extension	NAME'
					Add	or	remove	an	architecture	extension	to	the	target	architecture.

3/25/20 as.info 132

					Valid	values	for	NAME	are	the	same	as	those	accepted	as
					architectural	extensions	by	the	'-mcpu'	commandline	option.

					'.arch_extension'	may	be	used	multiple	times	to	add	or	remove
					extensions	incrementally	to	the	architecture	being	compiled	for.

'.arm'
					This	performs	the	same	action	as	.CODE	32.

'.bss'
					This	directive	switches	to	the	'.bss'	section.

'.cantunwind'
					Prevents	unwinding	through	the	current	function.		No	personality
					routine	or	exception	table	data	is	required	or	permitted.

'.code	[16|32]'
					This	directive	selects	the	instruction	set	being	generated.		The
					value	16	selects	Thumb,	with	the	value	32	selecting	ARM.

'.cpu	NAME'
					Select	the	target	processor.		Valid	values	for	NAME	are	the	same	as
					for	the	'-mcpu'	commandline	option.

					Specifying	'.cpu'	clears	any	previously	selected	architecture
					extensions.

'NAME	.dn	REGISTER	NAME	[.TYPE]	[[INDEX]]'
'NAME	.qn	REGISTER	NAME	[.TYPE]	[[INDEX]]'

					The	'dn'	and	'qn'	directives	are	used	to	create	typed	and/or
					indexed	register	aliases	for	use	in	Advanced	SIMD	Extension	(Neon)
					instructions.		The	former	should	be	used	to	create	aliases	of
					double-precision	registers,	and	the	latter	to	create	aliases	of
					quad-precision	registers.

					If	these	directives	are	used	to	create	typed	aliases,	those	aliases
					can	be	used	in	Neon	instructions	instead	of	writing	types	after	the
					mnemonic	or	after	each	operand.		For	example:

																		x	.dn	d2.f32
																		y	.dn	d3.f32
																		z	.dn	d4.f32[1]
																		vmul	x,y,z

					This	is	equivalent	to	writing	the	following:

																		vmul.f32	d2,d3,d4[1]

					Aliases	created	using	'dn'	or	'qn'	can	be	destroyed	using	'unreq'.

'.eabi_attribute	TAG,	VALUE'
					Set	the	EABI	object	attribute	TAG	to	VALUE.

					The	TAG	is	either	an	attribute	number,	or	one	of	the	following:
					'Tag_CPU_raw_name',	'Tag_CPU_name',	'Tag_CPU_arch',
					'Tag_CPU_arch_profile',	'Tag_ARM_ISA_use',	'Tag_THUMB_ISA_use',
					'Tag_FP_arch',	'Tag_WMMX_arch',	'Tag_Advanced_SIMD_arch',
					'Tag_PCS_config',	'Tag_ABI_PCS_R9_use',	'Tag_ABI_PCS_RW_data',

3/25/20 as.info 133

					'Tag_ABI_PCS_RO_data',	'Tag_ABI_PCS_GOT_use',
					'Tag_ABI_PCS_wchar_t',	'Tag_ABI_FP_rounding',
					'Tag_ABI_FP_denormal',	'Tag_ABI_FP_exceptions',
					'Tag_ABI_FP_user_exceptions',	'Tag_ABI_FP_number_model',
					'Tag_ABI_align_needed',	'Tag_ABI_align_preserved',
					'Tag_ABI_enum_size',	'Tag_ABI_HardFP_use',	'Tag_ABI_VFP_args',
					'Tag_ABI_WMMX_args',	'Tag_ABI_optimization_goals',
					'Tag_ABI_FP_optimization_goals',	'Tag_compatibility',
					'Tag_CPU_unaligned_access',	'Tag_FP_HP_extension',
					'Tag_ABI_FP_16bit_format',	'Tag_MPextension_use',	'Tag_DIV_use',
					'Tag_nodefaults',	'Tag_also_compatible_with',	'Tag_conformance',
					'Tag_T2EE_use',	'Tag_Virtualization_use'

					The	VALUE	is	either	a	'number',	'"string"',	or	'number,	"string"'
					depending	on	the	tag.

					Note	-	the	following	legacy	values	are	also	accepted	by	TAG:
					'Tag_VFP_arch',	'Tag_ABI_align8_needed',
					'Tag_ABI_align8_preserved',	'Tag_VFP_HP_extension',

'.even'
					This	directive	aligns	to	an	even-numbered	address.

'.extend	EXPRESSION	[,	EXPRESSION]*'
'.ldouble	EXPRESSION	[,	EXPRESSION]*'
					These	directives	write	12byte	long	double	floating-point	values	to
					the	output	section.		These	are	not	compatible	with	current	ARM
					processors	or	ABIs.

'.fnend'
					Marks	the	end	of	a	function	with	an	unwind	table	entry.		The	unwind
					index	table	entry	is	created	when	this	directive	is	processed.

					If	no	personality	routine	has	been	specified	then	standard
					personality	routine	0	or	1	will	be	used,	depending	on	the	number	of
					unwind	opcodes	required.

'.fnstart'
					Marks	the	start	of	a	function	with	an	unwind	table	entry.

'.force_thumb'
					This	directive	forces	the	selection	of	Thumb	instructions,	even	if
					the	target	processor	does	not	support	those	instructions

'.fpu	NAME'
					Select	the	floating-point	unit	to	assemble	for.		Valid	values	for
					NAME	are	the	same	as	for	the	'-mfpu'	commandline	option.

'.handlerdata'
					Marks	the	end	of	the	current	function,	and	the	start	of	the
					exception	table	entry	for	that	function.		Anything	between	this
					directive	and	the	'.fnend'	directive	will	be	added	to	the	exception
					table	entry.

					Must	be	preceded	by	a	'.personality'	or	'.personalityindex'
					directive.

'.inst	OPCODE	[,	...]'
'.inst.n	OPCODE	[,	...]'

3/25/20 as.info 134

'.inst.w	OPCODE	[,	...]'
					Generates	the	instruction	corresponding	to	the	numerical	value
					OPCODE.		'.inst.n'	and	'.inst.w'	allow	the	Thumb	instruction	size
					to	be	specified	explicitly,	overriding	the	normal	encoding	rules.

'.ldouble	EXPRESSION	[,	EXPRESSION]*'
					See	'.extend'.

'.ltorg'
					This	directive	causes	the	current	contents	of	the	literal	pool	to
					be	dumped	into	the	current	section	(which	is	assumed	to	be	the
					.text	section)	at	the	current	location	(aligned	to	a	word
					boundary).		'GAS'	maintains	a	separate	literal	pool	for	each
					section	and	each	sub-section.		The	'.ltorg'	directive	will	only
					affect	the	literal	pool	of	the	current	section	and	sub-section.		At
					the	end	of	assembly	all	remaining,	un-empty	literal	pools	will
					automatically	be	dumped.

					Note	-	older	versions	of	'GAS'	would	dump	the	current	literal	pool
					any	time	a	section	change	occurred.		This	is	no	longer	done,	since
					it	prevents	accurate	control	of	the	placement	of	literal	pools.

'.movsp	REG	[,	#OFFSET]'
					Tell	the	unwinder	that	REG	contains	an	offset	from	the	current
					stack	pointer.		If	OFFSET	is	not	specified	then	it	is	assumed	to	be
					zero.

'.object_arch	NAME'
					Override	the	architecture	recorded	in	the	EABI	object	attribute
					section.		Valid	values	for	NAME	are	the	same	as	for	the	'.arch'
					directive.		Typically	this	is	useful	when	code	uses	runtime
					detection	of	CPU	features.

'.packed	EXPRESSION	[,	EXPRESSION]*'
					This	directive	writes	12-byte	packed	floating-point	values	to	the
					output	section.		These	are	not	compatible	with	current	ARM
					processors	or	ABIs.

'.pad	#COUNT'
					Generate	unwinder	annotations	for	a	stack	adjustment	of	COUNT
					bytes.		A	positive	value	indicates	the	function	prologue	allocated
					stack	space	by	decrementing	the	stack	pointer.

'.personality	NAME'
					Sets	the	personality	routine	for	the	current	function	to	NAME.

'.personalityindex	INDEX'
					Sets	the	personality	routine	for	the	current	function	to	the	EABI
					standard	routine	number	INDEX

'.pool'
					This	is	a	synonym	for	.ltorg.

'NAME	.req	REGISTER	NAME'
					This	creates	an	alias	for	REGISTER	NAME	called	NAME.		For	example:

																		foo	.req	r0

'.save	REGLIST'

3/25/20 as.info 135

					Generate	unwinder	annotations	to	restore	the	registers	in	REGLIST.
					The	format	of	REGLIST	is	the	same	as	the	corresponding
					store-multiple	instruction.

					core	registers
												.save	{r4,	r5,	r6,	lr}
												stmfd	sp!,	{r4,	r5,	r6,	lr}
					FPA	registers
												.save	f4,	2
												sfmfd	f4,	2,	[sp]!
					VFP	registers
												.save	{d8,	d9,	d10}
												fstmdx	sp!,	{d8,	d9,	d10}
					iWMMXt	registers
												.save	{wr10,	wr11}
												wstrd	wr11,	[sp,	#-8]!
												wstrd	wr10,	[sp,	#-8]!
										or
												.save	wr11
												wstrd	wr11,	[sp,	#-8]!
												.save	wr10
												wstrd	wr10,	[sp,	#-8]!

'.setfp	FPREG,	SPREG	[,	#OFFSET]'
					Make	all	unwinder	annotations	relative	to	a	frame	pointer.		Without
					this	the	unwinder	will	use	offsets	from	the	stack	pointer.

					The	syntax	of	this	directive	is	the	same	as	the	'add'	or	'mov'
					instruction	used	to	set	the	frame	pointer.		SPREG	must	be	either
					'sp'	or	mentioned	in	a	previous	'.movsp'	directive.

										.movsp	ip
										mov	ip,	sp
										...
										.setfp	fp,	ip,	#4
										add	fp,	ip,	#4

'.secrel32	EXPRESSION	[,	EXPRESSION]*'
					This	directive	emits	relocations	that	evaluate	to	the
					section-relative	offset	of	each	expression's	symbol.		This
					directive	is	only	supported	for	PE	targets.

'.syntax	[unified	|	divided]'
					This	directive	sets	the	Instruction	Set	Syntax	as	described	in	the
					*note	ARM-Instruction-Set::	section.

'.thumb'
					This	performs	the	same	action	as	.CODE	16.

'.thumb_func'
					This	directive	specifies	that	the	following	symbol	is	the	name	of	a
					Thumb	encoded	function.		This	information	is	necessary	in	order	to
					allow	the	assembler	and	linker	to	generate	correct	code	for
					interworking	between	Arm	and	Thumb	instructions	and	should	be	used
					even	if	interworking	is	not	going	to	be	performed.		The	presence	of
					this	directive	also	implies	'.thumb'

					This	directive	is	not	neccessary	when	generating	EABI	objects.		On
					these	targets	the	encoding	is	implicit	when	generating	Thumb	code.

3/25/20 as.info 136

'.thumb_set'
					This	performs	the	equivalent	of	a	'.set'	directive	in	that	it
					creates	a	symbol	which	is	an	alias	for	another	symbol	(possibly	not
					yet	defined).		This	directive	also	has	the	added	property	in	that
					it	marks	the	aliased	symbol	as	being	a	thumb	function	entry	point,
					in	the	same	way	that	the	'.thumb_func'	directive	does.

'.tlsdescseq	TLS-VARIABLE'
					This	directive	is	used	to	annotate	parts	of	an	inlined	TLS
					descriptor	trampoline.		Normally	the	trampoline	is	provided	by	the
					linker,	and	this	directive	is	not	needed.

'.unreq	ALIAS-NAME'
					This	undefines	a	register	alias	which	was	previously	defined	using
					the	'req',	'dn'	or	'qn'	directives.		For	example:

																		foo	.req	r0
																		.unreq	foo

					An	error	occurs	if	the	name	is	undefined.		Note	-	this	pseudo	op
					can	be	used	to	delete	builtin	in	register	name	aliases	(eg	'r0').
					This	should	only	be	done	if	it	is	really	necessary.

'.unwind_raw	OFFSET,	BYTE1,	...'
					Insert	one	of	more	arbitary	unwind	opcode	bytes,	which	are	known	to
					adjust	the	stack	pointer	by	OFFSET	bytes.

					For	example	'.unwind_raw	4,	0xb1,	0x01'	is	equivalent	to	'.save
					{r0}'

'.vsave	VFP-REGLIST'
					Generate	unwinder	annotations	to	restore	the	VFP	registers	in
					VFP-REGLIST	using	FLDMD.	Also	works	for	VFPv3	registers	that	are	to
					be	restored	using	VLDM.	The	format	of	VFP-REGLIST	is	the	same	as
					the	corresponding	store-multiple	instruction.

					VFP	registers
												.vsave	{d8,	d9,	d10}
												fstmdd	sp!,	{d8,	d9,	d10}
					VFPv3	registers
												.vsave	{d15,	d16,	d17}
												vstm	sp!,	{d15,	d16,	d17}

					Since	FLDMX	and	FSTMX	are	now	deprecated,	this	directive	should	be
					used	in	favour	of	'.save'	for	saving	VFP	registers	for	ARMv6	and
					above.

�
File:	as.info,		Node:	ARM	Opcodes,		Next:	ARM	Mapping	Symbols,		Prev:	ARM	Directives,
Up:	ARM-Dependent

9.4.5	Opcodes

'as'	implements	all	the	standard	ARM	opcodes.		It	also	implements
several	pseudo	opcodes,	including	several	synthetic	load	instructions.

'NOP'

3/25/20 as.info 137

												nop

					This	pseudo	op	will	always	evaluate	to	a	legal	ARM	instruction	that
					does	nothing.		Currently	it	will	evaluate	to	MOV	r0,	r0.

'LDR'
												ldr	<register>	,	=	<expression>

					If	expression	evaluates	to	a	numeric	constant	then	a	MOV	or	MVN
					instruction	will	be	used	in	place	of	the	LDR	instruction,	if	the
					constant	can	be	generated	by	either	of	these	instructions.
					Otherwise	the	constant	will	be	placed	into	the	nearest	literal	pool
					(if	it	not	already	there)	and	a	PC	relative	LDR	instruction	will	be
					generated.

'ADR'
												adr	<register>	<label>

					This	instruction	will	load	the	address	of	LABEL	into	the	indicated
					register.		The	instruction	will	evaluate	to	a	PC	relative	ADD	or
					SUB	instruction	depending	upon	where	the	label	is	located.		If	the
					label	is	out	of	range,	or	if	it	is	not	defined	in	the	same	file
					(and	section)	as	the	ADR	instruction,	then	an	error	will	be
					generated.		This	instruction	will	not	make	use	of	the	literal	pool.

'ADRL'
												adrl	<register>	<label>

					This	instruction	will	load	the	address	of	LABEL	into	the	indicated
					register.		The	instruction	will	evaluate	to	one	or	two	PC	relative
					ADD	or	SUB	instructions	depending	upon	where	the	label	is	located.
					If	a	second	instruction	is	not	needed	a	NOP	instruction	will	be
					generated	in	its	place,	so	that	this	instruction	is	always	8	bytes
					long.

					If	the	label	is	out	of	range,	or	if	it	is	not	defined	in	the	same
					file	(and	section)	as	the	ADRL	instruction,	then	an	error	will	be
					generated.		This	instruction	will	not	make	use	of	the	literal	pool.

			For	information	on	the	ARM	or	Thumb	instruction	sets,	see	'ARM
Software	Development	Toolkit	Reference	Manual',	Advanced	RISC	Machines
Ltd.

�
File:	as.info,		Node:	ARM	Mapping	Symbols,		Next:	ARM	Unwinding	Tutorial,		Prev:	ARM
Opcodes,		Up:	ARM-Dependent

9.4.6	Mapping	Symbols

The	ARM	ELF	specification	requires	that	special	symbols	be	inserted	into
object	files	to	mark	certain	features:

'$a'
					At	the	start	of	a	region	of	code	containing	ARM	instructions.

'$t'
					At	the	start	of	a	region	of	code	containing	THUMB	instructions.

3/25/20 as.info 138

'$d'
					At	the	start	of	a	region	of	data.

			The	assembler	will	automatically	insert	these	symbols	for	you	-	there
is	no	need	to	code	them	yourself.		Support	for	tagging	symbols	($b,	$f,
$p	and	$m)	which	is	also	mentioned	in	the	current	ARM	ELF	specification
is	not	implemented.		This	is	because	they	have	been	dropped	from	the	new
EABI	and	so	tools	cannot	rely	upon	their	presence.

�
File:	as.info,		Node:	ARM	Unwinding	Tutorial,		Prev:	ARM	Mapping	Symbols,		Up:	ARM-
Dependent

9.4.7	Unwinding

The	ABI	for	the	ARM	Architecture	specifies	a	standard	format	for
exception	unwind	information.		This	information	is	used	when	an
exception	is	thrown	to	determine	where	control	should	be	transferred.
In	particular,	the	unwind	information	is	used	to	determine	which
function	called	the	function	that	threw	the	exception,	and	which
function	called	that	one,	and	so	forth.		This	information	is	also	used
to	restore	the	values	of	callee-saved	registers	in	the	function	catching
the	exception.

			If	you	are	writing	functions	in	assembly	code,	and	those	functions
call	other	functions	that	throw	exceptions,	you	must	use	assembly	pseudo
ops	to	ensure	that	appropriate	exception	unwind	information	is
generated.		Otherwise,	if	one	of	the	functions	called	by	your	assembly
code	throws	an	exception,	the	run-time	library	will	be	unable	to	unwind
the	stack	through	your	assembly	code	and	your	program	will	not	behave
correctly.

			To	illustrate	the	use	of	these	pseudo	ops,	we	will	examine	the	code
that	G++	generates	for	the	following	C++	input:

void	callee	(int	*);

int
caller	()
{
		int	i;
		callee	(&i);
		return	i;
}

			This	example	does	not	show	how	to	throw	or	catch	an	exception	from
assembly	code.		That	is	a	much	more	complex	operation	and	should	always
be	done	in	a	high-level	language,	such	as	C++,	that	directly	supports
exceptions.

			The	code	generated	by	one	particular	version	of	G++	when	compiling
the	example	above	is:

_Z6callerv:
.fnstart

.LFB2:
@	Function	supports	interworking.
@	args	=	0,	pretend	=	0,	frame	=	8

3/25/20 as.info 139

@	frame_needed	=	1,	uses_anonymous_args	=	0
stmfd sp!,	{fp,	lr}
.save	{fp,	lr}

.LCFI0:
.setfp	fp,	sp,	#4
add fp,	sp,	#4

.LCFI1:
.pad	#8
sub sp,	sp,	#8

.LCFI2:
sub r3,	fp,	#8
mov r0,	r3
bl _Z6calleePi
ldr r3,	[fp,	#-8]
mov r0,	r3
sub sp,	fp,	#4
ldmfd sp!,	{fp,	lr}
bx lr

.LFE2:
.fnend

			Of	course,	the	sequence	of	instructions	varies	based	on	the	options
you	pass	to	GCC	and	on	the	version	of	GCC	in	use.		The	exact
instructions	are	not	important	since	we	are	focusing	on	the	pseudo	ops
that	are	used	to	generate	unwind	information.

			An	important	assumption	made	by	the	unwinder	is	that	the	stack	frame
does	not	change	during	the	body	of	the	function.		In	particular,	since
we	assume	that	the	assembly	code	does	not	itself	throw	an	exception,	the
only	point	where	an	exception	can	be	thrown	is	from	a	call,	such	as	the
'bl'	instruction	above.		At	each	call	site,	the	same	saved	registers
(including	'lr',	which	indicates	the	return	address)	must	be	located	in
the	same	locations	relative	to	the	frame	pointer.

			The	'.fnstart'	(*note	.fnstart	pseudo	op:	arm_fnstart.)	pseudo	op
appears	immediately	before	the	first	instruction	of	the	function	while
the	'.fnend'	(*note	.fnend	pseudo	op:	arm_fnend.)	pseudo	op	appears
immediately	after	the	last	instruction	of	the	function.		These	pseudo
ops	specify	the	range	of	the	function.

			Only	the	order	of	the	other	pseudos	ops	(e.g.,	'.setfp'	or	'.pad')
matters;	their	exact	locations	are	irrelevant.		In	the	example	above,
the	compiler	emits	the	pseudo	ops	with	particular	instructions.		That
makes	it	easier	to	understand	the	code,	but	it	is	not	required	for
correctness.		It	would	work	just	as	well	to	emit	all	of	the	pseudo	ops
other	than	'.fnend'	in	the	same	order,	but	immediately	after	'.fnstart'.

			The	'.save'	(*note	.save	pseudo	op:	arm_save.)	pseudo	op	indicates
registers	that	have	been	saved	to	the	stack	so	that	they	can	be	restored
before	the	function	returns.		The	argument	to	the	'.save'	pseudo	op	is	a
list	of	registers	to	save.		If	a	register	is	"callee-saved"	(as
specified	by	the	ABI)	and	is	modified	by	the	function	you	are	writing,
then	your	code	must	save	the	value	before	it	is	modified	and	restore	the
original	value	before	the	function	returns.		If	an	exception	is	thrown,
the	run-time	library	restores	the	values	of	these	registers	from	their
locations	on	the	stack	before	returning	control	to	the	exception
handler.		(Of	course,	if	an	exception	is	not	thrown,	the	function	that
contains	the	'.save'	pseudo	op	restores	these	registers	in	the	function
epilogue,	as	is	done	with	the	'ldmfd'	instruction	above.)

3/25/20 as.info 140

			You	do	not	have	to	save	callee-saved	registers	at	the	very	beginning
of	the	function	and	you	do	not	need	to	use	the	'.save'	pseudo	op
immediately	following	the	point	at	which	the	registers	are	saved.
However,	if	you	modify	a	callee-saved	register,	you	must	save	it	on	the
stack	before	modifying	it	and	before	calling	any	functions	which	might
throw	an	exception.		And,	you	must	use	the	'.save'	pseudo	op	to	indicate
that	you	have	done	so.

			The	'.pad'	(*note	.pad:	arm_pad.)	pseudo	op	indicates	a	modification
of	the	stack	pointer	that	does	not	save	any	registers.		The	argument	is
the	number	of	bytes	(in	decimal)	that	are	subtracted	from	the	stack
pointer.		(On	ARM	CPUs,	the	stack	grows	downwards,	so	subtracting	from
the	stack	pointer	increases	the	size	of	the	stack.)

			The	'.setfp'	(*note	.setfp	pseudo	op:	arm_setfp.)	pseudo	op	indicates
the	register	that	contains	the	frame	pointer.		The	first	argument	is	the
register	that	is	set,	which	is	typically	'fp'.		The	second	argument
indicates	the	register	from	which	the	frame	pointer	takes	its	value.
The	third	argument,	if	present,	is	the	value	(in	decimal)	added	to	the
register	specified	by	the	second	argument	to	compute	the	value	of	the
frame	pointer.		You	should	not	modify	the	frame	pointer	in	the	body	of
the	function.

			If	you	do	not	use	a	frame	pointer,	then	you	should	not	use	the
'.setfp'	pseudo	op.		If	you	do	not	use	a	frame	pointer,	then	you	should
avoid	modifying	the	stack	pointer	outside	of	the	function	prologue.
Otherwise,	the	run-time	library	will	be	unable	to	find	saved	registers
when	it	is	unwinding	the	stack.

			The	pseudo	ops	described	above	are	sufficient	for	writing	assembly
code	that	calls	functions	which	may	throw	exceptions.		If	you	need	to
know	more	about	the	object-file	format	used	to	represent	unwind
information,	you	may	consult	the	'Exception	Handling	ABI	for	the	ARM
Architecture'	available	from	<http://infocenter.arm.com>.

�
File:	as.info,		Node:	AVR-Dependent,		Next:	Blackfin-Dependent,		Prev:	ARM-Dependent,
Up:	Machine	Dependencies

9.5	AVR	Dependent	Features
==========================

*	Menu:

*	AVR	Options::														Options
*	AVR	Syntax::															Syntax
*	AVR	Opcodes::														Opcodes

�
File:	as.info,		Node:	AVR	Options,		Next:	AVR	Syntax,		Up:	AVR-Dependent

9.5.1	Options

'-mmcu=MCU'
					Specify	ATMEL	AVR	instruction	set	or	MCU	type.

					Instruction	set	avr1	is	for	the	minimal	AVR	core,	not	supported	by

3/25/20 as.info 141

					the	C	compiler,	only	for	assembler	programs	(MCU	types:	at90s1200,
					attiny11,	attiny12,	attiny15,	attiny28).

					Instruction	set	avr2	(default)	is	for	the	classic	AVR	core	with	up
					to	8K	program	memory	space	(MCU	types:	at90s2313,	at90s2323,
					at90s2333,	at90s2343,	attiny22,	attiny26,	at90s4414,	at90s4433,
					at90s4434,	at90s8515,	at90c8534,	at90s8535).

					Instruction	set	avr25	is	for	the	classic	AVR	core	with	up	to	8K
					program	memory	space	plus	the	MOVW	instruction	(MCU	types:
					attiny13,	attiny13a,	attiny2313,	attiny2313a,	attiny24,	attiny24a,
					attiny4313,	attiny44,	attiny44a,	attiny84,	attiny84a,	attiny25,
					attiny45,	attiny85,	attiny261,	attiny261a,	attiny461,	attiny461a,
					attiny861,	attiny861a,	attiny87,	attiny43u,	attiny48,	attiny88,
					attiny828,	at86rf401,	ata6289,	ata5272).

					Instruction	set	avr3	is	for	the	classic	AVR	core	with	up	to	128K
					program	memory	space	(MCU	types:	at43usb355,	at76c711).

					Instruction	set	avr31	is	for	the	classic	AVR	core	with	exactly	128K
					program	memory	space	(MCU	types:	atmega103,	at43usb320).

					Instruction	set	avr35	is	for	classic	AVR	core	plus	MOVW,	CALL,	and
					JMP	instructions	(MCU	types:	attiny167,	attiny1634,	at90usb82,
					at90usb162,	atmega8u2,	atmega16u2,	atmega32u2,	ata5505).

					Instruction	set	avr4	is	for	the	enhanced	AVR	core	with	up	to	8K
					program	memory	space	(MCU	types:	atmega48,	atmega48a,	atmega48pa,
					atmega48p,	atmega8,	atmega8a,	atmega88,	atmega88a,	atmega88p,
					atmega88pa,	atmega8515,	atmega8535,	atmega8hva,	at90pwm1,	at90pwm2,
					at90pwm2b,	at90pwm3,	at90pwm3b,	at90pwm81,	ata6285,	ata6286).

					Instruction	set	avr5	is	for	the	enhanced	AVR	core	with	up	to	128K
					program	memory	space	(MCU	types:	at90pwm161,	atmega16,	atmega16a,
					atmega161,	atmega162,	atmega163,	atmega164a,	atmega164p,
					atmega164pa,	atmega165,	atmega165a,	atmega165p,	atmega165pa,
					atmega168,	atmega168a,	atmega168p,	atmega168pa,	atmega169,
					atmega169a,	atmega169p,	atmega169pa,	atmega32,	atmega323,
					atmega324a,	atmega324p,	atmega324pa,	atmega325,	atmega325a,
					atmega32,	atmega32a,	atmega323,	atmega324a,	atmega324p,
					atmega324pa,	atmega325,	atmega325a,	atmega325p,	atmega325p,
					atmega325pa,	atmega3250,	atmega3250a,	atmega3250p,	atmega3250pa,
					atmega328,	atmega328p,	atmega329,	atmega329a,	atmega329p,
					atmega329pa,	atmega3290a,	atmega3290p,	atmega3290pa,	atmega406,
					atmega64,	atmega64a,	atmega64rfr2,	atmega644rfr2,	atmega640,
					atmega644,	atmega644a,	atmega644p,	atmega644pa,	atmega645,
					atmega645a,	atmega645p,	atmega6450,	atmega6450a,	atmega6450p,
					atmega649,	atmega649a,	atmega649p,	atmega6490,	atmega6490a,
					atmega6490p,	atmega16hva,	atmega16hva2,	atmega16hvb,
					atmega16hvbrevb,	atmega32hvb,	atmega32hvbrevb,	atmega64hve,
					at90can32,	at90can64,	at90pwm161,	at90pwm216,	at90pwm316,
					atmega32c1,	atmega64c1,	atmega16m1,	atmega32m1,	atmega64m1,
					atmega16u4,	atmega32u4,	atmega32u6,	at90usb646,	at90usb647,	at94k,
					at90scr100,	ata5790,	ata5795).

					Instruction	set	avr51	is	for	the	enhanced	AVR	core	with	exactly
					128K	program	memory	space	(MCU	types:	atmega128,	atmega128a,
					atmega1280,	atmega1281,	atmega1284,	atmega1284p,	atmega128rfa1,
					atmega128rfr2,	atmega1284rfr2,	at90can128,	at90usb1286,

3/25/20 as.info 142

					at90usb1287,	m3000).

					Instruction	set	avr6	is	for	the	enhanced	AVR	core	with	a	3-byte	PC
					(MCU	types:	atmega2560,	atmega2561,	atmega256rfr2,	atmega2564rfr2).

					Instruction	set	avrxmega2	is	for	the	XMEGA	AVR	core	with	8K	to	64K
					program	memory	space	and	less	than	64K	data	space	(MCU	types:
					atxmega16a4,	atxmega16a4u,	atxmega16c4,	atxmega16d4,	atxmega16x1,
					atxmega32a4,	atxmega32a4u,	atxmega32c4,	atxmega32d4,	atxmega16e5,
					atxmega8e5,	atxmega32e5,	atxmega32x1).

					Instruction	set	avrxmega3	is	for	the	XMEGA	AVR	core	with	8K	to	64K
					program	memory	space	and	greater	than	64K	data	space	(MCU	types:
					none).

					Instruction	set	avrxmega4	is	for	the	XMEGA	AVR	core	with	up	to	64K
					program	memory	space	and	less	than	64K	data	space	(MCU	types:
					atxmega64a3,	atxmega64a3u,	atxmega64a4u,	atxmega64b1,	atxmega64b3,
					atxmega64c3,	atxmega64d3,	atxmega64d4).

					Instruction	set	avrxmega5	is	for	the	XMEGA	AVR	core	with	up	to	64K
					program	memory	space	and	greater	than	64K	data	space	(MCU	types:
					atxmega64a1,	atxmega64a1u).

					Instruction	set	avrxmega6	is	for	the	XMEGA	AVR	core	with	larger
					than	64K	program	memory	space	and	less	than	64K	data	space	(MCU
					types:	atxmega128a3,	atxmega128a3u,	atxmega128c3,	atxmega128d3,
					atxmega128d4,	atxmega192a3,	atxmega192a3u,	atxmega128b1,
					atxmega128b3,	atxmega192c3,	atxmega192d3,	atxmega256a3,
					atxmega256a3u,	atxmega256a3b,	atxmega256a3bu,	atxmega256c3,
					atxmega256d3,	atxmega384c3,	atxmega256d3).

					Instruction	set	avrxmega7	is	for	the	XMEGA	AVR	core	with	larger
					than	64K	program	memory	space	and	greater	than	64K	data	space	(MCU
					types:	atxmega128a1,	atxmega128a1u,	atxmega128a4u).

					Instruction	set	avrtiny	is	for	the	ATtiny4/5/9/10/20/40
					microcontrollers.

'-mall-opcodes'
					Accept	all	AVR	opcodes,	even	if	not	supported	by	'-mmcu'.

'-mno-skip-bug'
					This	option	disable	warnings	for	skipping	two-word	instructions.

'-mno-wrap'
					This	option	reject	'rjmp/rcall'	instructions	with	8K	wrap-around.

'-mrmw'
					Accept	Read-Modify-Write	('XCH,LAC,LAS,LAT')	instructions.

'-mlink-relax'
					Enable	support	for	link-time	relaxation.		This	is	now	on	by	default
					and	this	flag	no	longer	has	any	effect.

'-mno-link-relax'
					Disable	support	for	link-time	relaxation.		The	assembler	will
					resolve	relocations	when	it	can,	and	may	be	able	to	better	compress
					some	debug	information.

3/25/20 as.info 143

�
File:	as.info,		Node:	AVR	Syntax,		Next:	AVR	Opcodes,		Prev:	AVR	Options,		Up:	AVR-
Dependent

9.5.2	Syntax

*	Menu:

*	AVR-Chars::																Special	Characters
*	AVR-Regs::																	Register	Names
*	AVR-Modifiers::												Relocatable	Expression	Modifiers

�
File:	as.info,		Node:	AVR-Chars,		Next:	AVR-Regs,		Up:	AVR	Syntax

9.5.2.1	Special	Characters
..........................

The	presence	of	a	';'	anywhere	on	a	line	indicates	the	start	of	a
comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line,	the	whole	line	is
treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	'$'	character	can	be	used	instead	of	a	newline	to	separate
statements.

�
File:	as.info,		Node:	AVR-Regs,		Next:	AVR-Modifiers,		Prev:	AVR-Chars,		Up:	AVR
Syntax

9.5.2.2	Register	Names
......................

The	AVR	has	32	x	8-bit	general	purpose	working	registers	'r0',	'r1',	...
'r31'.		Six	of	the	32	registers	can	be	used	as	three	16-bit	indirect
address	register	pointers	for	Data	Space	addressing.		One	of	the	these
address	pointers	can	also	be	used	as	an	address	pointer	for	look	up
tables	in	Flash	program	memory.		These	added	function	registers	are	the
16-bit	'X',	'Y'	and	'Z'	-	registers.

					X	=	r26:r27
					Y	=	r28:r29
					Z	=	r30:r31

�
File:	as.info,		Node:	AVR-Modifiers,		Prev:	AVR-Regs,		Up:	AVR	Syntax

9.5.2.3	Relocatable	Expression	Modifiers
..

The	assembler	supports	several	modifiers	when	using	relocatable
addresses	in	AVR	instruction	operands.		The	general	syntax	is	the
following:

3/25/20 as.info 144

					modifier(relocatable-expression)

'lo8'

					This	modifier	allows	you	to	use	bits	0	through	7	of	an	address
					expression	as	8	bit	relocatable	expression.

'hi8'

					This	modifier	allows	you	to	use	bits	7	through	15	of	an	address
					expression	as	8	bit	relocatable	expression.		This	is	useful	with,
					for	example,	the	AVR	'ldi'	instruction	and	'lo8'	modifier.

					For	example

										ldi	r26,	lo8(sym+10)
										ldi	r27,	hi8(sym+10)

'hh8'

					This	modifier	allows	you	to	use	bits	16	through	23	of	an	address
					expression	as	8	bit	relocatable	expression.		Also,	can	be	useful
					for	loading	32	bit	constants.

'hlo8'

					Synonym	of	'hh8'.

'hhi8'

					This	modifier	allows	you	to	use	bits	24	through	31	of	an	expression
					as	8	bit	expression.		This	is	useful	with,	for	example,	the	AVR
					'ldi'	instruction	and	'lo8',	'hi8',	'hlo8',	'hhi8',	modifier.

					For	example

										ldi	r26,	lo8(285774925)
										ldi	r27,	hi8(285774925)
										ldi	r28,	hlo8(285774925)
										ldi	r29,	hhi8(285774925)
										;	r29,r28,r27,r26	=	285774925

'pm_lo8'

					This	modifier	allows	you	to	use	bits	0	through	7	of	an	address
					expression	as	8	bit	relocatable	expression.		This	modifier	useful
					for	addressing	data	or	code	from	Flash/Program	memory.		The	using
					of	'pm_lo8'	similar	to	'lo8'.

'pm_hi8'

					This	modifier	allows	you	to	use	bits	8	through	15	of	an	address
					expression	as	8	bit	relocatable	expression.		This	modifier	useful
					for	addressing	data	or	code	from	Flash/Program	memory.

'pm_hh8'

					This	modifier	allows	you	to	use	bits	15	through	23	of	an	address
					expression	as	8	bit	relocatable	expression.		This	modifier	useful

3/25/20 as.info 145

					for	addressing	data	or	code	from	Flash/Program	memory.

�
File:	as.info,		Node:	AVR	Opcodes,		Prev:	AVR	Syntax,		Up:	AVR-Dependent

9.5.3	Opcodes

For	detailed	information	on	the	AVR	machine	instruction	set,	see
<www.atmel.com/products/AVR>.

			'as'	implements	all	the	standard	AVR	opcodes.		The	following	table
summarizes	the	AVR	opcodes,	and	their	arguments.

					Legend:
								r			any	register
								d			'ldi'	register	(r16-r31)
								v			'movw'	even	register	(r0,	r2,	...,	r28,	r30)
								a			'fmul'	register	(r16-r23)
								w			'adiw'	register	(r24,r26,r28,r30)
								e			pointer	registers	(X,Y,Z)
								b			base	pointer	register	and	displacement	([YZ]+disp)
								z			Z	pointer	register	(for	[e]lpm	Rd,Z[+])
								M			immediate	value	from	0	to	255
								n			immediate	value	from	0	to	255	(n	=	~M).	Relocation	impossible
								s			immediate	value	from	0	to	7
								P			Port	address	value	from	0	to	63.	(in,	out)
								p			Port	address	value	from	0	to	31.	(cbi,	sbi,	sbic,	sbis)
								K			immediate	value	from	0	to	63	(used	in	'adiw',	'sbiw')
								i			immediate	value
								l			signed	pc	relative	offset	from	-64	to	63
								L			signed	pc	relative	offset	from	-2048	to	2047
								h			absolute	code	address	(call,	jmp)
								S			immediate	value	from	0	to	7	(S	=	s	<<	4)
								?			use	this	opcode	entry	if	no	parameters,	else	use	next	opcode	entry

					1001010010001000			clc
					1001010011011000			clh
					1001010011111000			cli
					1001010010101000			cln
					1001010011001000			cls
					1001010011101000			clt
					1001010010111000			clv
					1001010010011000			clz
					1001010000001000			sec
					1001010001011000			seh
					1001010001111000			sei
					1001010000101000			sen
					1001010001001000			ses
					1001010001101000			set
					1001010000111000			sev
					1001010000011000			sez
					100101001SSS1000			bclr				S
					100101000SSS1000			bset				S
					1001010100001001			icall
					1001010000001001			ijmp
					1001010111001000			lpm					?
					1001000ddddd010+			lpm					r,z
					1001010111011000			elpm				?

3/25/20 as.info 146

					1001000ddddd011+			elpm				r,z
					0000000000000000			nop
					1001010100001000			ret
					1001010100011000			reti
					1001010110001000			sleep
					1001010110011000			break
					1001010110101000			wdr
					1001010111101000			spm
					000111rdddddrrrr			adc					r,r
					000011rdddddrrrr			add					r,r
					001000rdddddrrrr			and					r,r
					000101rdddddrrrr			cp						r,r
					000001rdddddrrrr			cpc					r,r
					000100rdddddrrrr			cpse				r,r
					001001rdddddrrrr			eor					r,r
					001011rdddddrrrr			mov					r,r
					100111rdddddrrrr			mul					r,r
					001010rdddddrrrr			or						r,r
					000010rdddddrrrr			sbc					r,r
					000110rdddddrrrr			sub					r,r
					001001rdddddrrrr			clr					r
					000011rdddddrrrr			lsl					r
					000111rdddddrrrr			rol					r
					001000rdddddrrrr			tst					r
					0111KKKKddddKKKK			andi				d,M
					0111KKKKddddKKKK			cbr					d,n
					1110KKKKddddKKKK			ldi					d,M
					11101111dddd1111			ser					d
					0110KKKKddddKKKK			ori					d,M
					0110KKKKddddKKKK			sbr					d,M
					0011KKKKddddKKKK			cpi					d,M
					0100KKKKddddKKKK			sbci				d,M
					0101KKKKddddKKKK			subi				d,M
					1111110rrrrr0sss			sbrc				r,s
					1111111rrrrr0sss			sbrs				r,s
					1111100ddddd0sss			bld					r,s
					1111101ddddd0sss			bst					r,s
					10110PPdddddPPPP			in						r,P
					10111PPrrrrrPPPP			out					P,r
					10010110KKddKKKK			adiw				w,K
					10010111KKddKKKK			sbiw				w,K
					10011000pppppsss			cbi					p,s
					10011010pppppsss			sbi					p,s
					10011001pppppsss			sbic				p,s
					10011011pppppsss			sbis				p,s
					111101lllllll000			brcc				l
					111100lllllll000			brcs				l
					111100lllllll001			breq				l
					111101lllllll100			brge				l
					111101lllllll101			brhc				l
					111100lllllll101			brhs				l
					111101lllllll111			brid				l
					111100lllllll111			brie				l
					111100lllllll000			brlo				l
					111100lllllll100			brlt				l
					111100lllllll010			brmi				l
					111101lllllll001			brne				l
					111101lllllll010			brpl				l
					111101lllllll000			brsh				l

3/25/20 as.info 147

					111101lllllll110			brtc				l
					111100lllllll110			brts				l
					111101lllllll011			brvc				l
					111100lllllll011			brvs				l
					111101lllllllsss			brbc				s,l
					111100lllllllsss			brbs				s,l
					1101LLLLLLLLLLLL			rcall			L
					1100LLLLLLLLLLLL			rjmp				L
					1001010hhhhh111h			call				h
					1001010hhhhh110h			jmp					h
					1001010rrrrr0101			asr					r
					1001010rrrrr0000			com					r
					1001010rrrrr1010			dec					r
					1001010rrrrr0011			inc					r
					1001010rrrrr0110			lsr					r
					1001010rrrrr0001			neg					r
					1001000rrrrr1111			pop					r
					1001001rrrrr1111			push				r
					1001010rrrrr0111			ror					r
					1001010rrrrr0010			swap				r
					00000001ddddrrrr			movw				v,v
					00000010ddddrrrr			muls				d,d
					000000110ddd0rrr			mulsu			a,a
					000000110ddd1rrr			fmul				a,a
					000000111ddd0rrr			fmuls			a,a
					000000111ddd1rrr			fmulsu		a,a
					1001001ddddd0000			sts					i,r
					1001000ddddd0000			lds					r,i
					10o0oo0dddddbooo			ldd					r,b
					100!000dddddee-+			ld						r,e
					10o0oo1rrrrrbooo			std					b,r
					100!001rrrrree-+			st						e,r
					1001010100011001			eicall
					1001010000011001			eijmp

�
File:	as.info,		Node:	Blackfin-Dependent,		Next:	CR16-Dependent,		Prev:	AVR-
Dependent,		Up:	Machine	Dependencies

9.6	Blackfin	Dependent	Features
===============================

*	Menu:

*	Blackfin	Options:: Blackfin	Options
*	Blackfin	Syntax:: Blackfin	Syntax
*	Blackfin	Directives:: Blackfin	Directives

�
File:	as.info,		Node:	Blackfin	Options,		Next:	Blackfin	Syntax,		Up:	Blackfin-
Dependent

9.6.1	Options

'-mcpu=PROCESSOR[-SIREVISION]'
					This	option	specifies	the	target	processor.		The	optional
					SIREVISION	is	not	used	in	assembler.		It's	here	such	that	GCC	can
					easily	pass	down	its	'-mcpu='	option.		The	assembler	will	issue	an

3/25/20 as.info 148

					error	message	if	an	attempt	is	made	to	assemble	an	instruction
					which	will	not	execute	on	the	target	processor.		The	following
					processor	names	are	recognized:	'bf504',	'bf506',	'bf512',	'bf514',
					'bf516',	'bf518',	'bf522',	'bf523',	'bf524',	'bf525',	'bf526',
					'bf527',	'bf531',	'bf532',	'bf533',	'bf534',	'bf535'	(not
					implemented	yet),	'bf536',	'bf537',	'bf538',	'bf539',	'bf542',
					'bf542m',	'bf544',	'bf544m',	'bf547',	'bf547m',	'bf548',	'bf548m',
					'bf549',	'bf549m',	'bf561',	and	'bf592'.

'-mfdpic'
					Assemble	for	the	FDPIC	ABI.

'-mno-fdpic'
'-mnopic'
					Disable	-mfdpic.

�
File:	as.info,		Node:	Blackfin	Syntax,		Next:	Blackfin	Directives,		Prev:	Blackfin
Options,		Up:	Blackfin-Dependent

9.6.2	Syntax

'Special	Characters'
					Assembler	input	is	free	format	and	may	appear	anywhere	on	the	line.
					One	instruction	may	extend	across	multiple	lines	or	more	than	one
					instruction	may	appear	on	the	same	line.		White	space	(space,	tab,
					comments	or	newline)	may	appear	anywhere	between	tokens.		A	token
					must	not	have	embedded	spaces.		Tokens	include	numbers,	register
					names,	keywords,	user	identifiers,	and	also	some	multicharacter
					special	symbols	like	"+=",	"/*"	or	"||".

					Comments	are	introduced	by	the	'#'	character	and	extend	to	the	end
					of	the	current	line.		If	the	'#'	appears	as	the	first	character	of
					a	line,	the	whole	line	is	treated	as	a	comment,	but	in	this	case
					the	line	can	also	be	a	logical	line	number	directive	(*note
					Comments::)	or	a	preprocessor	control	command	(*note
					Preprocessing::).

'Instruction	Delimiting'
					A	semicolon	must	terminate	every	instruction.		Sometimes	a	complete
					instruction	will	consist	of	more	than	one	operation.		There	are	two
					cases	where	this	occurs.		The	first	is	when	two	general	operations
					are	combined.		Normally	a	comma	separates	the	different	parts,	as
					in

										a0=	r3.h	*	r2.l,	a1	=	r3.l	*	r2.h	;

					The	second	case	occurs	when	a	general	instruction	is	combined	with
					one	or	two	memory	references	for	joint	issue.		The	latter	portions
					are	set	off	by	a	"||"	token.

										a0	=	r3.h	*	r2.l	||	r1	=	[p3++]	||	r4	=	[i2++];

					Multiple	instructions	can	occur	on	the	same	line.		Each	must	be
					terminated	by	a	semicolon	character.

'Register	Names'

3/25/20 as.info 149

					The	assembler	treats	register	names	and	instruction	keywords	in	a
					case	insensitive	manner.		User	identifiers	are	case	sensitive.
					Thus,	R3.l,	R3.L,	r3.l	and	r3.L	are	all	equivalent	input	to	the
					assembler.

					Register	names	are	reserved	and	may	not	be	used	as	program
					identifiers.

					Some	operations	(such	as	"Move	Register")	require	a	register	pair.
					Register	pairs	are	always	data	registers	and	are	denoted	using	a
					colon,	eg.,	R3:2.		The	larger	number	must	be	written	firsts.		Note
					that	the	hardware	only	supports	odd-even	pairs,	eg.,	R7:6,	R5:4,
					R3:2,	and	R1:0.

					Some	instructions	(such	as	-SP	(Push	Multiple))	require	a	group	of
					adjacent	registers.		Adjacent	registers	are	denoted	in	the	syntax
					by	the	range	enclosed	in	parentheses	and	separated	by	a	colon,	eg.,
					(R7:3).		Again,	the	larger	number	appears	first.

					Portions	of	a	particular	register	may	be	individually	specified.
					This	is	written	with	a	dot	(".")		following	the	register	name	and
					then	a	letter	denoting	the	desired	portion.		For	32-bit	registers,
					".H"	denotes	the	most	significant	("High")	portion.		".L"	denotes
					the	least-significant	portion.		The	subdivisions	of	the	40-bit
					registers	are	described	later.

'Accumulators'
					The	set	of	40-bit	registers	A1	and	A0	that	normally	contain	data
					that	is	being	manipulated.		Each	accumulator	can	be	accessed	in
					four	ways.

					'one	40-bit	register'
										The	register	will	be	referred	to	as	A1	or	A0.
					'one	32-bit	register'
										The	registers	are	designated	as	A1.W	or	A0.W.
					'two	16-bit	registers'
										The	registers	are	designated	as	A1.H,	A1.L,	A0.H	or	A0.L.
					'one	8-bit	register'
										The	registers	are	designated	as	A1.X	or	A0.X	for	the	bits	that
										extend	beyond	bit	31.

'Data	Registers'
					The	set	of	32-bit	registers	(R0,	R1,	R2,	R3,	R4,	R5,	R6	and	R7)
					that	normally	contain	data	for	manipulation.		These	are	abbreviated
					as	D-register	or	Dreg.		Data	registers	can	be	accessed	as	32-bit
					registers	or	as	two	independent	16-bit	registers.		The	least
					significant	16	bits	of	each	register	is	called	the	"low"	half	and
					is	designated	with	".L"	following	the	register	name.		The	most
					significant	16	bits	are	called	the	"high"	half	and	is	designated
					with	".H"	following	the	name.

													R7.L,	r2.h,	r4.L,	R0.H

'Pointer	Registers'
					The	set	of	32-bit	registers	(P0,	P1,	P2,	P3,	P4,	P5,	SP	and	FP)
					that	normally	contain	byte	addresses	of	data	structures.		These	are
					abbreviated	as	P-register	or	Preg.

										p2,	p5,	fp,	sp

3/25/20 as.info 150

'Stack	Pointer	SP'
					The	stack	pointer	contains	the	32-bit	address	of	the	last	occupied
					byte	location	in	the	stack.		The	stack	grows	by	decrementing	the
					stack	pointer.

'Frame	Pointer	FP'
					The	frame	pointer	contains	the	32-bit	address	of	the	previous	frame
					pointer	in	the	stack.		It	is	located	at	the	top	of	a	frame.

'Loop	Top'
					LT0	and	LT1.		These	registers	contain	the	32-bit	address	of	the	top
					of	a	zero	overhead	loop.

'Loop	Count'
					LC0	and	LC1.		These	registers	contain	the	32-bit	counter	of	the
					zero	overhead	loop	executions.

'Loop	Bottom'
					LB0	and	LB1.		These	registers	contain	the	32-bit	address	of	the
					bottom	of	a	zero	overhead	loop.

'Index	Registers'
					The	set	of	32-bit	registers	(I0,	I1,	I2,	I3)	that	normally	contain
					byte	addresses	of	data	structures.		Abbreviated	I-register	or	Ireg.

'Modify	Registers'
					The	set	of	32-bit	registers	(M0,	M1,	M2,	M3)	that	normally	contain
					offset	values	that	are	added	and	subtracted	to	one	of	the	index
					registers.		Abbreviated	as	Mreg.

'Length	Registers'
					The	set	of	32-bit	registers	(L0,	L1,	L2,	L3)	that	normally	contain
					the	length	in	bytes	of	the	circular	buffer.		Abbreviated	as	Lreg.
					Clear	the	Lreg	to	disable	circular	addressing	for	the	corresponding
					Ireg.

'Base	Registers'
					The	set	of	32-bit	registers	(B0,	B1,	B2,	B3)	that	normally	contain
					the	base	address	in	bytes	of	the	circular	buffer.		Abbreviated	as
					Breg.

'Floating	Point'
					The	Blackfin	family	has	no	hardware	floating	point	but	the	.float
					directive	generates	ieee	floating	point	numbers	for	use	with
					software	floating	point	libraries.

'Blackfin	Opcodes'
					For	detailed	information	on	the	Blackfin	machine	instruction	set,
					see	the	Blackfin(r)	Processor	Instruction	Set	Reference.

�
File:	as.info,		Node:	Blackfin	Directives,		Prev:	Blackfin	Syntax,		Up:	Blackfin-
Dependent

9.6.3	Directives

The	following	directives	are	provided	for	compatibility	with	the	VDSP

3/25/20 as.info 151

assembler.

'.byte2'
					Initializes	a	two	byte	data	object.

					This	maps	to	the	'.short'	directive.
'.byte4'
					Initializes	a	four	byte	data	object.

					This	maps	to	the	'.int'	directive.
'.db'
					Initializes	a	single	byte	data	object.

					This	directive	is	a	synonym	for	'.byte'.
'.dw'
					Initializes	a	two	byte	data	object.

					This	directive	is	a	synonym	for	'.byte2'.
'.dd'
					Initializes	a	four	byte	data	object.

					This	directive	is	a	synonym	for	'.byte4'.
'.var'
					Define	and	initialize	a	32	bit	data	object.

�
File:	as.info,		Node:	CR16-Dependent,		Next:	CRIS-Dependent,		Prev:	Blackfin-
Dependent,		Up:	Machine	Dependencies

9.7	CR16	Dependent	Features
===========================

*	Menu:

*	CR16	Operand	Qualifiers::					CR16	Machine	Operand	Qualifiers
*	CR16	Syntax::																	Syntax	for	the	CR16

�
File:	as.info,		Node:	CR16	Operand	Qualifiers,		Next:	CR16	Syntax,		Up:	CR16-
Dependent

9.7.1	CR16	Operand	Qualifiers

The	National	Semiconductor	CR16	target	of	'as'	has	a	few	machine
dependent	operand	qualifiers.

			Operand	expression	type	qualifier	is	an	optional	field	in	the
instruction	operand,	to	determines	the	type	of	the	expression	field	of
an	operand.		The	'@'	is	required.		CR16	architecture	uses	one	of	the
following	expression	qualifiers:

's'
					-	'Specifies	expression	operand	type	as	small'
'm'
					-	'Specifies	expression	operand	type	as	medium'
'l'
					-	'Specifies	expression	operand	type	as	large'
'c'

3/25/20 as.info 152

					-	'Specifies	the	CR16	Assembler	generates	a	relocation	entry	for
					the	operand,	where	pc	has	implied	bit,	the	expression	is	adjusted
					accordingly.	The	linker	uses	the	relocation	entry	to	update	the
					operand	address	at	link	time.'
'got/GOT'
					-	'Specifies	the	CR16	Assembler	generates	a	relocation	entry	for
					the	operand,	offset	from	Global	Offset	Table.	The	linker	uses	this
					relocation	entry	to	update	the	operand	address	at	link	time'
'cgot/cGOT'
					-	'Specifies	the	CompactRISC	Assembler	generates	a	relocation	entry
					for	the	operand,	where	pc	has	implied	bit,	the	expression	is
					adjusted	accordingly.	The	linker	uses	the	relocation	entry	to
					update	the	operand	address	at	link	time.'

			CR16	target	operand	qualifiers	and	its	size	(in	bits):

'Immediate	Operand:	s'
					4	bits.

'Immediate	Operand:	m'
					16	bits,	for	movb	and	movw	instructions.

'Immediate	Operand:	m'
					20	bits,	movd	instructions.

'Immediate	Operand:	l'
					32	bits.

'Absolute	Operand:	s'
					Illegal	specifier	for	this	operand.

'Absolute	Operand:	m'
					20	bits,	movd	instructions.

'Displacement	Operand:	s'
					8	bits.

'Displacement	Operand:	m'
					16	bits.

'Displacement	Operand:	l'
					24	bits.

			For	example:
					1			movw	$_myfun@c,r1

									This	loads	the	address	of	_myfun,	shifted	right	by	1,	into	r1.

					2			movd	$_myfun@c,(r2,r1)

									This	loads	the	address	of	_myfun,	shifted	right	by	1,	into	register-pair	r2-
r1.

					3			_myfun_ptr:
									.long	_myfun@c
									loadd	_myfun_ptr,	(r1,r0)
									jal	(r1,r0)

									This	.long	directive,	the	address	of	_myfunc,	shifted	right	by	1	at	link
time.

3/25/20 as.info 153

									This	.long	directive,	the	address	of	_myfunc,	shifted	right	by	1	at	link
time.

					4			loadd		_data1@GOT(r12),	(r1,r0)

									This	loads	the	address	of	_data1,	into	global	offset	table	(ie	GOT)	and	its
offset	value	from	GOT	loads	into	register-pair	r2-r1.

					5			loadd		_myfunc@cGOT(r12),	(r1,r0)

									This	loads	the	address	of	_myfun,	shifted	right	by	1,	into	global	offset
table	(ie	GOT)	and	its	offset	value	from	GOT	loads	into	register-pair	r1-r0.

�
File:	as.info,		Node:	CR16	Syntax,		Prev:	CR16	Operand	Qualifiers,		Up:	CR16-
Dependent

9.7.2	CR16	Syntax

*	Menu:

*	CR16-Chars::																Special	Characters

�
File:	as.info,		Node:	CR16-Chars,		Up:	CR16	Syntax

9.7.2.1	Special	Characters
..........................

The	presence	of	a	'#'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.		If	the	'#'	appears	as	the	first
character	of	a	line,	the	whole	line	is	treated	as	a	comment,	but	in	this
case	the	line	can	also	be	a	logical	line	number	directive	(*note
Comments::)	or	a	preprocessor	control	command	(*note	Preprocessing::).

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	CRIS-Dependent,		Next:	D10V-Dependent,		Prev:	CR16-Dependent,
Up:	Machine	Dependencies

9.8	CRIS	Dependent	Features
===========================

*	Menu:

*	CRIS-Opts::														Command-line	Options
*	CRIS-Expand::												Instruction	expansion
*	CRIS-Symbols::											Symbols
*	CRIS-Syntax::												Syntax

�
File:	as.info,		Node:	CRIS-Opts,		Next:	CRIS-Expand,		Up:	CRIS-Dependent

9.8.1	Command-line	Options

3/25/20 as.info 154

The	CRIS	version	of	'as'	has	these	machine-dependent	command-line
options.

			The	format	of	the	generated	object	files	can	be	either	ELF	or	a.out,
specified	by	the	command-line	options	'--emulation=crisaout'	and
'--emulation=criself'.		The	default	is	ELF	(criself),	unless	'as'	has
been	configured	specifically	for	a.out	by	using	the	configuration	name
'cris-axis-aout'.

			There	are	two	different	link-incompatible	ELF	object	file	variants
for	CRIS,	for	use	in	environments	where	symbols	are	expected	to	be
prefixed	by	a	leading	'_'	character	and	for	environments	without	such	a
symbol	prefix.		The	variant	used	for	GNU/Linux	port	has	no	symbol
prefix.		Which	variant	to	produce	is	specified	by	either	of	the	options
'--underscore'	and	'--no-underscore'.		The	default	is	'--underscore'.
Since	symbols	in	CRIS	a.out	objects	are	expected	to	have	a	'_'	prefix,
specifying	'--no-underscore'	when	generating	a.out	objects	is	an	error.
Besides	the	object	format	difference,	the	effect	of	this	option	is	to
parse	register	names	differently	(*note	crisnous::).		The
'--no-underscore'	option	makes	a	'$'	register	prefix	mandatory.

			The	option	'--pic'	must	be	passed	to	'as'	in	order	to	recognize	the
symbol	syntax	used	for	ELF	(SVR4	PIC)	position-independent-code	(*note
crispic::).		This	will	also	affect	expansion	of	instructions.		The
expansion	with	'--pic'	will	use	PC-relative	rather	than	(slightly
faster)	absolute	addresses	in	those	expansions.		This	option	is	only
valid	when	generating	ELF	format	object	files.

			The	option	'--march=ARCHITECTURE'	specifies	the	recognized
instruction	set	and	recognized	register	names.		It	also	controls	the
architecture	type	of	the	object	file.		Valid	values	for	ARCHITECTURE
are:

'v0_v10'
					All	instructions	and	register	names	for	any	architecture	variant	in
					the	set	v0...v10	are	recognized.		This	is	the	default	if	the	target
					is	configured	as	cris-*.

'v10'
					Only	instructions	and	register	names	for	CRIS	v10	(as	found	in
					ETRAX	100	LX)	are	recognized.		This	is	the	default	if	the	target	is
					configured	as	crisv10-*.

'v32'
					Only	instructions	and	register	names	for	CRIS	v32	(code	name
					Guinness)	are	recognized.		This	is	the	default	if	the	target	is
					configured	as	crisv32-*.		This	value	implies	'--no-mul-bug-abort'.
					(A	subsequent	'--mul-bug-abort'	will	turn	it	back	on.)

'common_v10_v32'
					Only	instructions	with	register	names	and	addressing	modes	with
					opcodes	common	to	the	v10	and	v32	are	recognized.

			When	'-N'	is	specified,	'as'	will	emit	a	warning	when	a	16-bit	branch
instruction	is	expanded	into	a	32-bit	multiple-instruction	construct
(*note	CRIS-Expand::).

			Some	versions	of	the	CRIS	v10,	for	example	in	the	Etrax	100	LX,
contain	a	bug	that	causes	destabilizing	memory	accesses	when	a	multiply

3/25/20 as.info 155

instruction	is	executed	with	certain	values	in	the	first	operand	just
before	a	cache-miss.		When	the	'--mul-bug-abort'	command	line	option	is
active	(the	default	value),	'as'	will	refuse	to	assemble	a	file
containing	a	multiply	instruction	at	a	dangerous	offset,	one	that	could
be	the	last	on	a	cache-line,	or	is	in	a	section	with	insufficient
alignment.		This	placement	checking	does	not	catch	any	case	where	the
multiply	instruction	is	dangerously	placed	because	it	is	located	in	a
delay-slot.		The	'--mul-bug-abort'	command	line	option	turns	off	the
checking.

�
File:	as.info,		Node:	CRIS-Expand,		Next:	CRIS-Symbols,		Prev:	CRIS-Opts,		Up:	CRIS-
Dependent

9.8.2	Instruction	expansion

'as'	will	silently	choose	an	instruction	that	fits	the	operand	size	for
'[register+constant]'	operands.		For	example,	the	offset	'127'	in
'move.d	[r3+127],r4'	fits	in	an	instruction	using	a	signed-byte	offset.
Similarly,	'move.d	[r2+32767],r1'	will	generate	an	instruction	using	a
16-bit	offset.		For	symbolic	expressions	and	constants	that	do	not	fit
in	16	bits	including	the	sign	bit,	a	32-bit	offset	is	generated.

			For	branches,	'as'	will	expand	from	a	16-bit	branch	instruction	into
a	sequence	of	instructions	that	can	reach	a	full	32-bit	address.		Since
this	does	not	correspond	to	a	single	instruction,	such	expansions	can
optionally	be	warned	about.		*Note	CRIS-Opts::.

			If	the	operand	is	found	to	fit	the	range,	a	'lapc'	mnemonic	will
translate	to	a	'lapcq'	instruction.		Use	'lapc.d'	to	force	the	32-bit
'lapc'	instruction.

			Similarly,	the	'addo'	mnemonic	will	translate	to	the	shortest	fitting
instruction	of	'addoq',	'addo.w'	and	'addo.d',	when	used	with	a	operand
that	is	a	constant	known	at	assembly	time.

�
File:	as.info,		Node:	CRIS-Symbols,		Next:	CRIS-Syntax,		Prev:	CRIS-Expand,		Up:
CRIS-Dependent

9.8.3	Symbols

Some	symbols	are	defined	by	the	assembler.		They're	intended	to	be	used
in	conditional	assembly,	for	example:
						.if	..asm.arch.cris.v32
						CODE	FOR	CRIS	V32
						.elseif	..asm.arch.cris.common_v10_v32
						CODE	COMMON	TO	CRIS	V32	AND	CRIS	V10
						.elseif	..asm.arch.cris.v10	|	..asm.arch.cris.any_v0_v10
						CODE	FOR	V10
						.else
						.error	"Code	needs	to	be	added	here."
						.endif

			These	symbols	are	defined	in	the	assembler,	reflecting	command-line
options,	either	when	specified	or	the	default.		They	are	always	defined,
to	0	or	1.

3/25/20 as.info 156

'..asm.arch.cris.any_v0_v10'
					This	symbol	is	non-zero	when	'--march=v0_v10'	is	specified	or	the
					default.

'..asm.arch.cris.common_v10_v32'
					Set	according	to	the	option	'--march=common_v10_v32'.

'..asm.arch.cris.v10'
					Reflects	the	option	'--march=v10'.

'..asm.arch.cris.v32'
					Corresponds	to	'--march=v10'.

			Speaking	of	symbols,	when	a	symbol	is	used	in	code,	it	can	have	a
suffix	modifying	its	value	for	use	in	position-independent	code.		*Note
CRIS-Pic::.

�
File:	as.info,		Node:	CRIS-Syntax,		Prev:	CRIS-Symbols,		Up:	CRIS-Dependent

9.8.4	Syntax

There	are	different	aspects	of	the	CRIS	assembly	syntax.

*	Menu:

*	CRIS-Chars:: 								Special	Characters
*	CRIS-Pic:: Position-Independent	Code	Symbols
*	CRIS-Regs:: Register	Names
*	CRIS-Pseudos:: Assembler	Directives

�
File:	as.info,		Node:	CRIS-Chars,		Next:	CRIS-Pic,		Up:	CRIS-Syntax

9.8.4.1	Special	Characters
..........................

The	character	'#'	is	a	line	comment	character.		It	starts	a	comment	if
and	only	if	it	is	placed	at	the	beginning	of	a	line.

			A	';'	character	starts	a	comment	anywhere	on	the	line,	causing	all
characters	up	to	the	end	of	the	line	to	be	ignored.

			A	'@'	character	is	handled	as	a	line	separator	equivalent	to	a
logical	new-line	character	(except	in	a	comment),	so	separate
instructions	can	be	specified	on	a	single	line.

�
File:	as.info,		Node:	CRIS-Pic,		Next:	CRIS-Regs,		Prev:	CRIS-Chars,		Up:	CRIS-Syntax

9.8.4.2	Symbols	in	position-independent	code
..

When	generating	position-independent	code	(SVR4	PIC)	for	use	in
cris-axis-linux-gnu	or	crisv32-axis-linux-gnu	shared	libraries,	symbol
suffixes	are	used	to	specify	what	kind	of	run-time	symbol	lookup	will	be
used,	expressed	in	the	object	as	different	_relocation	types_.		Usually,

3/25/20 as.info 157

all	absolute	symbol	values	must	be	located	in	a	table,	the	_global
offset	table_,	leaving	the	code	position-independent;	independent	of
values	of	global	symbols	and	independent	of	the	address	of	the	code.
The	suffix	modifies	the	value	of	the	symbol,	into	for	example	an	index
into	the	global	offset	table	where	the	real	symbol	value	is	entered,	or
a	PC-relative	value,	or	a	value	relative	to	the	start	of	the	global
offset	table.		All	symbol	suffixes	start	with	the	character	':'	(omitted
in	the	list	below).		Every	symbol	use	in	code	or	a	read-only	section
must	therefore	have	a	PIC	suffix	to	enable	a	useful	shared	library	to	be
created.		Usually,	these	constructs	must	not	be	used	with	an	additive
constant	offset	as	is	usually	allowed,	i.e.	no	4	as	in	'symbol	+	4'	is
allowed.		This	restriction	is	checked	at	link-time,	not	at
assembly-time.

'GOT'

					Attaching	this	suffix	to	a	symbol	in	an	instruction	causes	the
					symbol	to	be	entered	into	the	global	offset	table.		The	value	is	a
					32-bit	index	for	that	symbol	into	the	global	offset	table.		The
					name	of	the	corresponding	relocation	is	'R_CRIS_32_GOT'.		Example:
					'move.d	[$r0+extsym:GOT],$r9'

'GOT16'

					Same	as	for	'GOT',	but	the	value	is	a	16-bit	index	into	the	global
					offset	table.		The	corresponding	relocation	is	'R_CRIS_16_GOT'.
					Example:	'move.d	[$r0+asymbol:GOT16],$r10'

'PLT'

					This	suffix	is	used	for	function	symbols.		It	causes	a	_procedure
					linkage	table_,	an	array	of	code	stubs,	to	be	created	at	the	time
					the	shared	object	is	created	or	linked	against,	together	with	a
					global	offset	table	entry.		The	value	is	a	pc-relative	offset	to
					the	corresponding	stub	code	in	the	procedure	linkage	table.		This
					arrangement	causes	the	run-time	symbol	resolver	to	be	called	to
					look	up	and	set	the	value	of	the	symbol	the	first	time	the	function
					is	called	(at	latest;	depending	environment	variables).		It	is	only
					safe	to	leave	the	symbol	unresolved	this	way	if	all	references	are
					function	calls.		The	name	of	the	relocation	is
					'R_CRIS_32_PLT_PCREL'.		Example:	'add.d	fnname:PLT,$pc'

'PLTG'

					Like	PLT,	but	the	value	is	relative	to	the	beginning	of	the	global
					offset	table.		The	relocation	is	'R_CRIS_32_PLT_GOTREL'.		Example:
					'move.d	fnname:PLTG,$r3'

'GOTPLT'

					Similar	to	'PLT',	but	the	value	of	the	symbol	is	a	32-bit	index
					into	the	global	offset	table.		This	is	somewhat	of	a	mix	between
					the	effect	of	the	'GOT'	and	the	'PLT'	suffix;	the	difference	to
					'GOT'	is	that	there	will	be	a	procedure	linkage	table	entry
					created,	and	that	the	symbol	is	assumed	to	be	a	function	entry	and
					will	be	resolved	by	the	run-time	resolver	as	with	'PLT'.		The
					relocation	is	'R_CRIS_32_GOTPLT'.		Example:	'jsr
					[$r0+fnname:GOTPLT]'

3/25/20 as.info 158

'GOTPLT16'

					A	variant	of	'GOTPLT'	giving	a	16-bit	value.		Its	relocation	name
					is	'R_CRIS_16_GOTPLT'.		Example:	'jsr	[$r0+fnname:GOTPLT16]'

'GOTOFF'

					This	suffix	must	only	be	attached	to	a	local	symbol,	but	may	be
					used	in	an	expression	adding	an	offset.		The	value	is	the	address
					of	the	symbol	relative	to	the	start	of	the	global	offset	table.
					The	relocation	name	is	'R_CRIS_32_GOTREL'.		Example:	'move.d
					[$r0+localsym:GOTOFF],r3'

�
File:	as.info,		Node:	CRIS-Regs,		Next:	CRIS-Pseudos,		Prev:	CRIS-Pic,		Up:	CRIS-
Syntax

9.8.4.3	Register	names
......................

A	'$'	character	may	always	prefix	a	general	or	special	register	name	in
an	instruction	operand	but	is	mandatory	when	the	option
'--no-underscore'	is	specified	or	when	the	'.syntax	register_prefix'
directive	is	in	effect	(*note	crisnous::).		Register	names	are
case-insensitive.

�
File:	as.info,		Node:	CRIS-Pseudos,		Prev:	CRIS-Regs,		Up:	CRIS-Syntax

9.8.4.4	Assembler	Directives
............................

There	are	a	few	CRIS-specific	pseudo-directives	in	addition	to	the
generic	ones.		*Note	Pseudo	Ops::.		Constants	emitted	by
pseudo-directives	are	in	little-endian	order	for	CRIS.	There	is	no
support	for	floating-point-specific	directives	for	CRIS.

'.dword	EXPRESSIONS'

					The	'.dword'	directive	is	a	synonym	for	'.int',	expecting	zero	or
					more	EXPRESSIONS,	separated	by	commas.		For	each	expression,	a
					32-bit	little-endian	constant	is	emitted.

'.syntax	ARGUMENT'
					The	'.syntax'	directive	takes	as	ARGUMENT	one	of	the	following
					case-sensitive	choices.

					'no_register_prefix'

										The	'.syntax	no_register_prefix'	directive	makes	a	'$'
										character	prefix	on	all	registers	optional.		It	overrides	a
										previous	setting,	including	the	corresponding	effect	of	the
										option	'--no-underscore'.		If	this	directive	is	used	when
										ordinary	symbols	do	not	have	a	'_'	character	prefix,	care	must
										be	taken	to	avoid	ambiguities	whether	an	operand	is	a	register
										or	a	symbol;	using	symbols	with	names	the	same	as	general	or
										special	registers	then	invoke	undefined	behavior.

					'register_prefix'

3/25/20 as.info 159

										This	directive	makes	a	'$'	character	prefix	on	all	registers
										mandatory.		It	overrides	a	previous	setting,	including	the
										corresponding	effect	of	the	option	'--underscore'.

					'leading_underscore'

										This	is	an	assertion	directive,	emitting	an	error	if	the
										'--no-underscore'	option	is	in	effect.

					'no_leading_underscore'

										This	is	the	opposite	of	the	'.syntax	leading_underscore'
										directive	and	emits	an	error	if	the	option	'--underscore'	is
										in	effect.

'.arch	ARGUMENT'
					This	is	an	assertion	directive,	giving	an	error	if	the	specified
					ARGUMENT	is	not	the	same	as	the	specified	or	default	value	for	the
					'--march=ARCHITECTURE'	option	(*note	march-option::).

�
File:	as.info,		Node:	D10V-Dependent,		Next:	D30V-Dependent,		Prev:	CRIS-Dependent,
Up:	Machine	Dependencies

9.9	D10V	Dependent	Features
===========================

*	Menu:

*	D10V-Opts::																			D10V	Options
*	D10V-Syntax::																	Syntax
*	D10V-Float::																		Floating	Point
*	D10V-Opcodes::																Opcodes

�
File:	as.info,		Node:	D10V-Opts,		Next:	D10V-Syntax,		Up:	D10V-Dependent

9.9.1	D10V	Options

The	Mitsubishi	D10V	version	of	'as'	has	a	few	machine	dependent	options.

'-O'
					The	D10V	can	often	execute	two	sub-instructions	in	parallel.		When
					this	option	is	used,	'as'	will	attempt	to	optimize	its	output	by
					detecting	when	instructions	can	be	executed	in	parallel.
'--nowarnswap'
					To	optimize	execution	performance,	'as'	will	sometimes	swap	the
					order	of	instructions.		Normally	this	generates	a	warning.		When
					this	option	is	used,	no	warning	will	be	generated	when	instructions
					are	swapped.
'--gstabs-packing'
'--no-gstabs-packing'
					'as'	packs	adjacent	short	instructions	into	a	single	packed
					instruction.		'--no-gstabs-packing'	turns	instruction	packing	off
					if	'--gstabs'	is	specified	as	well;	'--gstabs-packing'	(the
					default)	turns	instruction	packing	on	even	when	'--gstabs'	is
					specified.

3/25/20 as.info 160

�
File:	as.info,		Node:	D10V-Syntax,		Next:	D10V-Float,		Prev:	D10V-Opts,		Up:	D10V-
Dependent

9.9.2	Syntax

The	D10V	syntax	is	based	on	the	syntax	in	Mitsubishi's	D10V	architecture
manual.		The	differences	are	detailed	below.

*	Menu:

*	D10V-Size::																	Size	Modifiers
*	D10V-Subs::																	Sub-Instructions
*	D10V-Chars::																Special	Characters
*	D10V-Regs::																	Register	Names
*	D10V-Addressing::											Addressing	Modes
*	D10V-Word::																	@WORD	Modifier

�
File:	as.info,		Node:	D10V-Size,		Next:	D10V-Subs,		Up:	D10V-Syntax

9.9.2.1	Size	Modifiers
......................

The	D10V	version	of	'as'	uses	the	instruction	names	in	the	D10V
Architecture	Manual.		However,	the	names	in	the	manual	are	sometimes
ambiguous.		There	are	instruction	names	that	can	assemble	to	a	short	or
long	form	opcode.		How	does	the	assembler	pick	the	correct	form?		'as'
will	always	pick	the	smallest	form	if	it	can.		When	dealing	with	a
symbol	that	is	not	defined	yet	when	a	line	is	being	assembled,	it	will
always	use	the	long	form.		If	you	need	to	force	the	assembler	to	use
either	the	short	or	long	form	of	the	instruction,	you	can	append	either
'.s'	(short)	or	'.l'	(long)	to	it.		For	example,	if	you	are	writing	an
assembly	program	and	you	want	to	do	a	branch	to	a	symbol	that	is	defined
later	in	your	program,	you	can	write	'bra.s	foo'.		Objdump	and	GDB	will
always	append	'.s'	or	'.l'	to	instructions	which	have	both	short	and
long	forms.

�
File:	as.info,		Node:	D10V-Subs,		Next:	D10V-Chars,		Prev:	D10V-Size,		Up:	D10V-
Syntax

9.9.2.2	Sub-Instructions
........................

The	D10V	assembler	takes	as	input	a	series	of	instructions,	either
one-per-line,	or	in	the	special	two-per-line	format	described	in	the
next	section.		Some	of	these	instructions	will	be	short-form	or
sub-instructions.		These	sub-instructions	can	be	packed	into	a	single
instruction.		The	assembler	will	do	this	automatically.		It	will	also
detect	when	it	should	not	pack	instructions.		For	example,	when	a	label
is	defined,	the	next	instruction	will	never	be	packaged	with	the
previous	one.		Whenever	a	branch	and	link	instruction	is	called,	it	will
not	be	packaged	with	the	next	instruction	so	the	return	address	will	be
valid.		Nops	are	automatically	inserted	when	necessary.

			If	you	do	not	want	the	assembler	automatically	making	these

3/25/20 as.info 161

decisions,	you	can	control	the	packaging	and	execution	type	(parallel	or
sequential)	with	the	special	execution	symbols	described	in	the	next
section.

�
File:	as.info,		Node:	D10V-Chars,		Next:	D10V-Regs,		Prev:	D10V-Subs,		Up:	D10V-
Syntax

9.9.2.3	Special	Characters
..........................

A	semicolon	(';')	can	be	used	anywhere	on	a	line	to	start	a	comment	that
extends	to	the	end	of	the	line.

			If	a	'#'	appears	as	the	first	character	of	a	line,	the	whole	line	is
treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			Sub-instructions	may	be	executed	in	order,	in	reverse-order,	or	in
parallel.		Instructions	listed	in	the	standard	one-per-line	format	will
be	executed	sequentially.		To	specify	the	executing	order,	use	the
following	symbols:
'->'
					Sequential	with	instruction	on	the	left	first.
'<-'
					Sequential	with	instruction	on	the	right	first.
'||'
					Parallel
			The	D10V	syntax	allows	either	one	instruction	per	line,	one
instruction	per	line	with	the	execution	symbol,	or	two	instructions	per
line.		For	example
'abs	a1	->	abs	r0'
					Execute	these	sequentially.		The	instruction	on	the	right	is	in	the
					right	container	and	is	executed	second.
'abs	r0	<-	abs	a1'
					Execute	these	reverse-sequentially.		The	instruction	on	the	right
					is	in	the	right	container,	and	is	executed	first.
'ld2w	r2,@r8+	||	mac	a0,r0,r7'
					Execute	these	in	parallel.
'ld2w	r2,@r8+	||'
'mac	a0,r0,r7'
					Two-line	format.		Execute	these	in	parallel.
'ld2w	r2,@r8+'
'mac	a0,r0,r7'
					Two-line	format.		Execute	these	sequentially.		Assembler	will	put
					them	in	the	proper	containers.
'ld2w	r2,@r8+	->'
'mac	a0,r0,r7'
					Two-line	format.		Execute	these	sequentially.		Same	as	above	but
					second	instruction	will	always	go	into	right	container.
			Since	'$'	has	no	special	meaning,	you	may	use	it	in	symbol	names.

�
File:	as.info,		Node:	D10V-Regs,		Next:	D10V-Addressing,		Prev:	D10V-Chars,		Up:
D10V-Syntax

9.9.2.4	Register	Names
......................

3/25/20 as.info 162

You	can	use	the	predefined	symbols	'r0'	through	'r15'	to	refer	to	the
D10V	registers.		You	can	also	use	'sp'	as	an	alias	for	'r15'.		The
accumulators	are	'a0'	and	'a1'.		There	are	special	register-pair	names
that	may	optionally	be	used	in	opcodes	that	require	even-numbered
registers.		Register	names	are	not	case	sensitive.

			Register	Pairs
'r0-r1'
'r2-r3'
'r4-r5'
'r6-r7'
'r8-r9'
'r10-r11'
'r12-r13'
'r14-r15'

			The	D10V	also	has	predefined	symbols	for	these	control	registers	and
status	bits:
'psw'
					Processor	Status	Word
'bpsw'
					Backup	Processor	Status	Word
'pc'
					Program	Counter
'bpc'
					Backup	Program	Counter
'rpt_c'
					Repeat	Count
'rpt_s'
					Repeat	Start	address
'rpt_e'
					Repeat	End	address
'mod_s'
					Modulo	Start	address
'mod_e'
					Modulo	End	address
'iba'
					Instruction	Break	Address
'f0'
					Flag	0
'f1'
					Flag	1
'c'
					Carry	flag

�
File:	as.info,		Node:	D10V-Addressing,		Next:	D10V-Word,		Prev:	D10V-Regs,		Up:	D10V-
Syntax

9.9.2.5	Addressing	Modes
........................

'as'	understands	the	following	addressing	modes	for	the	D10V.	'RN'	in
the	following	refers	to	any	of	the	numbered	registers,	but	_not_	the
control	registers.
'RN'
					Register	direct
'@RN'

3/25/20 as.info 163

					Register	indirect
'@RN+'
					Register	indirect	with	post-increment
'@RN-'
					Register	indirect	with	post-decrement
'@-SP'
					Register	indirect	with	pre-decrement
'@(DISP,	RN)'
					Register	indirect	with	displacement
'ADDR'
					PC	relative	address	(for	branch	or	rep).
'#IMM'
					Immediate	data	(the	'#'	is	optional	and	ignored)

�
File:	as.info,		Node:	D10V-Word,		Prev:	D10V-Addressing,		Up:	D10V-Syntax

9.9.2.6	@WORD	Modifier
......................

Any	symbol	followed	by	'@word'	will	be	replaced	by	the	symbol's	value
shifted	right	by	2.		This	is	used	in	situations	such	as	loading	a
register	with	the	address	of	a	function	(or	any	other	code	fragment).
For	example,	if	you	want	to	load	a	register	with	the	location	of	the
function	'main'	then	jump	to	that	function,	you	could	do	it	as	follows:
					ldi					r2,	main@word
					jmp					r2

�
File:	as.info,		Node:	D10V-Float,		Next:	D10V-Opcodes,		Prev:	D10V-Syntax,		Up:	D10V-
Dependent

9.9.3	Floating	Point

The	D10V	has	no	hardware	floating	point,	but	the	'.float'	and	'.double'
directives	generates	IEEE	floating-point	numbers	for	compatibility	with
other	development	tools.

�
File:	as.info,		Node:	D10V-Opcodes,		Prev:	D10V-Float,		Up:	D10V-Dependent

9.9.4	Opcodes

For	detailed	information	on	the	D10V	machine	instruction	set,	see	'D10V
Architecture:	A	VLIW	Microprocessor	for	Multimedia	Applications'
(Mitsubishi	Electric	Corp.).		'as'	implements	all	the	standard	D10V
opcodes.		The	only	changes	are	those	described	in	the	section	on	size
modifiers

�
File:	as.info,		Node:	D30V-Dependent,		Next:	Epiphany-Dependent,		Prev:	D10V-
Dependent,		Up:	Machine	Dependencies

9.10	D30V	Dependent	Features
============================

*	Menu:

3/25/20 as.info 164

*	D30V-Opts::																			D30V	Options
*	D30V-Syntax::																	Syntax
*	D30V-Float::																		Floating	Point
*	D30V-Opcodes::																Opcodes

�
File:	as.info,		Node:	D30V-Opts,		Next:	D30V-Syntax,		Up:	D30V-Dependent

9.10.1	D30V	Options

The	Mitsubishi	D30V	version	of	'as'	has	a	few	machine	dependent	options.

'-O'
					The	D30V	can	often	execute	two	sub-instructions	in	parallel.		When
					this	option	is	used,	'as'	will	attempt	to	optimize	its	output	by
					detecting	when	instructions	can	be	executed	in	parallel.

'-n'
					When	this	option	is	used,	'as'	will	issue	a	warning	every	time	it
					adds	a	nop	instruction.

'-N'
					When	this	option	is	used,	'as'	will	issue	a	warning	if	it	needs	to
					insert	a	nop	after	a	32-bit	multiply	before	a	load	or	16-bit
					multiply	instruction.

�
File:	as.info,		Node:	D30V-Syntax,		Next:	D30V-Float,		Prev:	D30V-Opts,		Up:	D30V-
Dependent

9.10.2	Syntax

The	D30V	syntax	is	based	on	the	syntax	in	Mitsubishi's	D30V	architecture
manual.		The	differences	are	detailed	below.

*	Menu:

*	D30V-Size::																	Size	Modifiers
*	D30V-Subs::																	Sub-Instructions
*	D30V-Chars::																Special	Characters
*	D30V-Guarded::														Guarded	Execution
*	D30V-Regs::																	Register	Names
*	D30V-Addressing::											Addressing	Modes

�
File:	as.info,		Node:	D30V-Size,		Next:	D30V-Subs,		Up:	D30V-Syntax

9.10.2.1	Size	Modifiers
.......................

The	D30V	version	of	'as'	uses	the	instruction	names	in	the	D30V
Architecture	Manual.		However,	the	names	in	the	manual	are	sometimes
ambiguous.		There	are	instruction	names	that	can	assemble	to	a	short	or
long	form	opcode.		How	does	the	assembler	pick	the	correct	form?		'as'
will	always	pick	the	smallest	form	if	it	can.		When	dealing	with	a
symbol	that	is	not	defined	yet	when	a	line	is	being	assembled,	it	will

3/25/20 as.info 165

always	use	the	long	form.		If	you	need	to	force	the	assembler	to	use
either	the	short	or	long	form	of	the	instruction,	you	can	append	either
'.s'	(short)	or	'.l'	(long)	to	it.		For	example,	if	you	are	writing	an
assembly	program	and	you	want	to	do	a	branch	to	a	symbol	that	is	defined
later	in	your	program,	you	can	write	'bra.s	foo'.		Objdump	and	GDB	will
always	append	'.s'	or	'.l'	to	instructions	which	have	both	short	and
long	forms.

�
File:	as.info,		Node:	D30V-Subs,		Next:	D30V-Chars,		Prev:	D30V-Size,		Up:	D30V-
Syntax

9.10.2.2	Sub-Instructions
.........................

The	D30V	assembler	takes	as	input	a	series	of	instructions,	either
one-per-line,	or	in	the	special	two-per-line	format	described	in	the
next	section.		Some	of	these	instructions	will	be	short-form	or
sub-instructions.		These	sub-instructions	can	be	packed	into	a	single
instruction.		The	assembler	will	do	this	automatically.		It	will	also
detect	when	it	should	not	pack	instructions.		For	example,	when	a	label
is	defined,	the	next	instruction	will	never	be	packaged	with	the
previous	one.		Whenever	a	branch	and	link	instruction	is	called,	it	will
not	be	packaged	with	the	next	instruction	so	the	return	address	will	be
valid.		Nops	are	automatically	inserted	when	necessary.

			If	you	do	not	want	the	assembler	automatically	making	these
decisions,	you	can	control	the	packaging	and	execution	type	(parallel	or
sequential)	with	the	special	execution	symbols	described	in	the	next
section.

�
File:	as.info,		Node:	D30V-Chars,		Next:	D30V-Guarded,		Prev:	D30V-Subs,		Up:	D30V-
Syntax

9.10.2.3	Special	Characters
...........................

A	semicolon	(';')	can	be	used	anywhere	on	a	line	to	start	a	comment	that
extends	to	the	end	of	the	line.

			If	a	'#'	appears	as	the	first	character	of	a	line,	the	whole	line	is
treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			Sub-instructions	may	be	executed	in	order,	in	reverse-order,	or	in
parallel.		Instructions	listed	in	the	standard	one-per-line	format	will
be	executed	sequentially	unless	you	use	the	'-O'	option.

			To	specify	the	executing	order,	use	the	following	symbols:
'->'
					Sequential	with	instruction	on	the	left	first.

'<-'
					Sequential	with	instruction	on	the	right	first.

'||'
					Parallel

3/25/20 as.info 166

			The	D30V	syntax	allows	either	one	instruction	per	line,	one
instruction	per	line	with	the	execution	symbol,	or	two	instructions	per
line.		For	example
'abs	r2,r3	->	abs	r4,r5'
					Execute	these	sequentially.		The	instruction	on	the	right	is	in	the
					right	container	and	is	executed	second.

'abs	r2,r3	<-	abs	r4,r5'
					Execute	these	reverse-sequentially.		The	instruction	on	the	right
					is	in	the	right	container,	and	is	executed	first.

'abs	r2,r3	||	abs	r4,r5'
					Execute	these	in	parallel.

'ldw	r2,@(r3,r4)	||'
'mulx	r6,r8,r9'
					Two-line	format.		Execute	these	in	parallel.

'mulx	a0,r8,r9'
'stw	r2,@(r3,r4)'
					Two-line	format.		Execute	these	sequentially	unless	'-O'	option	is
					used.		If	the	'-O'	option	is	used,	the	assembler	will	determine	if
					the	instructions	could	be	done	in	parallel	(the	above	two
					instructions	can	be	done	in	parallel),	and	if	so,	emit	them	as
					parallel	instructions.		The	assembler	will	put	them	in	the	proper
					containers.		In	the	above	example,	the	assembler	will	put	the	'stw'
					instruction	in	left	container	and	the	'mulx'	instruction	in	the
					right	container.

'stw	r2,@(r3,r4)	->'
'mulx	a0,r8,r9'
					Two-line	format.		Execute	the	'stw'	instruction	followed	by	the
					'mulx'	instruction	sequentially.		The	first	instruction	goes	in	the
					left	container	and	the	second	instruction	goes	into	right
					container.		The	assembler	will	give	an	error	if	the	machine
					ordering	constraints	are	violated.

'stw	r2,@(r3,r4)	<-'
'mulx	a0,r8,r9'
					Same	as	previous	example,	except	that	the	'mulx'	instruction	is
					executed	before	the	'stw'	instruction.

			Since	'$'	has	no	special	meaning,	you	may	use	it	in	symbol	names.

�
File:	as.info,		Node:	D30V-Guarded,		Next:	D30V-Regs,		Prev:	D30V-Chars,		Up:	D30V-
Syntax

9.10.2.4	Guarded	Execution
..........................

'as'	supports	the	full	range	of	guarded	execution	directives	for	each
instruction.		Just	append	the	directive	after	the	instruction	proper.
The	directives	are:

'/tx'
					Execute	the	instruction	if	flag	f0	is	true.
'/fx'

3/25/20 as.info 167

					Execute	the	instruction	if	flag	f0	is	false.
'/xt'
					Execute	the	instruction	if	flag	f1	is	true.
'/xf'
					Execute	the	instruction	if	flag	f1	is	false.
'/tt'
					Execute	the	instruction	if	both	flags	f0	and	f1	are	true.
'/tf'
					Execute	the	instruction	if	flag	f0	is	true	and	flag	f1	is	false.

�
File:	as.info,		Node:	D30V-Regs,		Next:	D30V-Addressing,		Prev:	D30V-Guarded,		Up:
D30V-Syntax

9.10.2.5	Register	Names
.......................

You	can	use	the	predefined	symbols	'r0'	through	'r63'	to	refer	to	the
D30V	registers.		You	can	also	use	'sp'	as	an	alias	for	'r63'	and	'link'
as	an	alias	for	'r62'.		The	accumulators	are	'a0'	and	'a1'.

			The	D30V	also	has	predefined	symbols	for	these	control	registers	and
status	bits:
'psw'
					Processor	Status	Word
'bpsw'
					Backup	Processor	Status	Word
'pc'
					Program	Counter
'bpc'
					Backup	Program	Counter
'rpt_c'
					Repeat	Count
'rpt_s'
					Repeat	Start	address
'rpt_e'
					Repeat	End	address
'mod_s'
					Modulo	Start	address
'mod_e'
					Modulo	End	address
'iba'
					Instruction	Break	Address
'f0'
					Flag	0
'f1'
					Flag	1
'f2'
					Flag	2
'f3'
					Flag	3
'f4'
					Flag	4
'f5'
					Flag	5
'f6'
					Flag	6
'f7'
					Flag	7

3/25/20 as.info 168

's'
					Same	as	flag	4	(saturation	flag)
'v'
					Same	as	flag	5	(overflow	flag)
'va'
					Same	as	flag	6	(sticky	overflow	flag)
'c'
					Same	as	flag	7	(carry/borrow	flag)
'b'
					Same	as	flag	7	(carry/borrow	flag)

�
File:	as.info,		Node:	D30V-Addressing,		Prev:	D30V-Regs,		Up:	D30V-Syntax

9.10.2.6	Addressing	Modes
.........................

'as'	understands	the	following	addressing	modes	for	the	D30V.	'RN'	in
the	following	refers	to	any	of	the	numbered	registers,	but	_not_	the
control	registers.
'RN'
					Register	direct
'@RN'
					Register	indirect
'@RN+'
					Register	indirect	with	post-increment
'@RN-'
					Register	indirect	with	post-decrement
'@-SP'
					Register	indirect	with	pre-decrement
'@(DISP,	RN)'
					Register	indirect	with	displacement
'ADDR'
					PC	relative	address	(for	branch	or	rep).
'#IMM'
					Immediate	data	(the	'#'	is	optional	and	ignored)

�
File:	as.info,		Node:	D30V-Float,		Next:	D30V-Opcodes,		Prev:	D30V-Syntax,		Up:	D30V-
Dependent

9.10.3	Floating	Point

The	D30V	has	no	hardware	floating	point,	but	the	'.float'	and	'.double'
directives	generates	IEEE	floating-point	numbers	for	compatibility	with
other	development	tools.

�
File:	as.info,		Node:	D30V-Opcodes,		Prev:	D30V-Float,		Up:	D30V-Dependent

9.10.4	Opcodes

For	detailed	information	on	the	D30V	machine	instruction	set,	see	'D30V
Architecture:	A	VLIW	Microprocessor	for	Multimedia	Applications'
(Mitsubishi	Electric	Corp.).		'as'	implements	all	the	standard	D30V
opcodes.		The	only	changes	are	those	described	in	the	section	on	size
modifiers

3/25/20 as.info 169

�
File:	as.info,		Node:	Epiphany-Dependent,		Next:	H8/300-Dependent,		Prev:	D30V-
Dependent,		Up:	Machine	Dependencies

9.11	Epiphany	Dependent	Features
================================

*	Menu:

*	Epiphany	Options::														Options
*	Epiphany	Syntax::															Epiphany	Syntax

�
File:	as.info,		Node:	Epiphany	Options,		Next:	Epiphany	Syntax,		Up:	Epiphany-
Dependent

9.11.1	Options

'as'	has	two	additional	command-line	options	for	the	Epiphany
architecture.

'-mepiphany'
					Specifies	that	the	both	32	and	16	bit	instructions	are	allowed.
					This	is	the	default	behavior.

'-mepiphany16'
					Restricts	the	permitted	instructions	to	just	the	16	bit	set.

�
File:	as.info,		Node:	Epiphany	Syntax,		Prev:	Epiphany	Options,		Up:	Epiphany-
Dependent

9.11.2	Epiphany	Syntax

*	Menu:

*	Epiphany-Chars::																Special	Characters

�
File:	as.info,		Node:	Epiphany-Chars,		Up:	Epiphany	Syntax

9.11.2.1	Special	Characters
...........................

The	presence	of	a	';'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			The	'`'	character	can	be	used	to	separate	statements	on	the	same
line.

�

3/25/20 as.info 170

File:	as.info,		Node:	H8/300-Dependent,		Next:	HPPA-Dependent,		Prev:	Epiphany-
Dependent,		Up:	Machine	Dependencies

9.12	H8/300	Dependent	Features
==============================

*	Menu:

*	H8/300	Options::														Options
*	H8/300	Syntax::															Syntax
*	H8/300	Floating	Point::							Floating	Point
*	H8/300	Directives::											H8/300	Machine	Directives
*	H8/300	Opcodes::														Opcodes

�
File:	as.info,		Node:	H8/300	Options,		Next:	H8/300	Syntax,		Up:	H8/300-Dependent

9.12.1	Options

The	Renesas	H8/300	version	of	'as'	has	one	machine-dependent	option:

'-h-tick-hex'
					Support	H'00	style	hex	constants	in	addition	to	0x00	style.

'-mach=NAME'
					Sets	the	H8300	machine	variant.		The	following	machine	names	are
					recognised:	'h8300h',	'h8300hn',	'h8300s',	'h8300sn',	'h8300sx'	and
					'h8300sxn'.

�
File:	as.info,		Node:	H8/300	Syntax,		Next:	H8/300	Floating	Point,		Prev:	H8/300
Options,		Up:	H8/300-Dependent

9.12.2	Syntax

*	Menu:

*	H8/300-Chars::																Special	Characters
*	H8/300-Regs::																	Register	Names
*	H8/300-Addressing::											Addressing	Modes

�
File:	as.info,		Node:	H8/300-Chars,		Next:	H8/300-Regs,		Up:	H8/300	Syntax

9.12.2.1	Special	Characters
...........................

';'	is	the	line	comment	character.

			'$'	can	be	used	instead	of	a	newline	to	separate	statements.
Therefore	_you	may	not	use	'$'	in	symbol	names_	on	the	H8/300.

�
File:	as.info,		Node:	H8/300-Regs,		Next:	H8/300-Addressing,		Prev:	H8/300-Chars,
Up:	H8/300	Syntax

9.12.2.2	Register	Names

3/25/20 as.info 171

.......................

You	can	use	predefined	symbols	of	the	form	'rNh'	and	'rNl'	to	refer	to
the	H8/300	registers	as	sixteen	8-bit	general-purpose	registers.		N	is	a
digit	from	'0'	to	'7');	for	instance,	both	'r0h'	and	'r7l'	are	valid
register	names.

			You	can	also	use	the	eight	predefined	symbols	'rN'	to	refer	to	the
H8/300	registers	as	16-bit	registers	(you	must	use	this	form	for
addressing).

			On	the	H8/300H,	you	can	also	use	the	eight	predefined	symbols	'erN'
('er0'	...	'er7')	to	refer	to	the	32-bit	general	purpose	registers.

			The	two	control	registers	are	called	'pc'	(program	counter;	a	16-bit
register,	except	on	the	H8/300H	where	it	is	24	bits)	and	'ccr'
(condition	code	register;	an	8-bit	register).		'r7'	is	used	as	the	stack
pointer,	and	can	also	be	called	'sp'.

�
File:	as.info,		Node:	H8/300-Addressing,		Prev:	H8/300-Regs,		Up:	H8/300	Syntax

9.12.2.3	Addressing	Modes
.........................

as	understands	the	following	addressing	modes	for	the	H8/300:
'rN'
					Register	direct

'@rN'
					Register	indirect

'@(D,	rN)'
'@(D:16,	rN)'
'@(D:24,	rN)'
					Register	indirect:	16-bit	or	24-bit	displacement	D	from	register	N.
					(24-bit	displacements	are	only	meaningful	on	the	H8/300H.)

'@rN+'
					Register	indirect	with	post-increment

'@-rN'
					Register	indirect	with	pre-decrement

'@AA'
'@AA:8'
'@AA:16'
'@AA:24'
					Absolute	address	'aa'.		(The	address	size	':24'	only	makes	sense	on
					the	H8/300H.)

'#XX'
'#XX:8'
'#XX:16'
'#XX:32'
					Immediate	data	XX.		You	may	specify	the	':8',	':16',	or	':32'	for
					clarity,	if	you	wish;	but	'as'	neither	requires	this	nor	uses
					it--the	data	size	required	is	taken	from	context.

3/25/20 as.info 172

'@@AA'
'@@AA:8'
					Memory	indirect.		You	may	specify	the	':8'	for	clarity,	if	you
					wish;	but	'as'	neither	requires	this	nor	uses	it.

�
File:	as.info,		Node:	H8/300	Floating	Point,		Next:	H8/300	Directives,		Prev:	H8/300
Syntax,		Up:	H8/300-Dependent

9.12.3	Floating	Point

The	H8/300	family	has	no	hardware	floating	point,	but	the	'.float'
directive	generates	IEEE	floating-point	numbers	for	compatibility	with
other	development	tools.

�
File:	as.info,		Node:	H8/300	Directives,		Next:	H8/300	Opcodes,		Prev:	H8/300
Floating	Point,		Up:	H8/300-Dependent

9.12.4	H8/300	Machine	Directives

'as'	has	the	following	machine-dependent	directives	for	the	H8/300:

'.h8300h'
					Recognize	and	emit	additional	instructions	for	the	H8/300H	variant,
					and	also	make	'.int'	emit	32-bit	numbers	rather	than	the	usual
					(16-bit)	for	the	H8/300	family.

'.h8300s'
					Recognize	and	emit	additional	instructions	for	the	H8S	variant,	and
					also	make	'.int'	emit	32-bit	numbers	rather	than	the	usual	(16-bit)
					for	the	H8/300	family.

'.h8300hn'
					Recognize	and	emit	additional	instructions	for	the	H8/300H	variant
					in	normal	mode,	and	also	make	'.int'	emit	32-bit	numbers	rather
					than	the	usual	(16-bit)	for	the	H8/300	family.

'.h8300sn'
					Recognize	and	emit	additional	instructions	for	the	H8S	variant	in
					normal	mode,	and	also	make	'.int'	emit	32-bit	numbers	rather	than
					the	usual	(16-bit)	for	the	H8/300	family.

			On	the	H8/300	family	(including	the	H8/300H)	'.word'	directives
generate	16-bit	numbers.

�
File:	as.info,		Node:	H8/300	Opcodes,		Prev:	H8/300	Directives,		Up:	H8/300-Dependent

9.12.5	Opcodes

For	detailed	information	on	the	H8/300	machine	instruction	set,	see
'H8/300	Series	Programming	Manual'.		For	information	specific	to	the
H8/300H,	see	'H8/300H	Series	Programming	Manual'	(Renesas).

			'as'	implements	all	the	standard	H8/300	opcodes.		No	additional

3/25/20 as.info 173

pseudo-instructions	are	needed	on	this	family.

			The	following	table	summarizes	the	H8/300	opcodes,	and	their
arguments.		Entries	marked	'*'	are	opcodes	used	only	on	the	H8/300H.

														Legend:
																	Rs			source	register
																	Rd			destination	register
																	abs		absolute	address
																	imm		immediate	data
														disp:N		N-bit	displacement	from	a	register
													pcrel:N		N-bit	displacement	relative	to	program	counter

								add.b	#imm,rd														*		andc	#imm,ccr
								add.b	rs,rd																			band	#imm,rd
								add.w	rs,rd																			band	#imm,@rd
					*		add.w	#imm,rd																	band	#imm,@abs:8
					*		add.l	rs,rd																			bra		pcrel:8
					*		add.l	#imm,rd														*		bra		pcrel:16
								adds	#imm,rd																		bt			pcrel:8
								addx	#imm,rd															*		bt			pcrel:16
								addx	rs,rd																				brn		pcrel:8
								and.b	#imm,rd														*		brn		pcrel:16
								and.b	rs,rd																			bf			pcrel:8
					*		and.w	rs,rd																*		bf			pcrel:16
					*		and.w	#imm,rd																	bhi		pcrel:8
					*		and.l	#imm,rd														*		bhi		pcrel:16
					*		and.l	rs,rd																			bls		pcrel:8
					*		bls		pcrel:16																	bld		#imm,rd
								bcc		pcrel:8																		bld		#imm,@rd
					*		bcc		pcrel:16																	bld		#imm,@abs:8
								bhs		pcrel:8																		bnot	#imm,rd
					*		bhs		pcrel:16																	bnot	#imm,@rd
								bcs		pcrel:8																		bnot	#imm,@abs:8
					*		bcs		pcrel:16																	bnot	rs,rd
								blo		pcrel:8																		bnot	rs,@rd
					*		blo		pcrel:16																	bnot	rs,@abs:8
								bne		pcrel:8																		bor		#imm,rd
					*		bne		pcrel:16																	bor		#imm,@rd
								beq		pcrel:8																		bor		#imm,@abs:8
					*		beq		pcrel:16																	bset	#imm,rd
								bvc		pcrel:8																		bset	#imm,@rd
					*		bvc		pcrel:16																	bset	#imm,@abs:8
								bvs		pcrel:8																		bset	rs,rd
					*		bvs		pcrel:16																	bset	rs,@rd
								bpl		pcrel:8																		bset	rs,@abs:8
					*		bpl		pcrel:16																	bsr		pcrel:8
								bmi		pcrel:8																		bsr		pcrel:16
					*		bmi		pcrel:16																	bst		#imm,rd
								bge		pcrel:8																		bst		#imm,@rd
					*		bge		pcrel:16																	bst		#imm,@abs:8
								blt		pcrel:8																		btst	#imm,rd
					*		blt		pcrel:16																	btst	#imm,@rd
								bgt		pcrel:8																		btst	#imm,@abs:8
					*		bgt		pcrel:16																	btst	rs,rd
								ble		pcrel:8																		btst	rs,@rd
					*		ble		pcrel:16																	btst	rs,@abs:8
								bclr	#imm,rd																		bxor	#imm,rd
								bclr	#imm,@rd																	bxor	#imm,@rd

3/25/20 as.info 174

								bclr	#imm,@abs:8														bxor	#imm,@abs:8
								bclr	rs,rd																				cmp.b	#imm,rd
								bclr	rs,@rd																			cmp.b	rs,rd
								bclr	rs,@abs:8																cmp.w	rs,rd
								biand	#imm,rd																	cmp.w	rs,rd
								biand	#imm,@rd													*		cmp.w	#imm,rd
								biand	#imm,@abs:8										*		cmp.l	#imm,rd
								bild	#imm,rd															*		cmp.l	rs,rd
								bild	#imm,@rd																	daa		rs
								bild	#imm,@abs:8														das		rs
								bior	#imm,rd																		dec.b	rs
								bior	#imm,@rd														*		dec.w	#imm,rd
								bior	#imm,@abs:8											*		dec.l	#imm,rd
								bist	#imm,rd																		divxu.b	rs,rd
								bist	#imm,@rd														*		divxu.w	rs,rd
								bist	#imm,@abs:8											*		divxs.b	rs,rd
								bixor	#imm,rd														*		divxs.w	rs,rd
								bixor	#imm,@rd																eepmov
								bixor	#imm,@abs:8										*		eepmovw
					*		exts.w	rd																					mov.w	rs,@abs:16
					*		exts.l	rd																		*		mov.l	#imm,rd
					*		extu.w	rd																		*		mov.l	rs,rd
					*		extu.l	rd																		*		mov.l	@rs,rd
								inc		rs																				*		mov.l	@(disp:16,rs),rd
					*		inc.w	#imm,rd														*		mov.l	@(disp:24,rs),rd
					*		inc.l	#imm,rd														*		mov.l	@rs+,rd
								jmp		@rs																			*		mov.l	@abs:16,rd
								jmp		abs																			*		mov.l	@abs:24,rd
								jmp		@@abs:8															*		mov.l	rs,@rd
								jsr		@rs																			*		mov.l	rs,@(disp:16,rd)
								jsr		abs																			*		mov.l	rs,@(disp:24,rd)
								jsr		@@abs:8															*		mov.l	rs,@-rd
								ldc		#imm,ccr														*		mov.l	rs,@abs:16
								ldc		rs,ccr																*		mov.l	rs,@abs:24
					*		ldc		@abs:16,ccr														movfpe	@abs:16,rd
					*		ldc		@abs:24,ccr														movtpe	rs,@abs:16
					*		ldc		@(disp:16,rs),ccr								mulxu.b	rs,rd
					*		ldc		@(disp:24,rs),ccr					*		mulxu.w	rs,rd
					*		ldc		@rs+,ccr														*		mulxs.b	rs,rd
					*		ldc		@rs,ccr															*		mulxs.w	rs,rd
					*		mov.b	@(disp:24,rs),rd								neg.b	rs
					*		mov.b	rs,@(disp:24,rd)					*		neg.w	rs
								mov.b	@abs:16,rd											*		neg.l	rs
								mov.b	rs,rd																			nop
								mov.b	@abs:8,rd															not.b	rs
								mov.b	rs,@abs:8												*		not.w	rs
								mov.b	rs,rd																*		not.l	rs
								mov.b	#imm,rd																	or.b	#imm,rd
								mov.b	@rs,rd																		or.b	rs,rd
								mov.b	@(disp:16,rs),rd					*		or.w	#imm,rd
								mov.b	@rs+,rd														*		or.w	rs,rd
								mov.b	@abs:8,rd												*		or.l	#imm,rd
								mov.b	rs,@rd															*		or.l	rs,rd
								mov.b	rs,@(disp:16,rd)								orc		#imm,ccr
								mov.b	rs,@-rd																	pop.w	rs
								mov.b	rs,@abs:8												*		pop.l	rs
								mov.w	rs,@rd																		push.w	rs
					*		mov.w	@(disp:24,rs),rd					*		push.l	rs
					*		mov.w	rs,@(disp:24,rd)								rotl.b	rs

3/25/20 as.info 175

					*		mov.w	@abs:24,rd											*		rotl.w	rs
					*		mov.w	rs,@abs:24											*		rotl.l	rs
								mov.w	rs,rd																			rotr.b	rs
								mov.w	#imm,rd														*		rotr.w	rs
								mov.w	@rs,rd															*		rotr.l	rs
								mov.w	@(disp:16,rs),rd								rotxl.b	rs
								mov.w	@rs+,rd														*		rotxl.w	rs
								mov.w	@abs:16,rd											*		rotxl.l	rs
								mov.w	rs,@(disp:16,rd)								rotxr.b	rs
								mov.w	rs,@-rd														*		rotxr.w	rs
					*		rotxr.l	rs																	*		stc		ccr,@(disp:24,rd)
								bpt																								*		stc		ccr,@-rd
								rte																								*		stc		ccr,@abs:16
								rts																								*		stc		ccr,@abs:24
								shal.b	rs																					sub.b	rs,rd
					*		shal.w	rs																					sub.w	rs,rd
					*		shal.l	rs																		*		sub.w	#imm,rd
								shar.b	rs																		*		sub.l	rs,rd
					*		shar.w	rs																		*		sub.l	#imm,rd
					*		shar.l	rs																					subs	#imm,rd
								shll.b	rs																					subx	#imm,rd
					*		shll.w	rs																					subx	rs,rd
					*		shll.l	rs																		*		trapa	#imm
								shlr.b	rs																					xor		#imm,rd
					*		shlr.w	rs																					xor		rs,rd
					*		shlr.l	rs																		*		xor.w	#imm,rd
								sleep																						*		xor.w	rs,rd
								stc		ccr,rd																*		xor.l	#imm,rd
					*		stc		ccr,@rs															*		xor.l	rs,rd
					*		stc		ccr,@(disp:16,rd)								xorc	#imm,ccr

			Four	H8/300	instructions	('add',	'cmp',	'mov',	'sub')	are	defined
with	variants	using	the	suffixes	'.b',	'.w',	and	'.l'	to	specify	the
size	of	a	memory	operand.		'as'	supports	these	suffixes,	but	does	not
require	them;	since	one	of	the	operands	is	always	a	register,	'as'	can
deduce	the	correct	size.

			For	example,	since	'r0'	refers	to	a	16-bit	register,
					mov				r0,@foo
is	equivalent	to
					mov.w		r0,@foo

			If	you	use	the	size	suffixes,	'as'	issues	a	warning	when	the	suffix
and	the	register	size	do	not	match.

�
File:	as.info,		Node:	HPPA-Dependent,		Next:	ESA/390-Dependent,		Prev:	H8/300-
Dependent,		Up:	Machine	Dependencies

9.13	HPPA	Dependent	Features
============================

*	Menu:

*	HPPA	Notes::																Notes
*	HPPA	Options::														Options
*	HPPA	Syntax::															Syntax
*	HPPA	Floating	Point::							Floating	Point
*	HPPA	Directives::											HPPA	Machine	Directives

3/25/20 as.info 176

*	HPPA	Opcodes::														Opcodes

�
File:	as.info,		Node:	HPPA	Notes,		Next:	HPPA	Options,		Up:	HPPA-Dependent

9.13.1	Notes

As	a	back	end	for	GNU	CC	'as'	has	been	throughly	tested	and	should	work
extremely	well.		We	have	tested	it	only	minimally	on	hand	written
assembly	code	and	no	one	has	tested	it	much	on	the	assembly	output	from
the	HP	compilers.

			The	format	of	the	debugging	sections	has	changed	since	the	original
'as'	port	(version	1.3X)	was	released;	therefore,	you	must	rebuild	all
HPPA	objects	and	libraries	with	the	new	assembler	so	that	you	can	debug
the	final	executable.

			The	HPPA	'as'	port	generates	a	small	subset	of	the	relocations
available	in	the	SOM	and	ELF	object	file	formats.		Additional	relocation
support	will	be	added	as	it	becomes	necessary.

�
File:	as.info,		Node:	HPPA	Options,		Next:	HPPA	Syntax,		Prev:	HPPA	Notes,		Up:	HPPA-
Dependent

9.13.2	Options

'as'	has	no	machine-dependent	command-line	options	for	the	HPPA.

�
File:	as.info,		Node:	HPPA	Syntax,		Next:	HPPA	Floating	Point,		Prev:	HPPA	Options,
Up:	HPPA-Dependent

9.13.3	Syntax

The	assembler	syntax	closely	follows	the	HPPA	instruction	set	reference
manual;	assembler	directives	and	general	syntax	closely	follow	the	HPPA
assembly	language	reference	manual,	with	a	few	noteworthy	differences.

			First,	a	colon	may	immediately	follow	a	label	definition.		This	is
simply	for	compatibility	with	how	most	assembly	language	programmers
write	code.

			Some	obscure	expression	parsing	problems	may	affect	hand	written	code
which	uses	the	'spop'	instructions,	or	code	which	makes	significant	use
of	the	'!'	line	separator.

			'as'	is	much	less	forgiving	about	missing	arguments	and	other	similar
oversights	than	the	HP	assembler.		'as'	notifies	you	of	missing
arguments	as	syntax	errors;	this	is	regarded	as	a	feature,	not	a	bug.

			Finally,	'as'	allows	you	to	use	an	external	symbol	without	explicitly
importing	the	symbol.		_Warning:_	in	the	future	this	will	be	an	error
for	HPPA	targets.

			Special	characters	for	HPPA	targets	include:

3/25/20 as.info 177

			';'	is	the	line	comment	character.

			'!'	can	be	used	instead	of	a	newline	to	separate	statements.

			Since	'$'	has	no	special	meaning,	you	may	use	it	in	symbol	names.

�
File:	as.info,		Node:	HPPA	Floating	Point,		Next:	HPPA	Directives,		Prev:	HPPA
Syntax,		Up:	HPPA-Dependent

9.13.4	Floating	Point

The	HPPA	family	uses	IEEE	floating-point	numbers.

�
File:	as.info,		Node:	HPPA	Directives,		Next:	HPPA	Opcodes,		Prev:	HPPA	Floating
Point,		Up:	HPPA-Dependent

9.13.5	HPPA	Assembler	Directives

'as'	for	the	HPPA	supports	many	additional	directives	for	compatibility
with	the	native	assembler.		This	section	describes	them	only	briefly.
For	detailed	information	on	HPPA-specific	assembler	directives,	see
'HP9000	Series	800	Assembly	Language	Reference	Manual'	(HP	92432-90001).

			'as'	does	_not_	support	the	following	assembler	directives	described
in	the	HP	manual:

					.endm											.liston
					.enter										.locct
					.leave										.macro
					.listoff

			Beyond	those	implemented	for	compatibility,	'as'	supports	one
additional	assembler	directive	for	the	HPPA:	'.param'.		It	conveys
register	argument	locations	for	static	functions.		Its	syntax	closely
follows	the	'.export'	directive.

			These	are	the	additional	directives	in	'as'	for	the	HPPA:

'.block	N'
'.blockz	N'
					Reserve	N	bytes	of	storage,	and	initialize	them	to	zero.

'.call'
					Mark	the	beginning	of	a	procedure	call.		Only	the	special	case	with
					no	arguments	is	allowed.

'.callinfo	[PARAM=VALUE,	...]	[FLAG,	...]'
					Specify	a	number	of	parameters	and	flags	that	define	the
					environment	for	a	procedure.

					PARAM	may	be	any	of	'frame'	(frame	size),	'entry_gr'	(end	of
					general	register	range),	'entry_fr'	(end	of	float	register	range),
					'entry_sr'	(end	of	space	register	range).

3/25/20 as.info 178

					The	values	for	FLAG	are	'calls'	or	'caller'	(proc	has	subroutines),
					'no_calls'	(proc	does	not	call	subroutines),	'save_rp'	(preserve
					return	pointer),	'save_sp'	(proc	preserves	stack	pointer),
					'no_unwind'	(do	not	unwind	this	proc),	'hpux_int'	(proc	is
					interrupt	routine).

'.code'
					Assemble	into	the	standard	section	called	'$TEXT$',	subsection
					'$CODE$'.

'.copyright	"STRING"'
					In	the	SOM	object	format,	insert	STRING	into	the	object	code,
					marked	as	a	copyright	string.

'.copyright	"STRING"'
					In	the	ELF	object	format,	insert	STRING	into	the	object	code,
					marked	as	a	version	string.

'.enter'
					Not	yet	supported;	the	assembler	rejects	programs	containing	this
					directive.

'.entry'
					Mark	the	beginning	of	a	procedure.

'.exit'
					Mark	the	end	of	a	procedure.

'.export	NAME	[,TYP]	[,PARAM=R]'
					Make	a	procedure	NAME	available	to	callers.		TYP,	if	present,	must
					be	one	of	'absolute',	'code'	(ELF	only,	not	SOM),	'data',	'entry',
					'data',	'entry',	'millicode',	'plabel',	'pri_prog',	or	'sec_prog'.

					PARAM,	if	present,	provides	either	relocation	information	for	the
					procedure	arguments	and	result,	or	a	privilege	level.		PARAM	may	be
					'argwN'	(where	N	ranges	from	'0'	to	'3',	and	indicates	one	of	four
					one-word	arguments);	'rtnval'	(the	procedure's	result);	or
					'priv_lev'	(privilege	level).		For	arguments	or	the	result,	R
					specifies	how	to	relocate,	and	must	be	one	of	'no'	(not
					relocatable),	'gr'	(argument	is	in	general	register),	'fr'	(in
					floating	point	register),	or	'fu'	(upper	half	of	float	register).
					For	'priv_lev',	R	is	an	integer.

'.half	N'
					Define	a	two-byte	integer	constant	N;	synonym	for	the	portable	'as'
					directive	'.short'.

'.import	NAME	[,TYP]'
					Converse	of	'.export';	make	a	procedure	available	to	call.		The
					arguments	use	the	same	conventions	as	the	first	two	arguments	for
					'.export'.

'.label	NAME'
					Define	NAME	as	a	label	for	the	current	assembly	location.

'.leave'
					Not	yet	supported;	the	assembler	rejects	programs	containing	this
					directive.

3/25/20 as.info 179

'.origin	LC'
					Advance	location	counter	to	LC.		Synonym	for	the	'as'	portable
					directive	'.org'.

'.param	NAME	[,TYP]	[,PARAM=R]'
					Similar	to	'.export',	but	used	for	static	procedures.

'.proc'
					Use	preceding	the	first	statement	of	a	procedure.

'.procend'
					Use	following	the	last	statement	of	a	procedure.

'LABEL	.reg	EXPR'
					Synonym	for	'.equ';	define	LABEL	with	the	absolute	expression	EXPR
					as	its	value.

'.space	SECNAME	[,PARAMS]'
					Switch	to	section	SECNAME,	creating	a	new	section	by	that	name	if
					necessary.		You	may	only	use	PARAMS	when	creating	a	new	section,
					not	when	switching	to	an	existing	one.		SECNAME	may	identify	a
					section	by	number	rather	than	by	name.

					If	specified,	the	list	PARAMS	declares	attributes	of	the	section,
					identified	by	keywords.		The	keywords	recognized	are	'spnum=EXP'
					(identify	this	section	by	the	number	EXP,	an	absolute	expression),
					'sort=EXP'	(order	sections	according	to	this	sort	key	when	linking;
					EXP	is	an	absolute	expression),	'unloadable'	(section	contains	no
					loadable	data),	'notdefined'	(this	section	defined	elsewhere),	and
					'private'	(data	in	this	section	not	available	to	other	programs).

'.spnum	SECNAM'
					Allocate	four	bytes	of	storage,	and	initialize	them	with	the
					section	number	of	the	section	named	SECNAM.		(You	can	define	the
					section	number	with	the	HPPA	'.space'	directive.)

'.string	"STR"'
					Copy	the	characters	in	the	string	STR	to	the	object	file.		*Note
					Strings:	Strings,	for	information	on	escape	sequences	you	can	use
					in	'as'	strings.

					Warning!		The	HPPA	version	of	'.string'	differs	from	the	usual
					'as'	definition:	it	does	_not_	write	a	zero	byte	after	copying	STR.

'.stringz	"STR"'
					Like	'.string',	but	appends	a	zero	byte	after	copying	STR	to	object
					file.

'.subspa	NAME	[,PARAMS]'
'.nsubspa	NAME	[,PARAMS]'
					Similar	to	'.space',	but	selects	a	subsection	NAME	within	the
					current	section.		You	may	only	specify	PARAMS	when	you	create	a
					subsection	(in	the	first	instance	of	'.subspa'	for	this	NAME).

					If	specified,	the	list	PARAMS	declares	attributes	of	the
					subsection,	identified	by	keywords.		The	keywords	recognized	are
					'quad=EXPR'	("quadrant"	for	this	subsection),	'align=EXPR'
					(alignment	for	beginning	of	this	subsection;	a	power	of	two),
					'access=EXPR'	(value	for	"access	rights"	field),	'sort=EXPR'

3/25/20 as.info 180

					(sorting	order	for	this	subspace	in	link),	'code_only'	(subsection
					contains	only	code),	'unloadable'	(subsection	cannot	be	loaded	into
					memory),	'comdat'	(subsection	is	comdat),	'common'	(subsection	is
					common	block),	'dup_comm'	(subsection	may	have	duplicate	names),	or
					'zero'	(subsection	is	all	zeros,	do	not	write	in	object	file).

					'.nsubspa'	always	creates	a	new	subspace	with	the	given	name,	even
					if	one	with	the	same	name	already	exists.

					'comdat',	'common'	and	'dup_comm'	can	be	used	to	implement	various
					flavors	of	one-only	support	when	using	the	SOM	linker.		The	SOM
					linker	only	supports	specific	combinations	of	these	flags.		The
					details	are	not	documented.		A	brief	description	is	provided	here.

					'comdat'	provides	a	form	of	linkonce	support.		It	is	useful	for
					both	code	and	data	subspaces.		A	'comdat'	subspace	has	a	key	symbol
					marked	by	the	'is_comdat'	flag	or	'ST_COMDAT'.		Only	the	first
					subspace	for	any	given	key	is	selected.		The	key	symbol	becomes
					universal	in	shared	links.		This	is	similar	to	the	behavior	of
					'secondary_def'	symbols.

					'common'	provides	Fortran	named	common	support.		It	is	only	useful
					for	data	subspaces.		Symbols	with	the	flag	'is_common'	retain	this
					flag	in	shared	links.		Referencing	a	'is_common'	symbol	in	a	shared
					library	from	outside	the	library	doesn't	work.		Thus,	'is_common'
					symbols	must	be	output	whenever	they	are	needed.

					'common'	and	'dup_comm'	together	provide	Cobol	common	support.		The
					subspaces	in	this	case	must	all	be	the	same	length.		Otherwise,
					this	support	is	similar	to	the	Fortran	common	support.

					'dup_comm'	by	itself	provides	a	type	of	one-only	support	for	code.
					Only	the	first	'dup_comm'	subspace	is	selected.		There	is	a	rather
					complex	algorithm	to	compare	subspaces.		Code	symbols	marked	with
					the	'dup_common'	flag	are	hidden.		This	support	was	intended	for
					"C++	duplicate	inlines".

					A	simplified	technique	is	used	to	mark	the	flags	of	symbols	based
					on	the	flags	of	their	subspace.		A	symbol	with	the	scope
					SS_UNIVERSAL	and	type	ST_ENTRY,	ST_CODE	or	ST_DATA	is	marked	with
					the	corresponding	settings	of	'comdat',	'common'	and	'dup_comm'
					from	the	subspace,	respectively.		This	avoids	having	to	introduce
					additional	directives	to	mark	these	symbols.		The	HP	assembler	sets
					'is_common'	from	'common'.		However,	it	doesn't	set	the
					'dup_common'	from	'dup_comm'.		It	doesn't	have	'comdat'	support.

'.version	"STR"'
					Write	STR	as	version	identifier	in	object	code.

�
File:	as.info,		Node:	HPPA	Opcodes,		Prev:	HPPA	Directives,		Up:	HPPA-Dependent

9.13.6	Opcodes

For	detailed	information	on	the	HPPA	machine	instruction	set,	see
'PA-RISC	Architecture	and	Instruction	Set	Reference	Manual'	(HP
09740-90039).

3/25/20 as.info 181

�
File:	as.info,		Node:	ESA/390-Dependent,		Next:	i386-Dependent,		Prev:	HPPA-
Dependent,		Up:	Machine	Dependencies

9.14	ESA/390	Dependent	Features
===============================

*	Menu:

*	ESA/390	Notes::																Notes
*	ESA/390	Options::														Options
*	ESA/390	Syntax::															Syntax
*	ESA/390	Floating	Point::							Floating	Point
*	ESA/390	Directives::											ESA/390	Machine	Directives
*	ESA/390	Opcodes::														Opcodes

�
File:	as.info,		Node:	ESA/390	Notes,		Next:	ESA/390	Options,		Up:	ESA/390-Dependent

9.14.1	Notes

The	ESA/390	'as'	port	is	currently	intended	to	be	a	back-end	for	the	GNU
CC	compiler.		It	is	not	HLASM	compatible,	although	it	does	support	a
subset	of	some	of	the	HLASM	directives.		The	only	supported	binary	file
format	is	ELF;	none	of	the	usual	MVS/VM/OE/USS	object	file	formats,	such
as	ESD	or	XSD,	are	supported.

			When	used	with	the	GNU	CC	compiler,	the	ESA/390	'as'	will	produce
correct,	fully	relocated,	functional	binaries,	and	has	been	used	to
compile	and	execute	large	projects.		However,	many	aspects	should	still
be	considered	experimental;	these	include	shared	library	support,
dynamically	loadable	objects,	and	any	relocation	other	than	the	31-bit
relocation.

�
File:	as.info,		Node:	ESA/390	Options,		Next:	ESA/390	Syntax,		Prev:	ESA/390	Notes,
Up:	ESA/390-Dependent

9.14.2	Options

'as'	has	no	machine-dependent	command-line	options	for	the	ESA/390.

�
File:	as.info,		Node:	ESA/390	Syntax,		Next:	ESA/390	Floating	Point,		Prev:	ESA/390
Options,		Up:	ESA/390-Dependent

9.14.3	Syntax

The	opcode/operand	syntax	follows	the	ESA/390	Principles	of	Operation
manual;	assembler	directives	and	general	syntax	are	loosely	based	on	the
prevailing	AT&T/SVR4/ELF/Solaris	style	notation.		HLASM-style	directives
are	_not_	supported	for	the	most	part,	with	the	exception	of	those
described	herein.

			A	leading	dot	in	front	of	directives	is	optional,	and	the	case	of
directives	is	ignored;	thus	for	example,	.using	and	USING	have	the	same

3/25/20 as.info 182

effect.

			A	colon	may	immediately	follow	a	label	definition.		This	is	simply
for	compatibility	with	how	most	assembly	language	programmers	write
code.

			'#'	is	the	line	comment	character.

			';'	can	be	used	instead	of	a	newline	to	separate	statements.

			Since	'$'	has	no	special	meaning,	you	may	use	it	in	symbol	names.

			Registers	can	be	given	the	symbolic	names	r0..r15,	fp0,	fp2,	fp4,
fp6.		By	using	thesse	symbolic	names,	'as'	can	detect	simple	syntax
errors.		The	name	rarg	or	r.arg	is	a	synonym	for	r11,	rtca	or	r.tca	for
r12,	sp,	r.sp,	dsa	r.dsa	for	r13,	lr	or	r.lr	for	r14,	rbase	or	r.base
for	r3	and	rpgt	or	r.pgt	for	r4.

			'*'	is	the	current	location	counter.		Unlike	'.'	it	is	always
relative	to	the	last	USING	directive.		Note	that	this	means	that
expressions	cannot	use	multiplication,	as	any	occurrence	of	'*'	will	be
interpreted	as	a	location	counter.

			All	labels	are	relative	to	the	last	USING.	Thus,	branches	to	a	label
always	imply	the	use	of	base+displacement.

			Many	of	the	usual	forms	of	address	constants	/	address	literals	are
supported.		Thus,
					 .using *,r3
					 L r15,=A(some_routine)
					 LM r6,r7,=V(some_longlong_extern)
					 A r1,=F'12'
					 AH r0,=H'42'
					 ME r6,=E'3.1416'
					 MD r6,=D'3.14159265358979'
					 O r6,=XL4'cacad0d0'
					 .ltorg
			should	all	behave	as	expected:	that	is,	an	entry	in	the	literal	pool
will	be	created	(or	reused	if	it	already	exists),	and	the	instruction
operands	will	be	the	displacement	into	the	literal	pool	using	the
current	base	register	(as	last	declared	with	the	'.using'	directive).

�
File:	as.info,		Node:	ESA/390	Floating	Point,		Next:	ESA/390	Directives,		Prev:	ESA/
390	Syntax,		Up:	ESA/390-Dependent

9.14.4	Floating	Point

The	assembler	generates	only	IEEE	floating-point	numbers.		The	older
floating	point	formats	are	not	supported.

�
File:	as.info,		Node:	ESA/390	Directives,		Next:	ESA/390	Opcodes,		Prev:	ESA/390
Floating	Point,		Up:	ESA/390-Dependent

9.14.5	ESA/390	Assembler	Directives

3/25/20 as.info 183

'as'	for	the	ESA/390	supports	all	of	the	standard	ELF/SVR4	assembler
directives	that	are	documented	in	the	main	part	of	this	documentation.
Several	additional	directives	are	supported	in	order	to	implement	the
ESA/390	addressing	model.		The	most	important	of	these	are	'.using'	and
'.ltorg'

			These	are	the	additional	directives	in	'as'	for	the	ESA/390:

'.dc'
					A	small	subset	of	the	usual	DC	directive	is	supported.

'.drop	REGNO'
					Stop	using	REGNO	as	the	base	register.		The	REGNO	must	have	been
					previously	declared	with	a	'.using'	directive	in	the	same	section
					as	the	current	section.

'.ebcdic	STRING'
					Emit	the	EBCDIC	equivalent	of	the	indicated	string.		The	emitted
					string	will	be	null	terminated.		Note	that	the	directives	'.string'
					etc.		emit	ascii	strings	by	default.

'EQU'
					The	standard	HLASM-style	EQU	directive	is	not	supported;	however,
					the	standard	'as'	directive	.equ	can	be	used	to	the	same	effect.

'.ltorg'
					Dump	the	literal	pool	accumulated	so	far;	begin	a	new	literal	pool.
					The	literal	pool	will	be	written	in	the	current	section;	in	order
					to	generate	correct	assembly,	a	'.using'	must	have	been	previously
					specified	in	the	same	section.

'.using	EXPR,REGNO'
					Use	REGNO	as	the	base	register	for	all	subsequent	RX,	RS,	and	SS
					form	instructions.		The	EXPR	will	be	evaluated	to	obtain	the	base
					address;	usually,	EXPR	will	merely	be	'*'.

					This	assembler	allows	two	'.using'	directives	to	be	simultaneously
					outstanding,	one	in	the	'.text'	section,	and	one	in	another	section
					(typically,	the	'.data'	section).		This	feature	allows	dynamically
					loaded	objects	to	be	implemented	in	a	relatively	straightforward
					way.		A	'.using'	directive	must	always	be	specified	in	the	'.text'
					section;	this	will	specify	the	base	register	that	will	be	used	for
					branches	in	the	'.text'	section.		A	second	'.using'	may	be
					specified	in	another	section;	this	will	specify	the	base	register
					that	is	used	for	non-label	address	literals.		When	a	second
					'.using'	is	specified,	then	the	subsequent	'.ltorg'	must	be	put	in
					the	same	section;	otherwise	an	error	will	result.

					Thus,	for	example,	the	following	code	uses	'r3'	to	address	branch
					targets	and	'r4'	to	address	the	literal	pool,	which	has	been
					written	to	the	'.data'	section.		The	is,	the	constants
					'=A(some_routine)',	'=H'42''	and	'=E'3.1416''	will	all	appear	in
					the	'.data'	section.

										.data
										 .using		LITPOOL,r4
										.text
										 BASR r3,0
										 .using *,r3

3/25/20 as.info 184

																		B							START
										 .long LITPOOL
										START:
										 L r4,4(,r3)
										 L r15,=A(some_routine)
										 LTR r15,r15
										 BNE LABEL
										 AH r0,=H'42'
										LABEL:
										 ME r6,=E'3.1416'
										.data
										LITPOOL:
										 .ltorg

					Note	that	this	dual-'.using'	directive	semantics	extends	and	is	not
					compatible	with	HLASM	semantics.		Note	that	this	assembler
					directive	does	not	support	the	full	range	of	HLASM	semantics.

�
File:	as.info,		Node:	ESA/390	Opcodes,		Prev:	ESA/390	Directives,		Up:	ESA/390-
Dependent

9.14.6	Opcodes

For	detailed	information	on	the	ESA/390	machine	instruction	set,	see
'ESA/390	Principles	of	Operation'	(IBM	Publication	Number	DZ9AR004).

�
File:	as.info,		Node:	i386-Dependent,		Next:	i860-Dependent,		Prev:	ESA/390-
Dependent,		Up:	Machine	Dependencies

9.15	80386	Dependent	Features
=============================

The	i386	version	'as'	supports	both	the	original	Intel	386	architecture
in	both	16	and	32-bit	mode	as	well	as	AMD	x86-64	architecture	extending
the	Intel	architecture	to	64-bits.

*	Menu:

*	i386-Options::																Options
*	i386-Directives::													X86	specific	directives
*	i386-Syntax::																	Syntactical	considerations
*	i386-Mnemonics::														Instruction	Naming
*	i386-Regs::																			Register	Naming
*	i386-Prefixes::															Instruction	Prefixes
*	i386-Memory::																	Memory	References
*	i386-Jumps::																		Handling	of	Jump	Instructions
*	i386-Float::																		Floating	Point
*	i386-SIMD::																			Intel's	MMX	and	AMD's	3DNow!	SIMD	Operations
*	i386-LWP::																				AMD's	Lightweight	Profiling	Instructions
*	i386-BMI::																				Bit	Manipulation	Instruction
*	i386-TBM::																				AMD's	Trailing	Bit	Manipulation	Instructions
*	i386-16bit::																		Writing	16-bit	Code
*	i386-Arch::																			Specifying	an	x86	CPU	architecture
*	i386-Bugs::																			AT&T	Syntax	bugs
*	i386-Notes::																		Notes

3/25/20 as.info 185

�
File:	as.info,		Node:	i386-Options,		Next:	i386-Directives,		Up:	i386-Dependent

9.15.1	Options

The	i386	version	of	'as'	has	a	few	machine	dependent	options:

'--32	|	--x32	|	--64'
					Select	the	word	size,	either	32	bits	or	64	bits.		'--32'	implies
					Intel	i386	architecture,	while	'--x32'	and	'--64'	imply	AMD	x86-64
					architecture	with	32-bit	or	64-bit	word-size	respectively.

					These	options	are	only	available	with	the	ELF	object	file	format,
					and	require	that	the	necessary	BFD	support	has	been	included	(on	a
					32-bit	platform	you	have	to	add	-enable-64-bit-bfd	to	configure
					enable	64-bit	usage	and	use	x86-64	as	target	platform).

'-n'
					By	default,	x86	GAS	replaces	multiple	nop	instructions	used	for
					alignment	within	code	sections	with	multi-byte	nop	instructions
					such	as	leal	0(%esi,1),%esi.		This	switch	disables	the
					optimization.

'--divide'
					On	SVR4-derived	platforms,	the	character	'/'	is	treated	as	a
					comment	character,	which	means	that	it	cannot	be	used	in
					expressions.		The	'--divide'	option	turns	'/'	into	a	normal
					character.		This	does	not	disable	'/'	at	the	beginning	of	a	line
					starting	a	comment,	or	affect	using	'#'	for	starting	a	comment.

'-march=CPU[+EXTENSION...]'
					This	option	specifies	the	target	processor.		The	assembler	will
					issue	an	error	message	if	an	attempt	is	made	to	assemble	an
					instruction	which	will	not	execute	on	the	target	processor.		The
					following	processor	names	are	recognized:	'i8086',	'i186',	'i286',
					'i386',	'i486',	'i586',	'i686',	'pentium',	'pentiumpro',
					'pentiumii',	'pentiumiii',	'pentium4',	'prescott',	'nocona',
					'core',	'core2',	'corei7',	'l1om',	'k1om',	'iamcu',	'k6',	'k6_2',
					'athlon',	'opteron',	'k8',	'amdfam10',	'bdver1',	'bdver2',
					'bdver3',	'bdver4',	'znver1',	'btver1',	'btver2',	'generic32'	and
					'generic64'.

					In	addition	to	the	basic	instruction	set,	the	assembler	can	be	told
					to	accept	various	extension	mnemonics.		For	example,
					'-march=i686+sse4+vmx'	extends	I686	with	SSE4	and	VMX.		The
					following	extensions	are	currently	supported:	'8087',	'287',	'387',
					'687',	'no87',	'no287',	'no387',	'no687',	'mmx',	'nommx',	'sse',
					'sse2',	'sse3',	'ssse3',	'sse4.1',	'sse4.2',	'sse4',	'nosse',
					'nosse2',	'nosse3',	'nossse3',	'nosse4.1',	'nosse4.2',	'nosse4',
					'avx',	'avx2',	'noavx',	'noavx2',	'adx',	'rdseed',	'prfchw',
					'smap',	'mpx',	'sha',	'rdpid',	'ptwrite',	'prefetchwt1',
					'clflushopt',	'se1',	'clwb',	'avx512f',	'avx512cd',	'avx512er',
					'avx512pf',	'avx512vl',	'avx512bw',	'avx512dq',	'avx512ifma',
					'avx512vbmi',	'avx512_4fmaps',	'avx512_4vnniw',	'avx512_vpopcntdq',
					'noavx512f',	'noavx512cd',	'noavx512er',	'noavx512pf',
					'noavx512vl',	'noavx512bw',	'noavx512dq',	'noavx512ifma',
					'noavx512vbmi',	'noavx512_4fmaps',	'noavx512_4vnniw',
					'noavx512_vpopcntdq',	'vmx',	'vmfunc',	'smx',	'xsave',	'xsaveopt',

3/25/20 as.info 186

					'xsavec',	'xsaves',	'aes',	'pclmul',	'fsgsbase',	'rdrnd',	'f16c',
					'bmi2',	'fma',	'movbe',	'ept',	'lzcnt',	'hle',	'rtm',	'invpcid',
					'clflush',	'mwaitx',	'clzero',	'lwp',	'fma4',	'xop',	'cx16',
					'syscall',	'rdtscp',	'3dnow',	'3dnowa',	'sse4a',	'sse5',	'svme',
					'abm'	and	'padlock'.		Note	that	rather	than	extending	a	basic
					instruction	set,	the	extension	mnemonics	starting	with	'no'	revoke
					the	respective	functionality.

					When	the	'.arch'	directive	is	used	with	'-march',	the	'.arch'
					directive	will	take	precedent.

'-mtune=CPU'
					This	option	specifies	a	processor	to	optimize	for.		When	used	in
					conjunction	with	the	'-march'	option,	only	instructions	of	the
					processor	specified	by	the	'-march'	option	will	be	generated.

					Valid	CPU	values	are	identical	to	the	processor	list	of
					'-march=CPU'.

'-msse2avx'
					This	option	specifies	that	the	assembler	should	encode	SSE
					instructions	with	VEX	prefix.

'-msse-check=NONE'
'-msse-check=WARNING'
'-msse-check=ERROR'
					These	options	control	if	the	assembler	should	check	SSE
					instructions.		'-msse-check=NONE'	will	make	the	assembler	not	to
					check	SSE	instructions,	which	is	the	default.
					'-msse-check=WARNING'	will	make	the	assembler	issue	a	warning	for
					any	SSE	instruction.		'-msse-check=ERROR'	will	make	the	assembler
					issue	an	error	for	any	SSE	instruction.

'-mavxscalar=128'
'-mavxscalar=256'
					These	options	control	how	the	assembler	should	encode	scalar	AVX
					instructions.		'-mavxscalar=128'	will	encode	scalar	AVX
					instructions	with	128bit	vector	length,	which	is	the	default.
					'-mavxscalar=256'	will	encode	scalar	AVX	instructions	with	256bit
					vector	length.

'-mevexlig=128'
'-mevexlig=256'
'-mevexlig=512'
					These	options	control	how	the	assembler	should	encode
					length-ignored	(LIG)	EVEX	instructions.		'-mevexlig=128'	will
					encode	LIG	EVEX	instructions	with	128bit	vector	length,	which	is
					the	default.		'-mevexlig=256'	and	'-mevexlig=512'	will	encode	LIG
					EVEX	instructions	with	256bit	and	512bit	vector	length,
					respectively.

'-mevexwig=0'
'-mevexwig=1'
					These	options	control	how	the	assembler	should	encode	w-ignored
					(WIG)	EVEX	instructions.		'-mevexwig=0'	will	encode	WIG	EVEX
					instructions	with	evex.w	=	0,	which	is	the	default.		'-mevexwig=1'
					will	encode	WIG	EVEX	instructions	with	evex.w	=	1.

'-mmnemonic=ATT'

3/25/20 as.info 187

'-mmnemonic=INTEL'
					This	option	specifies	instruction	mnemonic	for	matching
					instructions.		The	'.att_mnemonic'	and	'.intel_mnemonic'	directives
					will	take	precedent.

'-msyntax=ATT'
'-msyntax=INTEL'
					This	option	specifies	instruction	syntax	when	processing
					instructions.		The	'.att_syntax'	and	'.intel_syntax'	directives
					will	take	precedent.

'-mnaked-reg'
					This	opetion	specifies	that	registers	don't	require	a	'%'	prefix.
					The	'.att_syntax'	and	'.intel_syntax'	directives	will	take
					precedent.

'-madd-bnd-prefix'
					This	option	forces	the	assembler	to	add	BND	prefix	to	all	branches,
					even	if	such	prefix	was	not	explicitly	specified	in	the	source
					code.

'-mno-shared'
					On	ELF	target,	the	assembler	normally	optimizes	out	non-PLT
					relocations	against	defined	non-weak	global	branch	targets	with
					default	visibility.		The	'-mshared'	option	tells	the	assembler	to
					generate	code	which	may	go	into	a	shared	library	where	all	non-weak
					global	branch	targets	with	default	visibility	can	be	preempted.
					The	resulting	code	is	slightly	bigger.		This	option	only	affects
					the	handling	of	branch	instructions.

'-mbig-obj'
					On	x86-64	PE/COFF	target	this	option	forces	the	use	of	big	object
					file	format,	which	allows	more	than	32768	sections.

'-momit-lock-prefix=NO'
'-momit-lock-prefix=YES'
					These	options	control	how	the	assembler	should	encode	lock	prefix.
					This	option	is	intended	as	a	workaround	for	processors,	that	fail
					on	lock	prefix.		This	option	can	only	be	safely	used	with
					single-core,	single-thread	computers	'-momit-lock-prefix=YES'	will
					omit	all	lock	prefixes.		'-momit-lock-prefix=NO'	will	encode	lock
					prefix	as	usual,	which	is	the	default.

'-mfence-as-lock-add=NO'
'-mfence-as-lock-add=YES'
					These	options	control	how	the	assembler	should	encode	lfence,
					mfence	and	sfence.		'-mfence-as-lock-add=YES'	will	encode	lfence,
					mfence	and	sfence	as	'lock	addl	$0x0,	(%rsp)'	in	64-bit	mode	and
					'lock	addl	$0x0,	(%esp)'	in	32-bit	mode.		'-mfence-as-lock-add=NO'
					will	encode	lfence,	mfence	and	sfence	as	usual,	which	is	the
					default.

'-mrelax-relocations=NO'
'-mrelax-relocations=YES'
					These	options	control	whether	the	assembler	should	generate	relax
					relocations,	R_386_GOT32X,	in	32-bit	mode,	or	R_X86_64_GOTPCRELX
					and	R_X86_64_REX_GOTPCRELX,	in	64-bit	mode.
					'-mrelax-relocations=YES'	will	generate	relax	relocations.
					'-mrelax-relocations=NO'	will	not	generate	relax	relocations.		The

3/25/20 as.info 188

					default	can	be	controlled	by	a	configure	option
					'--enable-x86-relax-relocations'.

'-mevexrcig=RNE'
'-mevexrcig=RD'
'-mevexrcig=RU'
'-mevexrcig=RZ'
					These	options	control	how	the	assembler	should	encode	SAE-only	EVEX
					instructions.		'-mevexrcig=RNE'	will	encode	RC	bits	of	EVEX
					instruction	with	00,	which	is	the	default.		'-mevexrcig=RD',
					'-mevexrcig=RU'	and	'-mevexrcig=RZ'	will	encode	SAE-only	EVEX
					instructions	with	01,	10	and	11	RC	bits,	respectively.

'-mamd64'
'-mintel64'
					This	option	specifies	that	the	assembler	should	accept	only	AMD64
					or	Intel64	ISA	in	64-bit	mode.		The	default	is	to	accept	both.

�
File:	as.info,		Node:	i386-Directives,		Next:	i386-Syntax,		Prev:	i386-Options,		Up:
i386-Dependent

9.15.2	x86	specific	Directives

'.lcomm	SYMBOL	,	LENGTH[,	ALIGNMENT]'
					Reserve	LENGTH	(an	absolute	expression)	bytes	for	a	local	common
					denoted	by	SYMBOL.		The	section	and	value	of	SYMBOL	are	those	of
					the	new	local	common.		The	addresses	are	allocated	in	the	bss
					section,	so	that	at	run-time	the	bytes	start	off	zeroed.		Since
					SYMBOL	is	not	declared	global,	it	is	normally	not	visible	to	'ld'.
					The	optional	third	parameter,	ALIGNMENT,	specifies	the	desired
					alignment	of	the	symbol	in	the	bss	section.

					This	directive	is	only	available	for	COFF	based	x86	targets.

�
File:	as.info,		Node:	i386-Syntax,		Next:	i386-Mnemonics,		Prev:	i386-Directives,
Up:	i386-Dependent

9.15.3	i386	Syntactical	Considerations

*	Menu:

*	i386-Variations::											AT&T	Syntax	versus	Intel	Syntax
*	i386-Chars::																Special	Characters

�
File:	as.info,		Node:	i386-Variations,		Next:	i386-Chars,		Up:	i386-Syntax

9.15.3.1	AT&T	Syntax	versus	Intel	Syntax
..

'as'	now	supports	assembly	using	Intel	assembler	syntax.
'.intel_syntax'	selects	Intel	mode,	and	'.att_syntax'	switches	back	to
the	usual	AT&T	mode	for	compatibility	with	the	output	of	'gcc'.		Either
of	these	directives	may	have	an	optional	argument,	'prefix',	or
'noprefix'	specifying	whether	registers	require	a	'%'	prefix.		AT&T

3/25/20 as.info 189

System	V/386	assembler	syntax	is	quite	different	from	Intel	syntax.		We
mention	these	differences	because	almost	all	80386	documents	use	Intel
syntax.		Notable	differences	between	the	two	syntaxes	are:

			*	AT&T	immediate	operands	are	preceded	by	'$';	Intel	immediate
					operands	are	undelimited	(Intel	'push	4'	is	AT&T	'pushl	$4').		AT&T
					register	operands	are	preceded	by	'%';	Intel	register	operands	are
					undelimited.		AT&T	absolute	(as	opposed	to	PC	relative)	jump/call
					operands	are	prefixed	by	'*';	they	are	undelimited	in	Intel	syntax.

			*	AT&T	and	Intel	syntax	use	the	opposite	order	for	source	and
					destination	operands.		Intel	'add	eax,	4'	is	'addl	$4,	%eax'.		The
					'source,	dest'	convention	is	maintained	for	compatibility	with
					previous	Unix	assemblers.		Note	that	'bound',	'invlpga',	and
					instructions	with	2	immediate	operands,	such	as	the	'enter'
					instruction,	do	_not_	have	reversed	order.		*note	i386-Bugs::.

			*	In	AT&T	syntax	the	size	of	memory	operands	is	determined	from	the
					last	character	of	the	instruction	mnemonic.		Mnemonic	suffixes	of
					'b',	'w',	'l'	and	'q'	specify	byte	(8-bit),	word	(16-bit),	long
					(32-bit)	and	quadruple	word	(64-bit)	memory	references.		Intel
					syntax	accomplishes	this	by	prefixing	memory	operands	(_not_	the
					instruction	mnemonics)	with	'byte	ptr',	'word	ptr',	'dword	ptr'	and
					'qword	ptr'.		Thus,	Intel	'mov	al,	byte	ptr	FOO'	is	'movb	FOO,	%al'
					in	AT&T	syntax.

					In	64-bit	code,	'movabs'	can	be	used	to	encode	the	'mov'
					instruction	with	the	64-bit	displacement	or	immediate	operand.

			*	Immediate	form	long	jumps	and	calls	are	'lcall/ljmp	$SECTION,
					$OFFSET'	in	AT&T	syntax;	the	Intel	syntax	is	'call/jmp	far
					SECTION:OFFSET'.		Also,	the	far	return	instruction	is	'lret
					$STACK-ADJUST'	in	AT&T	syntax;	Intel	syntax	is	'ret	far
					STACK-ADJUST'.

			*	The	AT&T	assembler	does	not	provide	support	for	multiple	section
					programs.		Unix	style	systems	expect	all	programs	to	be	single
					sections.

�
File:	as.info,		Node:	i386-Chars,		Prev:	i386-Variations,		Up:	i386-Syntax

9.15.3.2	Special	Characters
...........................

The	presence	of	a	'#'	appearing	anywhere	on	a	line	indicates	the	start
of	a	comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			If	the	'--divide'	command	line	option	has	not	been	specified	then	the
'/'	character	appearing	anywhere	on	a	line	also	introduces	a	line
comment.

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

3/25/20 as.info 190

�
File:	as.info,		Node:	i386-Mnemonics,		Next:	i386-Regs,		Prev:	i386-Syntax,		Up:
i386-Dependent

9.15.4	i386-Mnemonics

9.15.4.1	Instruction	Naming
...........................

Instruction	mnemonics	are	suffixed	with	one	character	modifiers	which
specify	the	size	of	operands.		The	letters	'b',	'w',	'l'	and	'q'	specify
byte,	word,	long	and	quadruple	word	operands.		If	no	suffix	is	specified
by	an	instruction	then	'as'	tries	to	fill	in	the	missing	suffix	based	on
the	destination	register	operand	(the	last	one	by	convention).		Thus,
'mov	%ax,	%bx'	is	equivalent	to	'movw	%ax,	%bx';	also,	'mov	$1,	%bx'	is
equivalent	to	'movw	$1,	bx'.		Note	that	this	is	incompatible	with	the
AT&T	Unix	assembler	which	assumes	that	a	missing	mnemonic	suffix	implies
long	operand	size.		(This	incompatibility	does	not	affect	compiler
output	since	compilers	always	explicitly	specify	the	mnemonic	suffix.)

			Almost	all	instructions	have	the	same	names	in	AT&T	and	Intel	format.
There	are	a	few	exceptions.		The	sign	extend	and	zero	extend
instructions	need	two	sizes	to	specify	them.		They	need	a	size	to
sign/zero	extend	_from_	and	a	size	to	zero	extend	_to_.		This	is
accomplished	by	using	two	instruction	mnemonic	suffixes	in	AT&T	syntax.
Base	names	for	sign	extend	and	zero	extend	are	'movs...'	and	'movz...'
in	AT&T	syntax	('movsx'	and	'movzx'	in	Intel	syntax).		The	instruction
mnemonic	suffixes	are	tacked	on	to	this	base	name,	the	_from_	suffix
before	the	_to_	suffix.		Thus,	'movsbl	%al,	%edx'	is	AT&T	syntax	for
"move	sign	extend	_from_	%al	_to_	%edx."		Possible	suffixes,	thus,	are
'bl'	(from	byte	to	long),	'bw'	(from	byte	to	word),	'wl'	(from	word	to
long),	'bq'	(from	byte	to	quadruple	word),	'wq'	(from	word	to	quadruple
word),	and	'lq'	(from	long	to	quadruple	word).

			Different	encoding	options	can	be	specified	via	optional	mnemonic
suffix.		'.s'	suffix	swaps	2	register	operands	in	encoding	when	moving
from	one	register	to	another.		'.d8'	or	'.d32'	suffix	prefers	8bit	or
32bit	displacement	in	encoding.

			The	Intel-syntax	conversion	instructions

			*	'cbw'	--	sign-extend	byte	in	'%al'	to	word	in	'%ax',

			*	'cwde'	--	sign-extend	word	in	'%ax'	to	long	in	'%eax',

			*	'cwd'	--	sign-extend	word	in	'%ax'	to	long	in	'%dx:%ax',

			*	'cdq'	--	sign-extend	dword	in	'%eax'	to	quad	in	'%edx:%eax',

			*	'cdqe'	--	sign-extend	dword	in	'%eax'	to	quad	in	'%rax'	(x86-64
					only),

			*	'cqo'	--	sign-extend	quad	in	'%rax'	to	octuple	in	'%rdx:%rax'
					(x86-64	only),

are	called	'cbtw',	'cwtl',	'cwtd',	'cltd',	'cltq',	and	'cqto'	in	AT&T
naming.		'as'	accepts	either	naming	for	these	instructions.

3/25/20 as.info 191

			Far	call/jump	instructions	are	'lcall'	and	'ljmp'	in	AT&T	syntax,	but
are	'call	far'	and	'jump	far'	in	Intel	convention.

9.15.4.2	AT&T	Mnemonic	versus	Intel	Mnemonic
..

'as'	supports	assembly	using	Intel	mnemonic.		'.intel_mnemonic'	selects
Intel	mnemonic	with	Intel	syntax,	and	'.att_mnemonic'	switches	back	to
the	usual	AT&T	mnemonic	with	AT&T	syntax	for	compatibility	with	the
output	of	'gcc'.		Several	x87	instructions,	'fadd',	'fdiv',	'fdivp',
'fdivr',	'fdivrp',	'fmul',	'fsub',	'fsubp',	'fsubr'	and	'fsubrp',	are
implemented	in	AT&T	System	V/386	assembler	with	different	mnemonics	from
those	in	Intel	IA32	specification.		'gcc'	generates	those	instructions
with	AT&T	mnemonic.

�
File:	as.info,		Node:	i386-Regs,		Next:	i386-Prefixes,		Prev:	i386-Mnemonics,		Up:
i386-Dependent

9.15.5	Register	Naming

Register	operands	are	always	prefixed	with	'%'.		The	80386	registers
consist	of

			*	the	8	32-bit	registers	'%eax'	(the	accumulator),	'%ebx',	'%ecx',
					'%edx',	'%edi',	'%esi',	'%ebp'	(the	frame	pointer),	and	'%esp'	(the
					stack	pointer).

			*	the	8	16-bit	low-ends	of	these:	'%ax',	'%bx',	'%cx',	'%dx',	'%di',
					'%si',	'%bp',	and	'%sp'.

			*	the	8	8-bit	registers:	'%ah',	'%al',	'%bh',	'%bl',	'%ch',	'%cl',
					'%dh',	and	'%dl'	(These	are	the	high-bytes	and	low-bytes	of	'%ax',
					'%bx',	'%cx',	and	'%dx')

			*	the	6	section	registers	'%cs'	(code	section),	'%ds'	(data	section),
					'%ss'	(stack	section),	'%es',	'%fs',	and	'%gs'.

			*	the	5	processor	control	registers	'%cr0',	'%cr2',	'%cr3',	'%cr4',
					and	'%cr8'.

			*	the	6	debug	registers	'%db0',	'%db1',	'%db2',	'%db3',	'%db6',	and
					'%db7'.

			*	the	2	test	registers	'%tr6'	and	'%tr7'.

			*	the	8	floating	point	register	stack	'%st'	or	equivalently	'%st(0)',
					'%st(1)',	'%st(2)',	'%st(3)',	'%st(4)',	'%st(5)',	'%st(6)',	and
					'%st(7)'.		These	registers	are	overloaded	by	8	MMX	registers
					'%mm0',	'%mm1',	'%mm2',	'%mm3',	'%mm4',	'%mm5',	'%mm6'	and	'%mm7'.

			*	the	8	128-bit	SSE	registers	registers	'%xmm0',	'%xmm1',	'%xmm2',
					'%xmm3',	'%xmm4',	'%xmm5',	'%xmm6'	and	'%xmm7'.

			The	AMD	x86-64	architecture	extends	the	register	set	by:

			*	enhancing	the	8	32-bit	registers	to	64-bit:	'%rax'	(the

3/25/20 as.info 192

					accumulator),	'%rbx',	'%rcx',	'%rdx',	'%rdi',	'%rsi',	'%rbp'	(the
					frame	pointer),	'%rsp'	(the	stack	pointer)

			*	the	8	extended	registers	'%r8'-'%r15'.

			*	the	8	32-bit	low	ends	of	the	extended	registers:	'%r8d'-'%r15d'.

			*	the	8	16-bit	low	ends	of	the	extended	registers:	'%r8w'-'%r15w'.

			*	the	8	8-bit	low	ends	of	the	extended	registers:	'%r8b'-'%r15b'.

			*	the	4	8-bit	registers:	'%sil',	'%dil',	'%bpl',	'%spl'.

			*	the	8	debug	registers:	'%db8'-'%db15'.

			*	the	8	128-bit	SSE	registers:	'%xmm8'-'%xmm15'.

			With	the	AVX	extensions	more	registers	were	made	available:

			*	the	16	256-bit	SSE	'%ymm0'-'%ymm15'	(only	the	first	8	available	in
					32-bit	mode).		The	bottom	128	bits	are	overlaid	with	the
					'xmm0'-'xmm15'	registers.

			The	AVX2	extensions	made	in	64-bit	mode	more	registers	available:

			*	the	16	128-bit	registers	'%xmm16'-'%xmm31'	and	the	16	256-bit
					registers	'%ymm16'-'%ymm31'.

			The	AVX512	extensions	added	the	following	registers:

			*	the	32	512-bit	registers	'%zmm0'-'%zmm31'	(only	the	first	8
					available	in	32-bit	mode).		The	bottom	128	bits	are	overlaid	with
					the	'%xmm0'-'%xmm31'	registers	and	the	first	256	bits	are	overlaid
					with	the	'%ymm0'-'%ymm31'	registers.

			*	the	8	mask	registers	'%k0'-'%k7'.

�
File:	as.info,		Node:	i386-Prefixes,		Next:	i386-Memory,		Prev:	i386-Regs,		Up:	i386-
Dependent

9.15.6	Instruction	Prefixes

Instruction	prefixes	are	used	to	modify	the	following	instruction.		They
are	used	to	repeat	string	instructions,	to	provide	section	overrides,	to
perform	bus	lock	operations,	and	to	change	operand	and	address	sizes.
(Most	instructions	that	normally	operate	on	32-bit	operands	will	use
16-bit	operands	if	the	instruction	has	an	"operand	size"	prefix.)
Instruction	prefixes	are	best	written	on	the	same	line	as	the
instruction	they	act	upon.		For	example,	the	'scas'	(scan	string)
instruction	is	repeated	with:

													repne	scas	%es:(%edi),%al

			You	may	also	place	prefixes	on	the	lines	immediately	preceding	the
instruction,	but	this	circumvents	checks	that	'as'	does	with	prefixes,
and	will	not	work	with	all	prefixes.

3/25/20 as.info 193

			Here	is	a	list	of	instruction	prefixes:

			*	Section	override	prefixes	'cs',	'ds',	'ss',	'es',	'fs',	'gs'.
					These	are	automatically	added	by	specifying	using	the
					SECTION:MEMORY-OPERAND	form	for	memory	references.

			*	Operand/Address	size	prefixes	'data16'	and	'addr16'	change	32-bit
					operands/addresses	into	16-bit	operands/addresses,	while	'data32'
					and	'addr32'	change	16-bit	ones	(in	a	'.code16'	section)	into
					32-bit	operands/addresses.		These	prefixes	_must_	appear	on	the
					same	line	of	code	as	the	instruction	they	modify.		For	example,	in
					a	16-bit	'.code16'	section,	you	might	write:

																		addr32	jmpl	*(%ebx)

			*	The	bus	lock	prefix	'lock'	inhibits	interrupts	during	execution	of
					the	instruction	it	precedes.		(This	is	only	valid	with	certain
					instructions;	see	a	80386	manual	for	details).

			*	The	wait	for	coprocessor	prefix	'wait'	waits	for	the	coprocessor	to
					complete	the	current	instruction.		This	should	never	be	needed	for
					the	80386/80387	combination.

			*	The	'rep',	'repe',	and	'repne'	prefixes	are	added	to	string
					instructions	to	make	them	repeat	'%ecx'	times	('%cx'	times	if	the
					current	address	size	is	16-bits).
			*	The	'rex'	family	of	prefixes	is	used	by	x86-64	to	encode	extensions
					to	i386	instruction	set.		The	'rex'	prefix	has	four	bits	--	an
					operand	size	overwrite	('64')	used	to	change	operand	size	from
					32-bit	to	64-bit	and	X,	Y	and	Z	extensions	bits	used	to	extend	the
					register	set.

					You	may	write	the	'rex'	prefixes	directly.		The	'rex64xyz'
					instruction	emits	'rex'	prefix	with	all	the	bits	set.		By	omitting
					the	'64',	'x',	'y'	or	'z'	you	may	write	other	prefixes	as	well.
					Normally,	there	is	no	need	to	write	the	prefixes	explicitly,	since
					gas	will	automatically	generate	them	based	on	the	instruction
					operands.

�
File:	as.info,		Node:	i386-Memory,		Next:	i386-Jumps,		Prev:	i386-Prefixes,		Up:
i386-Dependent

9.15.7	Memory	References

An	Intel	syntax	indirect	memory	reference	of	the	form

					SECTION:[BASE	+	INDEX*SCALE	+	DISP]

is	translated	into	the	AT&T	syntax

					SECTION:DISP(BASE,	INDEX,	SCALE)

where	BASE	and	INDEX	are	the	optional	32-bit	base	and	index	registers,
DISP	is	the	optional	displacement,	and	SCALE,	taking	the	values	1,	2,	4,
and	8,	multiplies	INDEX	to	calculate	the	address	of	the	operand.		If	no
SCALE	is	specified,	SCALE	is	taken	to	be	1.		SECTION	specifies	the
optional	section	register	for	the	memory	operand,	and	may	override	the

3/25/20 as.info 194

default	section	register	(see	a	80386	manual	for	section	register
defaults).		Note	that	section	overrides	in	AT&T	syntax	_must_	be
preceded	by	a	'%'.		If	you	specify	a	section	override	which	coincides
with	the	default	section	register,	'as'	does	_not_	output	any	section
register	override	prefixes	to	assemble	the	given	instruction.		Thus,
section	overrides	can	be	specified	to	emphasize	which	section	register
is	used	for	a	given	memory	operand.

			Here	are	some	examples	of	Intel	and	AT&T	style	memory	references:

AT&T:	'-4(%ebp)',	Intel:	'[ebp	-	4]'
					BASE	is	'%ebp';	DISP	is	'-4'.		SECTION	is	missing,	and	the	default
					section	is	used	('%ss'	for	addressing	with	'%ebp'	as	the	base
					register).		INDEX,	SCALE	are	both	missing.

AT&T:	'foo(,%eax,4)',	Intel:	'[foo	+	eax*4]'
					INDEX	is	'%eax'	(scaled	by	a	SCALE	4);	DISP	is	'foo'.		All	other
					fields	are	missing.		The	section	register	here	defaults	to	'%ds'.

AT&T:	'foo(,1)';	Intel	'[foo]'
					This	uses	the	value	pointed	to	by	'foo'	as	a	memory	operand.		Note
					that	BASE	and	INDEX	are	both	missing,	but	there	is	only	_one_	','.
					This	is	a	syntactic	exception.

AT&T:	'%gs:foo';	Intel	'gs:foo'
					This	selects	the	contents	of	the	variable	'foo'	with	section
					register	SECTION	being	'%gs'.

			Absolute	(as	opposed	to	PC	relative)	call	and	jump	operands	must	be
prefixed	with	'*'.		If	no	'*'	is	specified,	'as'	always	chooses	PC
relative	addressing	for	jump/call	labels.

			Any	instruction	that	has	a	memory	operand,	but	no	register	operand,
must	specify	its	size	(byte,	word,	long,	or	quadruple)	with	an
instruction	mnemonic	suffix	('b',	'w',	'l'	or	'q',	respectively).

			The	x86-64	architecture	adds	an	RIP	(instruction	pointer	relative)
addressing.		This	addressing	mode	is	specified	by	using	'rip'	as	a	base
register.		Only	constant	offsets	are	valid.		For	example:

AT&T:	'1234(%rip)',	Intel:	'[rip	+	1234]'
					Points	to	the	address	1234	bytes	past	the	end	of	the	current
					instruction.

AT&T:	'symbol(%rip)',	Intel:	'[rip	+	symbol]'
					Points	to	the	'symbol'	in	RIP	relative	way,	this	is	shorter	than
					the	default	absolute	addressing.

			Other	addressing	modes	remain	unchanged	in	x86-64	architecture,
except	registers	used	are	64-bit	instead	of	32-bit.

�
File:	as.info,		Node:	i386-Jumps,		Next:	i386-Float,		Prev:	i386-Memory,		Up:	i386-
Dependent

9.15.8	Handling	of	Jump	Instructions

Jump	instructions	are	always	optimized	to	use	the	smallest	possible

3/25/20 as.info 195

displacements.		This	is	accomplished	by	using	byte	(8-bit)	displacement
jumps	whenever	the	target	is	sufficiently	close.		If	a	byte	displacement
is	insufficient	a	long	displacement	is	used.		We	do	not	support	word
(16-bit)	displacement	jumps	in	32-bit	mode	(i.e.		prefixing	the	jump
instruction	with	the	'data16'	instruction	prefix),	since	the	80386
insists	upon	masking	'%eip'	to	16	bits	after	the	word	displacement	is
added.		(See	also	*note	i386-Arch::)

			Note	that	the	'jcxz',	'jecxz',	'loop',	'loopz',	'loope',	'loopnz'	and
'loopne'	instructions	only	come	in	byte	displacements,	so	that	if	you
use	these	instructions	('gcc'	does	not	use	them)	you	may	get	an	error
message	(and	incorrect	code).		The	AT&T	80386	assembler	tries	to	get
around	this	problem	by	expanding	'jcxz	foo'	to

														jcxz	cx_zero
														jmp	cx_nonzero
					cx_zero:	jmp	foo
					cx_nonzero:

�
File:	as.info,		Node:	i386-Float,		Next:	i386-SIMD,		Prev:	i386-Jumps,		Up:	i386-
Dependent

9.15.9	Floating	Point

All	80387	floating	point	types	except	packed	BCD	are	supported.		(BCD
support	may	be	added	without	much	difficulty).		These	data	types	are
16-,	32-,	and	64-	bit	integers,	and	single	(32-bit),	double	(64-bit),
and	extended	(80-bit)	precision	floating	point.		Each	supported	type	has
an	instruction	mnemonic	suffix	and	a	constructor	associated	with	it.
Instruction	mnemonic	suffixes	specify	the	operand's	data	type.
Constructors	build	these	data	types	into	memory.

			*	Floating	point	constructors	are	'.float'	or	'.single',	'.double',
					and	'.tfloat'	for	32-,	64-,	and	80-bit	formats.		These	correspond
					to	instruction	mnemonic	suffixes	's',	'l',	and	't'.		't'	stands	for
					80-bit	(ten	byte)	real.		The	80387	only	supports	this	format	via
					the	'fldt'	(load	80-bit	real	to	stack	top)	and	'fstpt'	(store
					80-bit	real	and	pop	stack)	instructions.

			*	Integer	constructors	are	'.word',	'.long'	or	'.int',	and	'.quad'
					for	the	16-,	32-,	and	64-bit	integer	formats.		The	corresponding
					instruction	mnemonic	suffixes	are	's'	(single),	'l'	(long),	and	'q'
					(quad).		As	with	the	80-bit	real	format,	the	64-bit	'q'	format	is
					only	present	in	the	'fildq'	(load	quad	integer	to	stack	top)	and
					'fistpq'	(store	quad	integer	and	pop	stack)	instructions.

			Register	to	register	operations	should	not	use	instruction	mnemonic
suffixes.		'fstl	%st,	%st(1)'	will	give	a	warning,	and	be	assembled	as
if	you	wrote	'fst	%st,	%st(1)',	since	all	register	to	register
operations	use	80-bit	floating	point	operands.		(Contrast	this	with
'fstl	%st,	mem',	which	converts	'%st'	from	80-bit	to	64-bit	floating
point	format,	then	stores	the	result	in	the	4	byte	location	'mem')

�
File:	as.info,		Node:	i386-SIMD,		Next:	i386-LWP,		Prev:	i386-Float,		Up:	i386-
Dependent

3/25/20 as.info 196

9.15.10	Intel's	MMX	and	AMD's	3DNow!	SIMD	Operations
--

'as'	supports	Intel's	MMX	instruction	set	(SIMD	instructions	for	integer
data),	available	on	Intel's	Pentium	MMX	processors	and	Pentium	II
processors,	AMD's	K6	and	K6-2	processors,	Cyrix'	M2	processor,	and
probably	others.		It	also	supports	AMD's	3DNow!	instruction	set	(SIMD
instructions	for	32-bit	floating	point	data)	available	on	AMD's	K6-2
processor	and	possibly	others	in	the	future.

			Currently,	'as'	does	not	support	Intel's	floating	point	SIMD,	Katmai
(KNI).

			The	eight	64-bit	MMX	operands,	also	used	by	3DNow!,	are	called
'%mm0',	'%mm1',	...		'%mm7'.		They	contain	eight	8-bit	integers,	four
16-bit	integers,	two	32-bit	integers,	one	64-bit	integer,	or	two	32-bit
floating	point	values.		The	MMX	registers	cannot	be	used	at	the	same
time	as	the	floating	point	stack.

			See	Intel	and	AMD	documentation,	keeping	in	mind	that	the	operand
order	in	instructions	is	reversed	from	the	Intel	syntax.

�
File:	as.info,		Node:	i386-LWP,		Next:	i386-BMI,		Prev:	i386-SIMD,		Up:	i386-
Dependent

9.15.11	AMD's	Lightweight	Profiling	Instructions
--

'as'	supports	AMD's	Lightweight	Profiling	(LWP)	instruction	set,
available	on	AMD's	Family	15h	(Orochi)	processors.

			LWP	enables	applications	to	collect	and	manage	performance	data,	and
react	to	performance	events.		The	collection	of	performance	data
requires	no	context	switches.		LWP	runs	in	the	context	of	a	thread	and
so	several	counters	can	be	used	independently	across	multiple	threads.
LWP	can	be	used	in	both	64-bit	and	legacy	32-bit	modes.

			For	detailed	information	on	the	LWP	instruction	set,	see	the	'AMD
Lightweight	Profiling	Specification'	available	at	Lightweight	Profiling
Specification	(http://developer.amd.com/cpu/LWP).

�
File:	as.info,		Node:	i386-BMI,		Next:	i386-TBM,		Prev:	i386-LWP,		Up:	i386-Dependent

9.15.12	Bit	Manipulation	Instructions

'as'	supports	the	Bit	Manipulation	(BMI)	instruction	set.

			BMI	instructions	provide	several	instructions	implementing	individual
bit	manipulation	operations	such	as	isolation,	masking,	setting,	or
resetting.

�
File:	as.info,		Node:	i386-TBM,		Next:	i386-16bit,		Prev:	i386-BMI,		Up:	i386-
Dependent

9.15.13	AMD's	Trailing	Bit	Manipulation	Instructions

3/25/20 as.info 197

--

'as'	supports	AMD's	Trailing	Bit	Manipulation	(TBM)	instruction	set,
available	on	AMD's	BDVER2	processors	(Trinity	and	Viperfish).

			TBM	instructions	provide	instructions	implementing	individual	bit
manipulation	operations	such	as	isolating,	masking,	setting,	resetting,
complementing,	and	operations	on	trailing	zeros	and	ones.

�
File:	as.info,		Node:	i386-16bit,		Next:	i386-Arch,		Prev:	i386-TBM,		Up:	i386-
Dependent

9.15.14	Writing	16-bit	Code

While	'as'	normally	writes	only	"pure"	32-bit	i386	code	or	64-bit	x86-64
code	depending	on	the	default	configuration,	it	also	supports	writing
code	to	run	in	real	mode	or	in	16-bit	protected	mode	code	segments.		To
do	this,	put	a	'.code16'	or	'.code16gcc'	directive	before	the	assembly
language	instructions	to	be	run	in	16-bit	mode.		You	can	switch	'as'	to
writing	32-bit	code	with	the	'.code32'	directive	or	64-bit	code	with	the
'.code64'	directive.

			'.code16gcc'	provides	experimental	support	for	generating	16-bit	code
from	gcc,	and	differs	from	'.code16'	in	that	'call',	'ret',	'enter',
'leave',	'push',	'pop',	'pusha',	'popa',	'pushf',	and	'popf'
instructions	default	to	32-bit	size.		This	is	so	that	the	stack	pointer
is	manipulated	in	the	same	way	over	function	calls,	allowing	access	to
function	parameters	at	the	same	stack	offsets	as	in	32-bit	mode.
'.code16gcc'	also	automatically	adds	address	size	prefixes	where
necessary	to	use	the	32-bit	addressing	modes	that	gcc	generates.

			The	code	which	'as'	generates	in	16-bit	mode	will	not	necessarily	run
on	a	16-bit	pre-80386	processor.		To	write	code	that	runs	on	such	a
processor,	you	must	refrain	from	using	_any_	32-bit	constructs	which
require	'as'	to	output	address	or	operand	size	prefixes.

			Note	that	writing	16-bit	code	instructions	by	explicitly	specifying	a
prefix	or	an	instruction	mnemonic	suffix	within	a	32-bit	code	section
generates	different	machine	instructions	than	those	generated	for	a
16-bit	code	segment.		In	a	32-bit	code	section,	the	following	code
generates	the	machine	opcode	bytes	'66	6a	04',	which	pushes	the	value
'4'	onto	the	stack,	decrementing	'%esp'	by	2.

													pushw	$4

			The	same	code	in	a	16-bit	code	section	would	generate	the	machine
opcode	bytes	'6a	04'	(i.e.,	without	the	operand	size	prefix),	which	is
correct	since	the	processor	default	operand	size	is	assumed	to	be	16
bits	in	a	16-bit	code	section.

�
File:	as.info,		Node:	i386-Arch,		Next:	i386-Bugs,		Prev:	i386-16bit,		Up:	i386-
Dependent

9.15.15	Specifying	CPU	Architecture

3/25/20 as.info 198

'as'	may	be	told	to	assemble	for	a	particular	CPU	(sub-)architecture
with	the	'.arch	CPU_TYPE'	directive.		This	directive	enables	a	warning
when	gas	detects	an	instruction	that	is	not	supported	on	the	CPU
specified.		The	choices	for	CPU_TYPE	are:

'i8086'								'i186'									'i286'									'i386'
'i486'									'i586'									'i686'									'pentium'
'pentiumpro'			'pentiumii'				'pentiumiii'			'pentium4'
'prescott'					'nocona'							'core'									'core2'
'corei7'							'l1om'									'k1om'
																														'iamcu'
'k6'											'k6_2'									'athlon'							'k8'
'amdfam10'					'bdver1'							'bdver2'							'bdver3'
'bdver4'							'znver1'							'btver1'							'btver2'
'generic32'				'generic64'
'.mmx'									'.sse'									'.sse2'								'.sse3'
'.ssse3'							'.sse4.1'						'.sse4.2'						'.sse4'
'.avx'									'.vmx'									'.smx'									'.ept'
'.clflush'					'.movbe'							'.xsave'							'.xsaveopt'
'.aes'									'.pclmul'						'.fma'									'.fsgsbase'
'.rdrnd'							'.f16c'								'.avx2'								'.bmi2'
'.lzcnt'							'.invpcid'					'.vmfunc'						'.hle'
'.rtm'									'.adx'									'.rdseed'						'.prfchw'
'.smap'								'.mpx'									'.sha'									'.prefetchwt1'
'.clflushopt'		'.xsavec'						'.xsaves'						'.se1'
'.avx512f'					'.avx512cd'				'.avx512er'				'.avx512pf'
'.avx512vl'				'.avx512bw'				'.avx512dq'				'.avx512ifma'
'.avx512vbmi'		'.avx512_4fmaps''.avx512_4vnniw'
'.avx512_vpopcntdq''.clwb'				'.rdpid'							'.ptwrite'
'.3dnow'							'.3dnowa'						'.sse4a'							'.sse5'
'.syscall'					'.rdtscp'						'.svme'								'.abm'
'.lwp'									'.fma4'								'.xop'									'.cx16'
'.padlock'					'.clzero'						'.mwaitx'

			Apart	from	the	warning,	there	are	only	two	other	effects	on	'as'
operation;	Firstly,	if	you	specify	a	CPU	other	than	'i486',	then	shift
by	one	instructions	such	as	'sarl	$1,	%eax'	will	automatically	use	a	two
byte	opcode	sequence.		The	larger	three	byte	opcode	sequence	is	used	on
the	486	(and	when	no	architecture	is	specified)	because	it	executes
faster	on	the	486.		Note	that	you	can	explicitly	request	the	two	byte
opcode	by	writing	'sarl	%eax'.		Secondly,	if	you	specify	'i8086',
'i186',	or	'i286',	_and_	'.code16'	or	'.code16gcc'	then	byte	offset
conditional	jumps	will	be	promoted	when	necessary	to	a	two	instruction
sequence	consisting	of	a	conditional	jump	of	the	opposite	sense	around
an	unconditional	jump	to	the	target.

			Following	the	CPU	architecture	(but	not	a	sub-architecture,	which	are
those	starting	with	a	dot),	you	may	specify	'jumps'	or	'nojumps'	to
control	automatic	promotion	of	conditional	jumps.		'jumps'	is	the
default,	and	enables	jump	promotion;	All	external	jumps	will	be	of	the
long	variety,	and	file-local	jumps	will	be	promoted	as	necessary.
(*note	i386-Jumps::)	'nojumps'	leaves	external	conditional	jumps	as	byte
offset	jumps,	and	warns	about	file-local	conditional	jumps	that	'as'
promotes.		Unconditional	jumps	are	treated	as	for	'jumps'.

			For	example

						.arch	i8086,nojumps

3/25/20 as.info 199

�
File:	as.info,		Node:	i386-Bugs,		Next:	i386-Notes,		Prev:	i386-Arch,		Up:	i386-
Dependent

9.15.16	AT&T	Syntax	bugs

The	UnixWare	assembler,	and	probably	other	AT&T	derived	ix86	Unix
assemblers,	generate	floating	point	instructions	with	reversed	source
and	destination	registers	in	certain	cases.		Unfortunately,	gcc	and
possibly	many	other	programs	use	this	reversed	syntax,	so	we're	stuck
with	it.

			For	example

													fsub	%st,%st(3)
results	in	'%st(3)'	being	updated	to	'%st	-	%st(3)'	rather	than	the
expected	'%st(3)	-	%st'.		This	happens	with	all	the	non-commutative
arithmetic	floating	point	operations	with	two	register	operands	where
the	source	register	is	'%st'	and	the	destination	register	is	'%st(i)'.

�
File:	as.info,		Node:	i386-Notes,		Prev:	i386-Bugs,		Up:	i386-Dependent

9.15.17	Notes

There	is	some	trickery	concerning	the	'mul'	and	'imul'	instructions	that
deserves	mention.		The	16-,	32-,	64-	and	128-bit	expanding	multiplies
(base	opcode	'0xf6';	extension	4	for	'mul'	and	5	for	'imul')	can	be
output	only	in	the	one	operand	form.		Thus,	'imul	%ebx,	%eax'	does	_not_
select	the	expanding	multiply;	the	expanding	multiply	would	clobber	the
'%edx'	register,	and	this	would	confuse	'gcc'	output.		Use	'imul	%ebx'
to	get	the	64-bit	product	in	'%edx:%eax'.

			We	have	added	a	two	operand	form	of	'imul'	when	the	first	operand	is
an	immediate	mode	expression	and	the	second	operand	is	a	register.		This
is	just	a	shorthand,	so	that,	multiplying	'%eax'	by	69,	for	example,	can
be	done	with	'imul	$69,	%eax'	rather	than	'imul	$69,	%eax,	%eax'.

�
File:	as.info,		Node:	i860-Dependent,		Next:	i960-Dependent,		Prev:	i386-Dependent,
Up:	Machine	Dependencies

9.16	Intel	i860	Dependent	Features
==================================

*	Menu:

*	Notes-i860::																		i860	Notes
*	Options-i860::																i860	Command-line	Options
*	Directives-i860::													i860	Machine	Directives
*	Opcodes	for	i860::												i860	Opcodes
*	Syntax	of	i860::														i860	Syntax

�
File:	as.info,		Node:	Notes-i860,		Next:	Options-i860,		Up:	i860-Dependent

9.16.1	i860	Notes

3/25/20 as.info 200

This	is	a	fairly	complete	i860	assembler	which	is	compatible	with	the
UNIX	System	V/860	Release	4	assembler.		However,	it	does	not	currently
support	SVR4	PIC	(i.e.,	'@GOT,	@GOTOFF,	@PLT').

			Like	the	SVR4/860	assembler,	the	output	object	format	is	ELF32.
Currently,	this	is	the	only	supported	object	format.		If	there	is
sufficient	interest,	other	formats	such	as	COFF	may	be	implemented.

			Both	the	Intel	and	AT&T/SVR4	syntaxes	are	supported,	with	the	latter
being	the	default.		One	difference	is	that	AT&T	syntax	requires	the	'%'
prefix	on	register	names	while	Intel	syntax	does	not.		Another
difference	is	in	the	specification	of	relocatable	expressions.		The
Intel	syntax	is	'ha%expression'	whereas	the	SVR4	syntax	is
'[expression]@ha'	(and	similarly	for	the	"l"	and	"h"	selectors).

�
File:	as.info,		Node:	Options-i860,		Next:	Directives-i860,		Prev:	Notes-i860,		Up:
i860-Dependent

9.16.2	i860	Command-line	Options

9.16.2.1	SVR4	compatibility	options
...................................

'-V'
					Print	assembler	version.
'-Qy'
					Ignored.
'-Qn'
					Ignored.

9.16.2.2	Other	options
......................

'-EL'
					Select	little	endian	output	(this	is	the	default).
'-EB'
					Select	big	endian	output.		Note	that	the	i860	always	reads
					instructions	as	little	endian	data,	so	this	option	only	effects
					data	and	not	instructions.
'-mwarn-expand'
					Emit	a	warning	message	if	any	pseudo-instruction	expansions
					occurred.		For	example,	a	'or'	instruction	with	an	immediate	larger
					than	16-bits	will	be	expanded	into	two	instructions.		This	is	a
					very	undesirable	feature	to	rely	on,	so	this	flag	can	help	detect
					any	code	where	it	happens.		One	use	of	it,	for	instance,	has	been
					to	find	and	eliminate	any	place	where	'gcc'	may	emit	these
					pseudo-instructions.
'-mxp'
					Enable	support	for	the	i860XP	instructions	and	control	registers.
					By	default,	this	option	is	disabled	so	that	only	the	base
					instruction	set	(i.e.,	i860XR)	is	supported.
'-mintel-syntax'
					The	i860	assembler	defaults	to	AT&T/SVR4	syntax.		This	option
					enables	the	Intel	syntax.

3/25/20 as.info 201

�
File:	as.info,		Node:	Directives-i860,		Next:	Opcodes	for	i860,		Prev:	Options-i860,
Up:	i860-Dependent

9.16.3	i860	Machine	Directives

'.dual'
					Enter	dual	instruction	mode.		While	this	directive	is	supported,
					the	preferred	way	to	use	dual	instruction	mode	is	to	explicitly
					code	the	dual	bit	with	the	'd.'	prefix.

'.enddual'
					Exit	dual	instruction	mode.		While	this	directive	is	supported,	the
					preferred	way	to	use	dual	instruction	mode	is	to	explicitly	code
					the	dual	bit	with	the	'd.'	prefix.

'.atmp'
					Change	the	temporary	register	used	when	expanding	pseudo
					operations.		The	default	register	is	'r31'.

			The	'.dual',	'.enddual',	and	'.atmp'	directives	are	available	only	in
the	Intel	syntax	mode.

			Both	syntaxes	allow	for	the	standard	'.align'	directive.		However,
the	Intel	syntax	additionally	allows	keywords	for	the	alignment
parameter:	"'.align	type'",	where	'type'	is	one	of	'.short',	'.long',
'.quad',	'.single',	'.double'	representing	alignments	of	2,	4,	16,	4,
and	8,	respectively.

�
File:	as.info,		Node:	Opcodes	for	i860,		Next:	Syntax	of	i860,		Prev:	Directives-
i860,		Up:	i860-Dependent

9.16.4	i860	Opcodes

All	of	the	Intel	i860XR	and	i860XP	machine	instructions	are	supported.
Please	see	either	_i860	Microprocessor	Programmer's	Reference	Manual_	or
i860	Microprocessor	Architecture	for	more	information.

9.16.4.1	Other	instruction	support	(pseudo-instructions)
..

For	compatibility	with	some	other	i860	assemblers,	a	number	of
pseudo-instructions	are	supported.		While	these	are	supported,	they	are
a	very	undesirable	feature	that	should	be	avoided	-	in	particular,	when
they	result	in	an	expansion	to	multiple	actual	i860	instructions.		Below
are	the	pseudo-instructions	that	result	in	expansions.
			*	Load	large	immediate	into	general	register:

					The	pseudo-instruction	'mov	imm,%rn'	(where	the	immediate	does	not
					fit	within	a	signed	16-bit	field)	will	be	expanded	into:
										orh	large_imm@h,%r0,%rn
										or	large_imm@l,%rn,%rn
			*	Load/store	with	relocatable	address	expression:

					For	example,	the	pseudo-instruction	'ld.b	addr_exp(%rx),%rn'	will
					be	expanded	into:

3/25/20 as.info 202

										orh	addr_exp@ha,%rx,%r31
										ld.l	addr_exp@l(%r31),%rn

					The	analogous	expansions	apply	to	'ld.x,	st.x,	fld.x,	pfld.x,
					fst.x',	and	'pst.x'	as	well.
			*	Signed	large	immediate	with	add/subtract:

					If	any	of	the	arithmetic	operations	'adds,	addu,	subs,	subu'	are
					used	with	an	immediate	larger	than	16-bits	(signed),	then	they	will
					be	expanded.		For	instance,	the	pseudo-instruction	'adds
					large_imm,%rx,%rn'	expands	to:
										orh	large_imm@h,%r0,%r31
										or	large_imm@l,%r31,%r31
										adds	%r31,%rx,%rn
			*	Unsigned	large	immediate	with	logical	operations:

					Logical	operations	('or,	andnot,	or,	xor')	also	result	in
					expansions.		The	pseudo-instruction	'or	large_imm,%rx,%rn'	results
					in:
										orh	large_imm@h,%rx,%r31
										or	large_imm@l,%r31,%rn

					Similarly	for	the	others,	except	for	'and'	which	expands	to:
										andnot	(-1	-	large_imm)@h,%rx,%r31
										andnot	(-1	-	large_imm)@l,%r31,%rn

�
File:	as.info,		Node:	Syntax	of	i860,		Prev:	Opcodes	for	i860,		Up:	i860-Dependent

9.16.5	i860	Syntax

*	Menu:

*	i860-Chars::																Special	Characters

�
File:	as.info,		Node:	i860-Chars,		Up:	Syntax	of	i860

9.16.5.1	Special	Characters
...........................

The	presence	of	a	'#'	appearing	anywhere	on	a	line	indicates	the	start
of	a	comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	i960-Dependent,		Next:	IA-64-Dependent,		Prev:	i860-Dependent,
Up:	Machine	Dependencies

9.17	Intel	80960	Dependent	Features
===================================

3/25/20 as.info 203

*	Menu:

*	Options-i960::																i960	Command-line	Options
*	Floating	Point-i960::									Floating	Point
*	Directives-i960::													i960	Machine	Directives
*	Opcodes	for	i960::												i960	Opcodes
*	Syntax	of	i960::														i960	Syntax

�
File:	as.info,		Node:	Options-i960,		Next:	Floating	Point-i960,		Up:	i960-Dependent

9.17.1	i960	Command-line	Options

'-ACA	|	-ACA_A	|	-ACB	|	-ACC	|	-AKA	|	-AKB	|	-AKC	|	-AMC'
					Select	the	80960	architecture.		Instructions	or	features	not
					supported	by	the	selected	architecture	cause	fatal	errors.

					'-ACA'	is	equivalent	to	'-ACA_A';	'-AKC'	is	equivalent	to	'-AMC'.
					Synonyms	are	provided	for	compatibility	with	other	tools.

					If	you	do	not	specify	any	of	these	options,	'as'	generates	code	for
					any	instruction	or	feature	that	is	supported	by	_some_	version	of
					the	960	(even	if	this	means	mixing	architectures!).		In	principle,
					'as'	attempts	to	deduce	the	minimal	sufficient	processor	type	if
					none	is	specified;	depending	on	the	object	code	format,	the
					processor	type	may	be	recorded	in	the	object	file.		If	it	is
					critical	that	the	'as'	output	match	a	specific	architecture,
					specify	that	architecture	explicitly.

'-b'
					Add	code	to	collect	information	about	conditional	branches	taken,
					for	later	optimization	using	branch	prediction	bits.		(The
					conditional	branch	instructions	have	branch	prediction	bits	in	the
					CA,	CB,	and	CC	architectures.)		If	BR	represents	a	conditional
					branch	instruction,	the	following	represents	the	code	generated	by
					the	assembler	when	'-b'	is	specified:

																		call				INCREMENT	ROUTINE
																		.word			0							#	pre-counter
										Label:		BR
																		call				INCREMENT	ROUTINE
																		.word			0							#	post-counter

					The	counter	following	a	branch	records	the	number	of	times	that
					branch	was	_not_	taken;	the	difference	between	the	two	counters	is
					the	number	of	times	the	branch	_was_	taken.

					A	table	of	every	such	'Label'	is	also	generated,	so	that	the
					external	postprocessor	'gbr960'	(supplied	by	Intel)	can	locate	all
					the	counters.		This	table	is	always	labeled	'__BRANCH_TABLE__';
					this	is	a	local	symbol	to	permit	collecting	statistics	for	many
					separate	object	files.		The	table	is	word	aligned,	and	begins	with
					a	two-word	header.		The	first	word,	initialized	to	0,	is	used	in
					maintaining	linked	lists	of	branch	tables.		The	second	word	is	a
					count	of	the	number	of	entries	in	the	table,	which	follow
					immediately:	each	is	a	word,	pointing	to	one	of	the	labels
					illustrated	above.

3/25/20 as.info 204

											+------------+------------+------------+	...	+------------+
											|												|												|												|					|												|
											|		*NEXT					|		COUNT:	N		|	*BRLAB	1			|					|	*BRLAB	N			|
											|												|												|												|					|												|
											+------------+------------+------------+	...	+------------+

																									__BRANCH_TABLE__	layout

					The	first	word	of	the	header	is	used	to	locate	multiple	branch
					tables,	since	each	object	file	may	contain	one.		Normally	the	links
					are	maintained	with	a	call	to	an	initialization	routine,	placed	at
					the	beginning	of	each	function	in	the	file.		The	GNU	C	compiler
					generates	these	calls	automatically	when	you	give	it	a	'-b'	option.
					For	further	details,	see	the	documentation	of	'gbr960'.

'-no-relax'
					Normally,	Compare-and-Branch	instructions	with	targets	that	require
					displacements	greater	than	13	bits	(or	that	have	external	targets)
					are	replaced	with	the	corresponding	compare	(or	'chkbit')	and
					branch	instructions.		You	can	use	the	'-no-relax'	option	to	specify
					that	'as'	should	generate	errors	instead,	if	the	target
					displacement	is	larger	than	13	bits.

					This	option	does	not	affect	the	Compare-and-Jump	instructions;	the
					code	emitted	for	them	is	_always_	adjusted	when	necessary
					(depending	on	displacement	size),	regardless	of	whether	you	use
					'-no-relax'.

�
File:	as.info,		Node:	Floating	Point-i960,		Next:	Directives-i960,		Prev:	Options-
i960,		Up:	i960-Dependent

9.17.2	Floating	Point

'as'	generates	IEEE	floating-point	numbers	for	the	directives	'.float',
'.double',	'.extended',	and	'.single'.

�
File:	as.info,		Node:	Directives-i960,		Next:	Opcodes	for	i960,		Prev:	Floating
Point-i960,		Up:	i960-Dependent

9.17.3	i960	Machine	Directives

'.bss	SYMBOL,	LENGTH,	ALIGN'
					Reserve	LENGTH	bytes	in	the	bss	section	for	a	local	SYMBOL,	aligned
					to	the	power	of	two	specified	by	ALIGN.		LENGTH	and	ALIGN	must	be
					positive	absolute	expressions.		This	directive	differs	from
					'.lcomm'	only	in	that	it	permits	you	to	specify	an	alignment.
					*Note	'.lcomm':	Lcomm.

'.extended	FLONUMS'
					'.extended'	expects	zero	or	more	flonums,	separated	by	commas;	for
					each	flonum,	'.extended'	emits	an	IEEE	extended-format	(80-bit)
					floating-point	number.

'.leafproc	CALL-LAB,	BAL-LAB'

3/25/20 as.info 205

					You	can	use	the	'.leafproc'	directive	in	conjunction	with	the
					optimized	'callj'	instruction	to	enable	faster	calls	of	leaf
					procedures.		If	a	procedure	is	known	to	call	no	other	procedures,
					you	may	define	an	entry	point	that	skips	procedure	prolog	code	(and
					that	does	not	depend	on	system-supplied	saved	context),	and	declare
					it	as	the	BAL-LAB	using	'.leafproc'.		If	the	procedure	also	has	an
					entry	point	that	goes	through	the	normal	prolog,	you	can	specify
					that	entry	point	as	CALL-LAB.

					A	'.leafproc'	declaration	is	meant	for	use	in	conjunction	with	the
					optimized	call	instruction	'callj';	the	directive	records	the	data
					needed	later	to	choose	between	converting	the	'callj'	into	a	'bal'
					or	a	'call'.

					CALL-LAB	is	optional;	if	only	one	argument	is	present,	or	if	the
					two	arguments	are	identical,	the	single	argument	is	assumed	to	be
					the	'bal'	entry	point.

'.sysproc	NAME,	INDEX'
					The	'.sysproc'	directive	defines	a	name	for	a	system	procedure.
					After	you	define	it	using	'.sysproc',	you	can	use	NAME	to	refer	to
					the	system	procedure	identified	by	INDEX	when	calling	procedures
					with	the	optimized	call	instruction	'callj'.

					Both	arguments	are	required;	INDEX	must	be	between	0	and	31
					(inclusive).

�
File:	as.info,		Node:	Opcodes	for	i960,		Next:	Syntax	of	i960,		Prev:	Directives-
i960,		Up:	i960-Dependent

9.17.4	i960	Opcodes

All	Intel	960	machine	instructions	are	supported;	*note	i960
Command-line	Options:	Options-i960.	for	a	discussion	of	selecting	the
instruction	subset	for	a	particular	960	architecture.

			Some	opcodes	are	processed	beyond	simply	emitting	a	single
corresponding	instruction:	'callj',	and	Compare-and-Branch	or
Compare-and-Jump	instructions	with	target	displacements	larger	than	13
bits.

*	Menu:

*	callj-i960::																		'callj'
*	Compare-and-branch-i960::					Compare-and-Branch

�
File:	as.info,		Node:	callj-i960,		Next:	Compare-and-branch-i960,		Up:	Opcodes	for
i960

9.17.4.1	'callj'
................

You	can	write	'callj'	to	have	the	assembler	or	the	linker	determine	the
most	appropriate	form	of	subroutine	call:	'call',	'bal',	or	'calls'.		If
the	assembly	source	contains	enough	information--a	'.leafproc'	or
'.sysproc'	directive	defining	the	operand--then	'as'	translates	the

3/25/20 as.info 206

'callj';	if	not,	it	simply	emits	the	'callj',	leaving	it	for	the	linker
to	resolve.

�
File:	as.info,		Node:	Compare-and-branch-i960,		Prev:	callj-i960,		Up:	Opcodes	for
i960

9.17.4.2	Compare-and-Branch
...........................

The	960	architectures	provide	combined	Compare-and-Branch	instructions
that	permit	you	to	store	the	branch	target	in	the	lower	13	bits	of	the
instruction	word	itself.		However,	if	you	specify	a	branch	target	far
enough	away	that	its	address	won't	fit	in	13	bits,	the	assembler	can
either	issue	an	error,	or	convert	your	Compare-and-Branch	instruction
into	separate	instructions	to	do	the	compare	and	the	branch.

			Whether	'as'	gives	an	error	or	expands	the	instruction	depends	on	two
choices	you	can	make:	whether	you	use	the	'-no-relax'	option,	and
whether	you	use	a	"Compare	and	Branch"	instruction	or	a	"Compare	and
Jump"	instruction.		The	"Jump"	instructions	are	_always_	expanded	if
necessary;	the	"Branch"	instructions	are	expanded	when	necessary
unless	you	specify	'-no-relax'--in	which	case	'as'	gives	an	error
instead.

			These	are	the	Compare-and-Branch	instructions,	their	"Jump"	variants,
and	the	instruction	pairs	they	may	expand	into:

													Compare	and
										Branch						Jump							Expanded	to
										------				------							------------
													bbc																	chkbit;	bno
													bbs																	chkbit;	bo
										cmpibe				cmpije							cmpi;	be
										cmpibg				cmpijg							cmpi;	bg
									cmpibge			cmpijge							cmpi;	bge
										cmpibl				cmpijl							cmpi;	bl
									cmpible			cmpijle							cmpi;	ble
									cmpibno			cmpijno							cmpi;	bno
									cmpibne			cmpijne							cmpi;	bne
										cmpibo				cmpijo							cmpi;	bo
										cmpobe				cmpoje							cmpo;	be
										cmpobg				cmpojg							cmpo;	bg
									cmpobge			cmpojge							cmpo;	bge
										cmpobl				cmpojl							cmpo;	bl
									cmpoble			cmpojle							cmpo;	ble
									cmpobne			cmpojne							cmpo;	bne

�
File:	as.info,		Node:	Syntax	of	i960,		Prev:	Opcodes	for	i960,		Up:	i960-Dependent

9.17.5	Syntax	for	the	i960

*	Menu:

*	i960-Chars::																Special	Characters

�

3/25/20 as.info 207

File:	as.info,		Node:	i960-Chars,		Up:	Syntax	of	i960

9.17.5.1	Special	Characters
...........................

The	presence	of	a	'#'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.

			If	a	'#'	appears	as	the	first	character	of	a	line,	the	whole	line	is
treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	IA-64-Dependent,		Next:	IP2K-Dependent,		Prev:	i960-Dependent,
Up:	Machine	Dependencies

9.18	IA-64	Dependent	Features
=============================

*	Menu:

*	IA-64	Options::														Options
*	IA-64	Syntax::															Syntax
*	IA-64	Opcodes::														Opcodes

�
File:	as.info,		Node:	IA-64	Options,		Next:	IA-64	Syntax,		Up:	IA-64-Dependent

9.18.1	Options

'-mconstant-gp'
					This	option	instructs	the	assembler	to	mark	the	resulting	object
					file	as	using	the	"constant	GP"	model.		With	this	model,	it	is
					assumed	that	the	entire	program	uses	a	single	global	pointer	(GP)
					value.		Note	that	this	option	does	not	in	any	fashion	affect	the
					machine	code	emitted	by	the	assembler.		All	it	does	is	turn	on	the
					EF_IA_64_CONS_GP	flag	in	the	ELF	file	header.

'-mauto-pic'
					This	option	instructs	the	assembler	to	mark	the	resulting	object
					file	as	using	the	"constant	GP	without	function	descriptor"	data
					model.		This	model	is	like	the	"constant	GP"	model,	except	that	it
					additionally	does	away	with	function	descriptors.		What	this	means
					is	that	the	address	of	a	function	refers	directly	to	the	function's
					code	entry-point.		Normally,	such	an	address	would	refer	to	a
					function	descriptor,	which	contains	both	the	code	entry-point	and
					the	GP-value	needed	by	the	function.		Note	that	this	option	does
					not	in	any	fashion	affect	the	machine	code	emitted	by	the
					assembler.		All	it	does	is	turn	on	the	EF_IA_64_NOFUNCDESC_CONS_GP
					flag	in	the	ELF	file	header.

'-milp32'
'-milp64'
'-mlp64'

3/25/20 as.info 208

'-mp64'
					These	options	select	the	data	model.		The	assembler	defaults	to
					'-mlp64'	(LP64	data	model).

'-mle'
'-mbe'
					These	options	select	the	byte	order.		The	'-mle'	option	selects
					little-endian	byte	order	(default)	and	'-mbe'	selects	big-endian
					byte	order.		Note	that	IA-64	machine	code	always	uses	little-endian
					byte	order.

'-mtune=itanium1'
'-mtune=itanium2'
					Tune	for	a	particular	IA-64	CPU,	ITANIUM1	or	ITANIUM2.		The	default
					is	ITANIUM2.

'-munwind-check=warning'
'-munwind-check=error'
					These	options	control	what	the	assembler	will	do	when	performing
					consistency	checks	on	unwind	directives.		'-munwind-check=warning'
					will	make	the	assembler	issue	a	warning	when	an	unwind	directive
					check	fails.		This	is	the	default.		'-munwind-check=error'	will
					make	the	assembler	issue	an	error	when	an	unwind	directive	check
					fails.

'-mhint.b=ok'
'-mhint.b=warning'
'-mhint.b=error'
					These	options	control	what	the	assembler	will	do	when	the	'hint.b'
					instruction	is	used.		'-mhint.b=ok'	will	make	the	assembler	accept
					'hint.b'.		'-mint.b=warning'	will	make	the	assembler	issue	a
					warning	when	'hint.b'	is	used.		'-mhint.b=error'	will	make	the
					assembler	treat	'hint.b'	as	an	error,	which	is	the	default.

'-x'
'-xexplicit'
					These	options	turn	on	dependency	violation	checking.

'-xauto'
					This	option	instructs	the	assembler	to	automatically	insert	stop
					bits	where	necessary	to	remove	dependency	violations.		This	is	the
					default	mode.

'-xnone'
					This	option	turns	off	dependency	violation	checking.

'-xdebug'
					This	turns	on	debug	output	intended	to	help	tracking	down	bugs	in
					the	dependency	violation	checker.

'-xdebugn'
					This	is	a	shortcut	for	-xnone	-xdebug.

'-xdebugx'
					This	is	a	shortcut	for	-xexplicit	-xdebug.

�
File:	as.info,		Node:	IA-64	Syntax,		Next:	IA-64	Opcodes,		Prev:	IA-64	Options,		Up:
IA-64-Dependent

3/25/20 as.info 209

9.18.2	Syntax

The	assembler	syntax	closely	follows	the	IA-64	Assembly	Language
Reference	Guide.

*	Menu:

*	IA-64-Chars::																Special	Characters
*	IA-64-Regs::																	Register	Names
*	IA-64-Bits::																	Bit	Names
*	IA-64-Relocs::															Relocations

�
File:	as.info,		Node:	IA-64-Chars,		Next:	IA-64-Regs,		Up:	IA-64	Syntax

9.18.2.1	Special	Characters
...........................

'//'	is	the	line	comment	token.

			';'	can	be	used	instead	of	a	newline	to	separate	statements.

�
File:	as.info,		Node:	IA-64-Regs,		Next:	IA-64-Bits,		Prev:	IA-64-Chars,		Up:	IA-64
Syntax

9.18.2.2	Register	Names
.......................

The	128	integer	registers	are	referred	to	as	'rN'.		The	128
floating-point	registers	are	referred	to	as	'fN'.		The	128	application
registers	are	referred	to	as	'arN'.		The	128	control	registers	are
referred	to	as	'crN'.		The	64	one-bit	predicate	registers	are	referred
to	as	'pN'.		The	8	branch	registers	are	referred	to	as	'bN'.		In
addition,	the	assembler	defines	a	number	of	aliases:	'gp'	('r1'),	'sp'
('r12'),	'rp'	('b0'),	'ret0'	('r8'),	'ret1'	('r9'),	'ret2'	('r10'),
'ret3'	('r9'),	'fargN'	('f8+N'),	and	'fretN'	('f8+N').

			For	convenience,	the	assembler	also	defines	aliases	for	all	named
application	and	control	registers.		For	example,	'ar.bsp'	refers	to	the
register	backing	store	pointer	('ar17').		Similarly,	'cr.eoi'	refers	to
the	end-of-interrupt	register	('cr67').

�
File:	as.info,		Node:	IA-64-Bits,		Next:	IA-64-Relocs,		Prev:	IA-64-Regs,		Up:	IA-64
Syntax

9.18.2.3	IA-64	Processor-Status-Register	(PSR)	Bit	Names
..

The	assembler	defines	bit	masks	for	each	of	the	bits	in	the	IA-64
processor	status	register.		For	example,	'psr.ic'	corresponds	to	a	value
of	0x2000.		These	masks	are	primarily	intended	for	use	with	the
'ssm'/'sum'	and	'rsm'/'rum'	instructions,	but	they	can	be	used	anywhere
else	where	an	integer	constant	is	expected.

�

3/25/20 as.info 210

File:	as.info,		Node:	IA-64-Relocs,		Prev:	IA-64-Bits,		Up:	IA-64	Syntax

9.18.2.4	Relocations
....................

In	addition	to	the	standard	IA-64	relocations,	the	following	relocations
are	implemented	by	'as':

'@slotcount(V)'
					Convert	the	address	offset	V	into	a	slot	count.		This	pseudo
					function	is	available	only	on	VMS.	The	expression	V	must	be	known
					at	assembly	time:	it	can't	reference	undefined	symbols	or	symbols
					in	different	sections.

�
File:	as.info,		Node:	IA-64	Opcodes,		Prev:	IA-64	Syntax,		Up:	IA-64-Dependent

9.18.3	Opcodes

For	detailed	information	on	the	IA-64	machine	instruction	set,	see	the
IA-64	Architecture	Handbook
(http://developer.intel.com/design/itanium/arch_spec.htm).

�
File:	as.info,		Node:	IP2K-Dependent,		Next:	LM32-Dependent,		Prev:	IA-64-Dependent,
Up:	Machine	Dependencies

9.19	IP2K	Dependent	Features
============================

*	Menu:

*	IP2K-Opts::																			IP2K	Options
*	IP2K-Syntax::																	IP2K	Syntax

�
File:	as.info,		Node:	IP2K-Opts,		Next:	IP2K-Syntax,		Up:	IP2K-Dependent

9.19.1	IP2K	Options

The	Ubicom	IP2K	version	of	'as'	has	a	few	machine	dependent	options:

'-mip2022ext'
					'as'	can	assemble	the	extended	IP2022	instructions,	but	it	will
					only	do	so	if	this	is	specifically	allowed	via	this	command	line
					option.

'-mip2022'
					This	option	restores	the	assembler's	default	behaviour	of	not
					permitting	the	extended	IP2022	instructions	to	be	assembled.

�
File:	as.info,		Node:	IP2K-Syntax,		Prev:	IP2K-Opts,		Up:	IP2K-Dependent

9.19.2	IP2K	Syntax

3/25/20 as.info 211

*	Menu:

*	IP2K-Chars::																Special	Characters

�
File:	as.info,		Node:	IP2K-Chars,		Up:	IP2K-Syntax

9.19.2.1	Special	Characters
...........................

The	presence	of	a	';'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.

			If	a	'#'	appears	as	the	first	character	of	a	line,	the	whole	line	is
treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	IP2K	assembler	does	not	currently	support	a	line	separator
character.

�
File:	as.info,		Node:	LM32-Dependent,		Next:	M32C-Dependent,		Prev:	IP2K-Dependent,
Up:	Machine	Dependencies

9.20	LM32	Dependent	Features
============================

*	Menu:

*	LM32	Options::														Options
*	LM32	Syntax::															Syntax
*	LM32	Opcodes::														Opcodes

�
File:	as.info,		Node:	LM32	Options,		Next:	LM32	Syntax,		Up:	LM32-Dependent

9.20.1	Options

'-mmultiply-enabled'
					Enable	multiply	instructions.

'-mdivide-enabled'
					Enable	divide	instructions.

'-mbarrel-shift-enabled'
					Enable	barrel-shift	instructions.

'-msign-extend-enabled'
					Enable	sign	extend	instructions.

'-muser-enabled'
					Enable	user	defined	instructions.

'-micache-enabled'
					Enable	instruction	cache	related	CSRs.

'-mdcache-enabled'

3/25/20 as.info 212

					Enable	data	cache	related	CSRs.

'-mbreak-enabled'
					Enable	break	instructions.

'-mall-enabled'
					Enable	all	instructions	and	CSRs.

�
File:	as.info,		Node:	LM32	Syntax,		Next:	LM32	Opcodes,		Prev:	LM32	Options,		Up:
LM32-Dependent

9.20.2	Syntax

*	Menu:

*	LM32-Regs::																	Register	Names
*	LM32-Modifiers::												Relocatable	Expression	Modifiers
*	LM32-Chars::																Special	Characters

�
File:	as.info,		Node:	LM32-Regs,		Next:	LM32-Modifiers,		Up:	LM32	Syntax

9.20.2.1	Register	Names
.......................

LM32	has	32	x	32-bit	general	purpose	registers	'r0',	'r1',	...		'r31'.

			The	following	aliases	are	defined:	'gp'	-	'r26',	'fp'	-	'r27',	'sp'	-
'r28',	'ra'	-	'r29',	'ea'	-	'r30',	'ba'	-	'r31'.

			LM32	has	the	following	Control	and	Status	Registers	(CSRs).

'IE'
					Interrupt	enable.
'IM'
					Interrupt	mask.
'IP'
					Interrupt	pending.
'ICC'
					Instruction	cache	control.
'DCC'
					Data	cache	control.
'CC'
					Cycle	counter.
'CFG'
					Configuration.
'EBA'
					Exception	base	address.
'DC'
					Debug	control.
'DEBA'
					Debug	exception	base	address.
'JTX'
					JTAG	transmit.
'JRX'
					JTAG	receive.
'BP0'

3/25/20 as.info 213

					Breakpoint	0.
'BP1'
					Breakpoint	1.
'BP2'
					Breakpoint	2.
'BP3'
					Breakpoint	3.
'WP0'
					Watchpoint	0.
'WP1'
					Watchpoint	1.
'WP2'
					Watchpoint	2.
'WP3'
					Watchpoint	3.

�
File:	as.info,		Node:	LM32-Modifiers,		Next:	LM32-Chars,		Prev:	LM32-Regs,		Up:	LM32
Syntax

9.20.2.2	Relocatable	Expression	Modifiers
...

The	assembler	supports	several	modifiers	when	using	relocatable
addresses	in	LM32	instruction	operands.		The	general	syntax	is	the
following:

					modifier(relocatable-expression)

'lo'

					This	modifier	allows	you	to	use	bits	0	through	15	of	an	address
					expression	as	16	bit	relocatable	expression.

'hi'

					This	modifier	allows	you	to	use	bits	16	through	23	of	an	address
					expression	as	16	bit	relocatable	expression.

					For	example

										ori		r4,	r4,	lo(sym+10)
										orhi	r4,	r4,	hi(sym+10)

'gp'

					This	modified	creates	a	16-bit	relocatable	expression	that	is	the
					offset	of	the	symbol	from	the	global	pointer.

										mva	r4,	gp(sym)

'got'

					This	modifier	places	a	symbol	in	the	GOT	and	creates	a	16-bit
					relocatable	expression	that	is	the	offset	into	the	GOT	of	this
					symbol.

										lw	r4,	(gp+got(sym))

3/25/20 as.info 214

'gotofflo16'

					This	modifier	allows	you	to	use	the	bits	0	through	15	of	an	address
					which	is	an	offset	from	the	GOT.

'gotoffhi16'

					This	modifier	allows	you	to	use	the	bits	16	through	31	of	an
					address	which	is	an	offset	from	the	GOT.

										orhi	r4,	r4,	gotoffhi16(lsym)
										addi	r4,	r4,	gotofflo16(lsym)

�
File:	as.info,		Node:	LM32-Chars,		Prev:	LM32-Modifiers,		Up:	LM32	Syntax

9.20.2.3	Special	Characters
...........................

The	presence	of	a	'#'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.		Note	that	if	a	line	starts	with
a	'#'	character	then	it	can	also	be	a	logical	line	number	directive
(*note	Comments::)	or	a	preprocessor	control	command	(*note
Preprocessing::).

			A	semicolon	(';')	can	be	used	to	separate	multiple	statements	on	the
same	line.

�
File:	as.info,		Node:	LM32	Opcodes,		Prev:	LM32	Syntax,		Up:	LM32-Dependent

9.20.3	Opcodes

For	detailed	information	on	the	LM32	machine	instruction	set,	see
<http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/>.

			'as'	implements	all	the	standard	LM32	opcodes.

�
File:	as.info,		Node:	M32C-Dependent,		Next:	M32R-Dependent,		Prev:	LM32-Dependent,
Up:	Machine	Dependencies

9.21	M32C	Dependent	Features
============================

'as'	can	assemble	code	for	several	different	members	of	the	Renesas	M32C
family.		Normally	the	default	is	to	assemble	code	for	the	M16C
microprocessor.		The	'-m32c'	option	may	be	used	to	change	the	default	to
the	M32C	microprocessor.

*	Menu:

*	M32C-Opts::																			M32C	Options
*	M32C-Syntax::																	M32C	Syntax

�
File:	as.info,		Node:	M32C-Opts,		Next:	M32C-Syntax,		Up:	M32C-Dependent

3/25/20 as.info 215

9.21.1	M32C	Options

The	Renesas	M32C	version	of	'as'	has	these	machine-dependent	options:

'-m32c'
					Assemble	M32C	instructions.

'-m16c'
					Assemble	M16C	instructions	(default).

'-relax'
					Enable	support	for	link-time	relaxations.

'-h-tick-hex'
					Support	H'00	style	hex	constants	in	addition	to	0x00	style.

�
File:	as.info,		Node:	M32C-Syntax,		Prev:	M32C-Opts,		Up:	M32C-Dependent

9.21.2	M32C	Syntax

*	Menu:

*	M32C-Modifiers::														Symbolic	Operand	Modifiers
*	M32C-Chars::																		Special	Characters

�
File:	as.info,		Node:	M32C-Modifiers,		Next:	M32C-Chars,		Up:	M32C-Syntax

9.21.2.1	Symbolic	Operand	Modifiers
...................................

The	assembler	supports	several	modifiers	when	using	symbol	addresses	in
M32C	instruction	operands.		The	general	syntax	is	the	following:

					%modifier(symbol)

'%dsp8'
'%dsp16'

					These	modifiers	override	the	assembler's	assumptions	about	how	big
					a	symbol's	address	is.		Normally,	when	it	sees	an	operand	like
					'sym[a0]'	it	assumes	'sym'	may	require	the	widest	displacement
					field	(16	bits	for	'-m16c',	24	bits	for	'-m32c').		These	modifiers
					tell	it	to	assume	the	address	will	fit	in	an	8	or	16	bit
					(respectively)	unsigned	displacement.		Note	that,	of	course,	if	it
					doesn't	actually	fit	you	will	get	linker	errors.		Example:

										mov.w	%dsp8(sym)[a0],r1
										mov.b	#0,%dsp8(sym)[a0]

'%hi8'

					This	modifier	allows	you	to	load	bits	16	through	23	of	a	24	bit
					address	into	an	8	bit	register.		This	is	useful	with,	for	example,
					the	M16C	'smovf'	instruction,	which	expects	a	20	bit	address	in
					'r1h'	and	'a0'.		Example:

3/25/20 as.info 216

										mov.b	#%hi8(sym),r1h
										mov.w	#%lo16(sym),a0
										smovf.b

'%lo16'

					Likewise,	this	modifier	allows	you	to	load	bits	0	through	15	of	a
					24	bit	address	into	a	16	bit	register.

'%hi16'

					This	modifier	allows	you	to	load	bits	16	through	31	of	a	32	bit
					address	into	a	16	bit	register.		While	the	M32C	family	only	has	24
					bits	of	address	space,	it	does	support	addresses	in	pairs	of	16	bit
					registers	(like	'a1a0'	for	the	'lde'	instruction).		This	modifier
					is	for	loading	the	upper	half	in	such	cases.		Example:

										mov.w	#%hi16(sym),a1
										mov.w	#%lo16(sym),a0
										...
										lde.w	[a1a0],r1

�
File:	as.info,		Node:	M32C-Chars,		Prev:	M32C-Modifiers,		Up:	M32C-Syntax

9.21.2.2	Special	Characters
...........................

The	presence	of	a	';'	character	on	a	line	indicates	the	start	of	a
comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line,	the	whole	line	is
treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	'|'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	M32R-Dependent,		Next:	M68K-Dependent,		Prev:	M32C-Dependent,
Up:	Machine	Dependencies

9.22	M32R	Dependent	Features
============================

*	Menu:

*	M32R-Opts::																			M32R	Options
*	M32R-Directives::													M32R	Directives
*	M32R-Warnings::															M32R	Warnings

�
File:	as.info,		Node:	M32R-Opts,		Next:	M32R-Directives,		Up:	M32R-Dependent

9.22.1	M32R	Options

3/25/20 as.info 217

The	Renease	M32R	version	of	'as'	has	a	few	machine	dependent	options:

'-m32rx'
					'as'	can	assemble	code	for	several	different	members	of	the	Renesas
					M32R	family.		Normally	the	default	is	to	assemble	code	for	the	M32R
					microprocessor.		This	option	may	be	used	to	change	the	default	to
					the	M32RX	microprocessor,	which	adds	some	more	instructions	to	the
					basic	M32R	instruction	set,	and	some	additional	parameters	to	some
					of	the	original	instructions.

'-m32r2'
					This	option	changes	the	target	processor	to	the	M32R2
					microprocessor.

'-m32r'
					This	option	can	be	used	to	restore	the	assembler's	default
					behaviour	of	assembling	for	the	M32R	microprocessor.		This	can	be
					useful	if	the	default	has	been	changed	by	a	previous	command	line
					option.

'-little'
					This	option	tells	the	assembler	to	produce	little-endian	code	and
					data.		The	default	is	dependent	upon	how	the	toolchain	was
					configured.

'-EL'
					This	is	a	synonym	for	_-little_.

'-big'
					This	option	tells	the	assembler	to	produce	big-endian	code	and
					data.

'-EB'
					This	is	a	synonum	for	_-big_.

'-KPIC'
					This	option	specifies	that	the	output	of	the	assembler	should	be
					marked	as	position-independent	code	(PIC).

'-parallel'
					This	option	tells	the	assembler	to	attempts	to	combine	two
					sequential	instructions	into	a	single,	parallel	instruction,	where
					it	is	legal	to	do	so.

'-no-parallel'
					This	option	disables	a	previously	enabled	_-parallel_	option.

'-no-bitinst'
					This	option	disables	the	support	for	the	extended	bit-field
					instructions	provided	by	the	M32R2.		If	this	support	needs	to	be
					re-enabled	the	_-bitinst_	switch	can	be	used	to	restore	it.

'-O'
					This	option	tells	the	assembler	to	attempt	to	optimize	the
					instructions	that	it	produces.		This	includes	filling	delay	slots
					and	converting	sequential	instructions	into	parallel	ones.		This
					option	implies	_-parallel_.

'-warn-explicit-parallel-conflicts'

3/25/20 as.info 218

					Instructs	'as'	to	produce	warning	messages	when	questionable
					parallel	instructions	are	encountered.		This	option	is	enabled	by
					default,	but	'gcc'	disables	it	when	it	invokes	'as'	directly.
					Questionable	instructions	are	those	whose	behaviour	would	be
					different	if	they	were	executed	sequentially.		For	example	the	code
					fragment	'mv	r1,	r2	||	mv	r3,	r1'	produces	a	different	result	from
					'mv	r1,	r2	\n	mv	r3,	r1'	since	the	former	moves	r1	into	r3	and	then
					r2	into	r1,	whereas	the	later	moves	r2	into	r1	and	r3.

'-Wp'
					This	is	a	shorter	synonym	for	the
					-warn-explicit-parallel-conflicts	option.

'-no-warn-explicit-parallel-conflicts'
					Instructs	'as'	not	to	produce	warning	messages	when	questionable
					parallel	instructions	are	encountered.

'-Wnp'
					This	is	a	shorter	synonym	for	the
					-no-warn-explicit-parallel-conflicts	option.

'-ignore-parallel-conflicts'
					This	option	tells	the	assembler's	to	stop	checking	parallel
					instructions	for	constraint	violations.		This	ability	is	provided
					for	hardware	vendors	testing	chip	designs	and	should	not	be	used
					under	normal	circumstances.

'-no-ignore-parallel-conflicts'
					This	option	restores	the	assembler's	default	behaviour	of	checking
					parallel	instructions	to	detect	constraint	violations.

'-Ip'
					This	is	a	shorter	synonym	for	the	_-ignore-parallel-conflicts_
					option.

'-nIp'
					This	is	a	shorter	synonym	for	the	_-no-ignore-parallel-conflicts_
					option.

'-warn-unmatched-high'
					This	option	tells	the	assembler	to	produce	a	warning	message	if	a
					'.high'	pseudo	op	is	encountered	without	a	matching	'.low'	pseudo
					op.		The	presence	of	such	an	unmatched	pseudo	op	usually	indicates
					a	programming	error.

'-no-warn-unmatched-high'
					Disables	a	previously	enabled	_-warn-unmatched-high_	option.

'-Wuh'
					This	is	a	shorter	synonym	for	the	_-warn-unmatched-high_	option.

'-Wnuh'
					This	is	a	shorter	synonym	for	the	_-no-warn-unmatched-high_	option.

�
File:	as.info,		Node:	M32R-Directives,		Next:	M32R-Warnings,		Prev:	M32R-Opts,		Up:
M32R-Dependent

9.22.2	M32R	Directives

3/25/20 as.info 219

The	Renease	M32R	version	of	'as'	has	a	few	architecture	specific
directives:

'low	EXPRESSION'
					The	'low'	directive	computes	the	value	of	its	expression	and	places
					the	lower	16-bits	of	the	result	into	the	immediate-field	of	the
					instruction.		For	example:

													or3			r0,	r0,	#low(0x12345678)	;	compute	r0	=	r0	|	0x5678
													add3,	r0,	r0,	#low(fred)			;	compute	r0	=	r0	+	low	16-bits	of	address	of

fred

'high	EXPRESSION'
					The	'high'	directive	computes	the	value	of	its	expression	and
					places	the	upper	16-bits	of	the	result	into	the	immediate-field	of
					the	instruction.		For	example:

													seth		r0,	#high(0x12345678)	;	compute	r0	=	0x12340000
													seth,	r0,	#high(fred)							;	compute	r0	=	upper	16-bits	of	address	of

fred

'shigh	EXPRESSION'
					The	'shigh'	directive	is	very	similar	to	the	'high'	directive.		It
					also	computes	the	value	of	its	expression	and	places	the	upper
					16-bits	of	the	result	into	the	immediate-field	of	the	instruction.
					The	difference	is	that	'shigh'	also	checks	to	see	if	the	lower
					16-bits	could	be	interpreted	as	a	signed	number,	and	if	so	it
					assumes	that	a	borrow	will	occur	from	the	upper-16	bits.		To
					compensate	for	this	the	'shigh'	directive	pre-biases	the	upper	16
					bit	value	by	adding	one	to	it.		For	example:

					For	example:

													seth		r0,	#shigh(0x12345678)	;	compute	r0	=	0x12340000
													seth		r0,	#shigh(0x00008000)	;	compute	r0	=	0x00010000

					In	the	second	example	the	lower	16-bits	are	0x8000.		If	these	are
					treated	as	a	signed	value	and	sign	extended	to	32-bits	then	the
					value	becomes	0xffff8000.		If	this	value	is	then	added	to
					0x00010000	then	the	result	is	0x00008000.

					This	behaviour	is	to	allow	for	the	different	semantics	of	the	'or3'
					and	'add3'	instructions.		The	'or3'	instruction	treats	its	16-bit
					immediate	argument	as	unsigned	whereas	the	'add3'	treats	its	16-bit
					immediate	as	a	signed	value.		So	for	example:

													seth		r0,	#shigh(0x00008000)
													add3		r0,	r0,	#low(0x00008000)

					Produces	the	correct	result	in	r0,	whereas:

													seth		r0,	#shigh(0x00008000)
													or3			r0,	r0,	#low(0x00008000)

					Stores	0xffff8000	into	r0.

					Note	-	the	'shigh'	directive	does	not	know	where	in	the	assembly

3/25/20 as.info 220

					source	code	the	lower	16-bits	of	the	value	are	going	set,	so	it
					cannot	check	to	make	sure	that	an	'or3'	instruction	is	being	used
					rather	than	an	'add3'	instruction.		It	is	up	to	the	programmer	to
					make	sure	that	correct	directives	are	used.

'.m32r'
					The	directive	performs	a	similar	thing	as	the	_-m32r_	command	line
					option.		It	tells	the	assembler	to	only	accept	M32R	instructions
					from	now	on.		An	instructions	from	later	M32R	architectures	are
					refused.

'.m32rx'
					The	directive	performs	a	similar	thing	as	the	_-m32rx_	command	line
					option.		It	tells	the	assembler	to	start	accepting	the	extra
					instructions	in	the	M32RX	ISA	as	well	as	the	ordinary	M32R	ISA.

'.m32r2'
					The	directive	performs	a	similar	thing	as	the	_-m32r2_	command	line
					option.		It	tells	the	assembler	to	start	accepting	the	extra
					instructions	in	the	M32R2	ISA	as	well	as	the	ordinary	M32R	ISA.

'.little'
					The	directive	performs	a	similar	thing	as	the	_-little_	command
					line	option.		It	tells	the	assembler	to	start	producing
					little-endian	code	and	data.		This	option	should	be	used	with	care
					as	producing	mixed-endian	binary	files	is	fraught	with	danger.

'.big'
					The	directive	performs	a	similar	thing	as	the	_-big_	command	line
					option.		It	tells	the	assembler	to	start	producing	big-endian	code
					and	data.		This	option	should	be	used	with	care	as	producing
					mixed-endian	binary	files	is	fraught	with	danger.

�
File:	as.info,		Node:	M32R-Warnings,		Prev:	M32R-Directives,		Up:	M32R-Dependent

9.22.3	M32R	Warnings

There	are	several	warning	and	error	messages	that	can	be	produced	by
'as'	which	are	specific	to	the	M32R:

'output	of	1st	instruction	is	the	same	as	an	input	to	2nd	instruction	-	is	this
intentional	?'
					This	message	is	only	produced	if	warnings	for	explicit	parallel
					conflicts	have	been	enabled.		It	indicates	that	the	assembler	has
					encountered	a	parallel	instruction	in	which	the	destination
					register	of	the	left	hand	instruction	is	used	as	an	input	register
					in	the	right	hand	instruction.		For	example	in	this	code	fragment
					'mv	r1,	r2	||	neg	r3,	r1'	register	r1	is	the	destination	of	the
					move	instruction	and	the	input	to	the	neg	instruction.

'output	of	2nd	instruction	is	the	same	as	an	input	to	1st	instruction	-	is	this
intentional	?'
					This	message	is	only	produced	if	warnings	for	explicit	parallel
					conflicts	have	been	enabled.		It	indicates	that	the	assembler	has
					encountered	a	parallel	instruction	in	which	the	destination
					register	of	the	right	hand	instruction	is	used	as	an	input	register
					in	the	left	hand	instruction.		For	example	in	this	code	fragment

3/25/20 as.info 221

					'mv	r1,	r2	||	neg	r2,	r3'	register	r2	is	the	destination	of	the	neg
					instruction	and	the	input	to	the	move	instruction.

'instruction	'...'	is	for	the	M32RX	only'
					This	message	is	produced	when	the	assembler	encounters	an
					instruction	which	is	only	supported	by	the	M32Rx	processor,	and	the
					'-m32rx'	command	line	flag	has	not	been	specified	to	allow	assembly
					of	such	instructions.

'unknown	instruction	'...''
					This	message	is	produced	when	the	assembler	encounters	an
					instruction	which	it	does	not	recognize.

'only	the	NOP	instruction	can	be	issued	in	parallel	on	the	m32r'
					This	message	is	produced	when	the	assembler	encounters	a	parallel
					instruction	which	does	not	involve	a	NOP	instruction	and	the
					'-m32rx'	command	line	flag	has	not	been	specified.		Only	the	M32Rx
					processor	is	able	to	execute	two	instructions	in	parallel.

'instruction	'...'	cannot	be	executed	in	parallel.'
					This	message	is	produced	when	the	assembler	encounters	a	parallel
					instruction	which	is	made	up	of	one	or	two	instructions	which
					cannot	be	executed	in	parallel.

'Instructions	share	the	same	execution	pipeline'
					This	message	is	produced	when	the	assembler	encounters	a	parallel
					instruction	whoes	components	both	use	the	same	execution	pipeline.

'Instructions	write	to	the	same	destination	register.'
					This	message	is	produced	when	the	assembler	encounters	a	parallel
					instruction	where	both	components	attempt	to	modify	the	same
					register.		For	example	these	code	fragments	will	produce	this
					message:	'mv	r1,	r2	||	neg	r1,	r3'	'jl	r0	||	mv	r14,	r1'	'st	r2,
					@-r1	||	mv	r1,	r3'	'mv	r1,	r2	||	ld	r0,	@r1+'	'cmp	r1,	r2	||	addx
					r3,	r4'	(Both	write	to	the	condition	bit)

�
File:	as.info,		Node:	M68K-Dependent,		Next:	M68HC11-Dependent,		Prev:	M32R-
Dependent,		Up:	Machine	Dependencies

9.23	M680x0	Dependent	Features
==============================

*	Menu:

*	M68K-Opts::																			M680x0	Options
*	M68K-Syntax::																	Syntax
*	M68K-Moto-Syntax::												Motorola	Syntax
*	M68K-Float::																		Floating	Point
*	M68K-Directives::													680x0	Machine	Directives
*	M68K-opcodes::																Opcodes

�
File:	as.info,		Node:	M68K-Opts,		Next:	M68K-Syntax,		Up:	M68K-Dependent

9.23.1	M680x0	Options

The	Motorola	680x0	version	of	'as'	has	a	few	machine	dependent	options:

3/25/20 as.info 222

'-march=ARCHITECTURE'
					This	option	specifies	a	target	architecture.		The	following
					architectures	are	recognized:	'68000',	'68010',	'68020',	'68030',
					'68040',	'68060',	'cpu32',	'isaa',	'isaaplus',	'isab',	'isac'	and
					'cfv4e'.

'-mcpu=CPU'
					This	option	specifies	a	target	cpu.		When	used	in	conjunction	with
					the	'-march'	option,	the	cpu	must	be	within	the	specified
					architecture.		Also,	the	generic	features	of	the	architecture	are
					used	for	instruction	generation,	rather	than	those	of	the	specific
					chip.

'-m[no-]68851'
'-m[no-]68881'
'-m[no-]div'
'-m[no-]usp'
'-m[no-]float'
'-m[no-]mac'
'-m[no-]emac'

					Enable	or	disable	various	architecture	specific	features.		If	a
					chip	or	architecture	by	default	supports	an	option	(for	instance
					'-march=isaaplus'	includes	the	'-mdiv'	option),	explicitly
					disabling	the	option	will	override	the	default.

'-l'
					You	can	use	the	'-l'	option	to	shorten	the	size	of	references	to
					undefined	symbols.		If	you	do	not	use	the	'-l'	option,	references
					to	undefined	symbols	are	wide	enough	for	a	full	'long'	(32	bits).
					(Since	'as'	cannot	know	where	these	symbols	end	up,	'as'	can	only
					allocate	space	for	the	linker	to	fill	in	later.		Since	'as'	does
					not	know	how	far	away	these	symbols	are,	it	allocates	as	much	space
					as	it	can.)		If	you	use	this	option,	the	references	are	only	one
					word	wide	(16	bits).		This	may	be	useful	if	you	want	the	object
					file	to	be	as	small	as	possible,	and	you	know	that	the	relevant
					symbols	are	always	less	than	17	bits	away.

'--register-prefix-optional'
					For	some	configurations,	especially	those	where	the	compiler
					normally	does	not	prepend	an	underscore	to	the	names	of	user
					variables,	the	assembler	requires	a	'%'	before	any	use	of	a
					register	name.		This	is	intended	to	let	the	assembler	distinguish
					between	C	variables	and	functions	named	'a0'	through	'a7',	and	so
					on.		The	'%'	is	always	accepted,	but	is	not	required	for	certain
					configurations,	notably	'sun3'.		The	'--register-prefix-optional'
					option	may	be	used	to	permit	omitting	the	'%'	even	for
					configurations	for	which	it	is	normally	required.		If	this	is	done,
					it	will	generally	be	impossible	to	refer	to	C	variables	and
					functions	with	the	same	names	as	register	names.

'--bitwise-or'
					Normally	the	character	'|'	is	treated	as	a	comment	character,	which
					means	that	it	can	not	be	used	in	expressions.		The	'--bitwise-or'
					option	turns	'|'	into	a	normal	character.		In	this	mode,	you	must
					either	use	C	style	comments,	or	start	comments	with	a	'#'	character
					at	the	beginning	of	a	line.

3/25/20 as.info 223

'--base-size-default-16	--base-size-default-32'
					If	you	use	an	addressing	mode	with	a	base	register	without
					specifying	the	size,	'as'	will	normally	use	the	full	32	bit	value.
					For	example,	the	addressing	mode	'%a0@(%d0)'	is	equivalent	to
					'%a0@(%d0:l)'.		You	may	use	the	'--base-size-default-16'	option	to
					tell	'as'	to	default	to	using	the	16	bit	value.		In	this	case,
					'%a0@(%d0)'	is	equivalent	to	'%a0@(%d0:w)'.		You	may	use	the
					'--base-size-default-32'	option	to	restore	the	default	behaviour.

'--disp-size-default-16	--disp-size-default-32'
					If	you	use	an	addressing	mode	with	a	displacement,	and	the	value	of
					the	displacement	is	not	known,	'as'	will	normally	assume	that	the
					value	is	32	bits.		For	example,	if	the	symbol	'disp'	has	not	been
					defined,	'as'	will	assemble	the	addressing	mode	'%a0@(disp,%d0)'	as
					though	'disp'	is	a	32	bit	value.		You	may	use	the
					'--disp-size-default-16'	option	to	tell	'as'	to	instead	assume	that
					the	displacement	is	16	bits.		In	this	case,	'as'	will	assemble
					'%a0@(disp,%d0)'	as	though	'disp'	is	a	16	bit	value.		You	may	use
					the	'--disp-size-default-32'	option	to	restore	the	default
					behaviour.

'--pcrel'
					Always	keep	branches	PC-relative.		In	the	M680x0	architecture	all
					branches	are	defined	as	PC-relative.		However,	on	some	processors
					they	are	limited	to	word	displacements	maximum.		When	'as'	needs	a
					long	branch	that	is	not	available,	it	normally	emits	an	absolute
					jump	instead.		This	option	disables	this	substitution.		When	this
					option	is	given	and	no	long	branches	are	available,	only	word
					branches	will	be	emitted.		An	error	message	will	be	generated	if	a
					word	branch	cannot	reach	its	target.		This	option	has	no	effect	on
					68020	and	other	processors	that	have	long	branches.		*note	Branch
					Improvement:	M68K-Branch.

'-m68000'
					'as'	can	assemble	code	for	several	different	members	of	the
					Motorola	680x0	family.		The	default	depends	upon	how	'as'	was
					configured	when	it	was	built;	normally,	the	default	is	to	assemble
					code	for	the	68020	microprocessor.		The	following	options	may	be
					used	to	change	the	default.		These	options	control	which
					instructions	and	addressing	modes	are	permitted.		The	members	of
					the	680x0	family	are	very	similar.		For	detailed	information	about
					the	differences,	see	the	Motorola	manuals.

					'-m68000'
					'-m68ec000'
					'-m68hc000'
					'-m68hc001'
					'-m68008'
					'-m68302'
					'-m68306'
					'-m68307'
					'-m68322'
					'-m68356'
										Assemble	for	the	68000.		'-m68008',	'-m68302',	and	so	on	are
										synonyms	for	'-m68000',	since	the	chips	are	the	same	from	the
										point	of	view	of	the	assembler.

					'-m68010'
										Assemble	for	the	68010.

3/25/20 as.info 224

					'-m68020'
					'-m68ec020'
										Assemble	for	the	68020.		This	is	normally	the	default.

					'-m68030'
					'-m68ec030'
										Assemble	for	the	68030.

					'-m68040'
					'-m68ec040'
										Assemble	for	the	68040.

					'-m68060'
					'-m68ec060'
										Assemble	for	the	68060.

					'-mcpu32'
					'-m68330'
					'-m68331'
					'-m68332'
					'-m68333'
					'-m68334'
					'-m68336'
					'-m68340'
					'-m68341'
					'-m68349'
					'-m68360'
										Assemble	for	the	CPU32	family	of	chips.

					'-m5200'
					'-m5202'
					'-m5204'
					'-m5206'
					'-m5206e'
					'-m521x'
					'-m5249'
					'-m528x'
					'-m5307'
					'-m5407'
					'-m547x'
					'-m548x'
					'-mcfv4'
					'-mcfv4e'
										Assemble	for	the	ColdFire	family	of	chips.

					'-m68881'
					'-m68882'
										Assemble	68881	floating	point	instructions.		This	is	the
										default	for	the	68020,	68030,	and	the	CPU32.		The	68040	and
										68060	always	support	floating	point	instructions.

					'-mno-68881'
										Do	not	assemble	68881	floating	point	instructions.		This	is
										the	default	for	68000	and	the	68010.		The	68040	and	68060
										always	support	floating	point	instructions,	even	if	this
										option	is	used.

					'-m68851'

3/25/20 as.info 225

										Assemble	68851	MMU	instructions.		This	is	the	default	for	the
										68020,	68030,	and	68060.		The	68040	accepts	a	somewhat
										different	set	of	MMU	instructions;	'-m68851'	and	'-m68040'
										should	not	be	used	together.

					'-mno-68851'
										Do	not	assemble	68851	MMU	instructions.		This	is	the	default
										for	the	68000,	68010,	and	the	CPU32.		The	68040	accepts	a
										somewhat	different	set	of	MMU	instructions.

�
File:	as.info,		Node:	M68K-Syntax,		Next:	M68K-Moto-Syntax,		Prev:	M68K-Opts,		Up:
M68K-Dependent

9.23.2	Syntax

This	syntax	for	the	Motorola	680x0	was	developed	at	MIT.

			The	680x0	version	of	'as'	uses	instructions	names	and	syntax
compatible	with	the	Sun	assembler.		Intervening	periods	are	ignored;	for
example,	'movl'	is	equivalent	to	'mov.l'.

			In	the	following	table	APC	stands	for	any	of	the	address	registers
('%a0'	through	'%a7'),	the	program	counter	('%pc'),	the	zero-address
relative	to	the	program	counter	('%zpc'),	a	suppressed	address	register
('%za0'	through	'%za7'),	or	it	may	be	omitted	entirely.		The	use	of	SIZE
means	one	of	'w'	or	'l',	and	it	may	be	omitted,	along	with	the	leading
colon,	unless	a	scale	is	also	specified.		The	use	of	SCALE	means	one	of
'1',	'2',	'4',	or	'8',	and	it	may	always	be	omitted	along	with	the
leading	colon.

			The	following	addressing	modes	are	understood:
"Immediate"
					'#NUMBER'

"Data	Register"
					'%d0'	through	'%d7'

"Address	Register"
					'%a0'	through	'%a7'
					'%a7'	is	also	known	as	'%sp',	i.e.,	the	Stack	Pointer.		'%a6'	is
					also	known	as	'%fp',	the	Frame	Pointer.

"Address	Register	Indirect"
					'%a0@'	through	'%a7@'

"Address	Register	Postincrement"
					'%a0@+'	through	'%a7@+'

"Address	Register	Predecrement"
					'%a0@-'	through	'%a7@-'

"Indirect	Plus	Offset"
					'APC@(NUMBER)'

"Index"
					'APC@(NUMBER,REGISTER:SIZE:SCALE)'

3/25/20 as.info 226

					The	NUMBER	may	be	omitted.

"Postindex"
					'APC@(NUMBER)@(ONUMBER,REGISTER:SIZE:SCALE)'

					The	ONUMBER	or	the	REGISTER,	but	not	both,	may	be	omitted.

"Preindex"
					'APC@(NUMBER,REGISTER:SIZE:SCALE)@(ONUMBER)'

					The	NUMBER	may	be	omitted.		Omitting	the	REGISTER	produces	the
					Postindex	addressing	mode.

"Absolute"
					'SYMBOL',	or	'DIGITS',	optionally	followed	by	':b',	':w',	or	':l'.

�
File:	as.info,		Node:	M68K-Moto-Syntax,		Next:	M68K-Float,		Prev:	M68K-Syntax,		Up:
M68K-Dependent

9.23.3	Motorola	Syntax

The	standard	Motorola	syntax	for	this	chip	differs	from	the	syntax
already	discussed	(*note	Syntax:	M68K-Syntax.).		'as'	can	accept
Motorola	syntax	for	operands,	even	if	MIT	syntax	is	used	for	other
operands	in	the	same	instruction.		The	two	kinds	of	syntax	are	fully
compatible.

			In	the	following	table	APC	stands	for	any	of	the	address	registers
('%a0'	through	'%a7'),	the	program	counter	('%pc'),	the	zero-address
relative	to	the	program	counter	('%zpc'),	or	a	suppressed	address
register	('%za0'	through	'%za7').		The	use	of	SIZE	means	one	of	'w'	or
'l',	and	it	may	always	be	omitted	along	with	the	leading	dot.		The	use
of	SCALE	means	one	of	'1',	'2',	'4',	or	'8',	and	it	may	always	be
omitted	along	with	the	leading	asterisk.

			The	following	additional	addressing	modes	are	understood:

"Address	Register	Indirect"
					'(%a0)'	through	'(%a7)'
					'%a7'	is	also	known	as	'%sp',	i.e.,	the	Stack	Pointer.		'%a6'	is
					also	known	as	'%fp',	the	Frame	Pointer.

"Address	Register	Postincrement"
					'(%a0)+'	through	'(%a7)+'

"Address	Register	Predecrement"
					'-(%a0)'	through	'-(%a7)'

"Indirect	Plus	Offset"
					'NUMBER(%A0)'	through	'NUMBER(%A7)',	or	'NUMBER(%PC)'.

					The	NUMBER	may	also	appear	within	the	parentheses,	as	in
					'(NUMBER,%A0)'.		When	used	with	the	PC,	the	NUMBER	may	be	omitted
					(with	an	address	register,	omitting	the	NUMBER	produces	Address
					Register	Indirect	mode).

"Index"

3/25/20 as.info 227

					'NUMBER(APC,REGISTER.SIZE*SCALE)'

					The	NUMBER	may	be	omitted,	or	it	may	appear	within	the	parentheses.
					The	APC	may	be	omitted.		The	REGISTER	and	the	APC	may	appear	in
					either	order.		If	both	APC	and	REGISTER	are	address	registers,	and
					the	SIZE	and	SCALE	are	omitted,	then	the	first	register	is	taken	as
					the	base	register,	and	the	second	as	the	index	register.

"Postindex"
					'([NUMBER,APC],REGISTER.SIZE*SCALE,ONUMBER)'

					The	ONUMBER,	or	the	REGISTER,	or	both,	may	be	omitted.		Either	the
					NUMBER	or	the	APC	may	be	omitted,	but	not	both.

"Preindex"
					'([NUMBER,APC,REGISTER.SIZE*SCALE],ONUMBER)'

					The	NUMBER,	or	the	APC,	or	the	REGISTER,	or	any	two	of	them,	may	be
					omitted.		The	ONUMBER	may	be	omitted.		The	REGISTER	and	the	APC	may
					appear	in	either	order.		If	both	APC	and	REGISTER	are	address
					registers,	and	the	SIZE	and	SCALE	are	omitted,	then	the	first
					register	is	taken	as	the	base	register,	and	the	second	as	the	index
					register.

�
File:	as.info,		Node:	M68K-Float,		Next:	M68K-Directives,		Prev:	M68K-Moto-Syntax,
Up:	M68K-Dependent

9.23.4	Floating	Point

Packed	decimal	(P)	format	floating	literals	are	not	supported.		Feel
free	to	add	the	code!

			The	floating	point	formats	generated	by	directives	are	these.

'.float'
					'Single'	precision	floating	point	constants.

'.double'
					'Double'	precision	floating	point	constants.

'.extend'
'.ldouble'
					'Extended'	precision	('long	double')	floating	point	constants.

�
File:	as.info,		Node:	M68K-Directives,		Next:	M68K-opcodes,		Prev:	M68K-Float,		Up:
M68K-Dependent

9.23.5	680x0	Machine	Directives

In	order	to	be	compatible	with	the	Sun	assembler	the	680x0	assembler
understands	the	following	directives.

'.data1'
					This	directive	is	identical	to	a	'.data	1'	directive.

3/25/20 as.info 228

'.data2'
					This	directive	is	identical	to	a	'.data	2'	directive.

'.even'
					This	directive	is	a	special	case	of	the	'.align'	directive;	it
					aligns	the	output	to	an	even	byte	boundary.

'.skip'
					This	directive	is	identical	to	a	'.space'	directive.

'.arch	NAME'
					Select	the	target	architecture	and	extension	features.		Valid
					values	for	NAME	are	the	same	as	for	the	'-march'	command	line
					option.		This	directive	cannot	be	specified	after	any	instructions
					have	been	assembled.		If	it	is	given	multiple	times,	or	in
					conjunction	with	the	'-march'	option,	all	uses	must	be	for	the	same
					architecture	and	extension	set.

'.cpu	NAME'
					Select	the	target	cpu.		Valid	valuse	for	NAME	are	the	same	as	for
					the	'-mcpu'	command	line	option.		This	directive	cannot	be
					specified	after	any	instructions	have	been	assembled.		If	it	is
					given	multiple	times,	or	in	conjunction	with	the	'-mopt'	option,
					all	uses	must	be	for	the	same	cpu.

�
File:	as.info,		Node:	M68K-opcodes,		Prev:	M68K-Directives,		Up:	M68K-Dependent

9.23.6	Opcodes

*	Menu:

*	M68K-Branch::																	Branch	Improvement
*	M68K-Chars::																		Special	Characters

�
File:	as.info,		Node:	M68K-Branch,		Next:	M68K-Chars,		Up:	M68K-opcodes

9.23.6.1	Branch	Improvement
...........................

Certain	pseudo	opcodes	are	permitted	for	branch	instructions.		They
expand	to	the	shortest	branch	instruction	that	reach	the	target.
Generally	these	mnemonics	are	made	by	substituting	'j'	for	'b'	at	the
start	of	a	Motorola	mnemonic.

			The	following	table	summarizes	the	pseudo-operations.		A	'*'	flags
cases	that	are	more	fully	described	after	the	table:

															Displacement
															+--
															|																68020											68000/10,	not	PC-relative	OK
					Pseudo-Op	|BYTE				WORD				LONG												ABSOLUTE	LONG	JUMP				**
															+--
										jbsr	|bsrs				bsrw				bsrl												jsr
											jra	|bras				braw				bral												jmp
					*					jXX	|bXXs				bXXw				bXXl												bNXs;jmp
					*				dbXX	|	N/A				dbXXw			dbXX;bras;bral		dbXX;bras;jmp

3/25/20 as.info 229

										fjXX	|	N/A				fbXXw			fbXXl												N/A

					XX:	condition
					NX:	negative	of	condition	XX

																				'*'--see	full	description	below
									'**'--this	expansion	mode	is	disallowed	by	'--pcrel'

'jbsr'
'jra'
					These	are	the	simplest	jump	pseudo-operations;	they	always	map	to
					one	particular	machine	instruction,	depending	on	the	displacement
					to	the	branch	target.		This	instruction	will	be	a	byte	or	word
					branch	is	that	is	sufficient.		Otherwise,	a	long	branch	will	be
					emitted	if	available.		If	no	long	branches	are	available	and	the
					'--pcrel'	option	is	not	given,	an	absolute	long	jump	will	be
					emitted	instead.		If	no	long	branches	are	available,	the	'--pcrel'
					option	is	given,	and	a	word	branch	cannot	reach	the	target,	an
					error	message	is	generated.

					In	addition	to	standard	branch	operands,	'as'	allows	these
					pseudo-operations	to	have	all	operands	that	are	allowed	for	jsr	and
					jmp,	substituting	these	instructions	if	the	operand	given	is	not
					valid	for	a	branch	instruction.

'jXX'
					Here,	'jXX'	stands	for	an	entire	family	of	pseudo-operations,	where
					XX	is	a	conditional	branch	or	condition-code	test.		The	full	list
					of	pseudo-ops	in	this	family	is:
											jhi			jls			jcc			jcs			jne			jeq			jvc
											jvs			jpl			jmi			jge			jlt			jgt			jle

					Usually,	each	of	these	pseudo-operations	expands	to	a	single	branch
					instruction.		However,	if	a	word	branch	is	not	sufficient,	no	long
					branches	are	available,	and	the	'--pcrel'	option	is	not	given,	'as'
					issues	a	longer	code	fragment	in	terms	of	NX,	the	opposite
					condition	to	XX.		For	example,	under	these	conditions:
														jXX	foo
					gives
															bNXs	oof
															jmp	foo
											oof:

'dbXX'
					The	full	family	of	pseudo-operations	covered	here	is
											dbhi			dbls			dbcc			dbcs			dbne			dbeq			dbvc
											dbvs			dbpl			dbmi			dbge			dblt			dbgt			dble
											dbf				dbra			dbt

					Motorola	'dbXX'	instructions	allow	word	displacements	only.		When	a
					word	displacement	is	sufficient,	each	of	these	pseudo-operations
					expands	to	the	corresponding	Motorola	instruction.		When	a	word
					displacement	is	not	sufficient	and	long	branches	are	available,
					when	the	source	reads	'dbXX	foo',	'as'	emits
															dbXX	oo1
															bras	oo2
											oo1:bral	foo
											oo2:

3/25/20 as.info 230

					If,	however,	long	branches	are	not	available	and	the	'--pcrel'
					option	is	not	given,	'as'	emits
															dbXX	oo1
															bras	oo2
											oo1:jmp	foo
											oo2:

'fjXX'
					This	family	includes
											fjne			fjeq			fjge			fjlt			fjgt			fjle			fjf
											fjt				fjgl			fjgle		fjnge		fjngl		fjngle	fjngt
											fjnle		fjnlt		fjoge		fjogl		fjogt		fjole		fjolt
											fjor			fjseq		fjsf			fjsne		fjst			fjueq		fjuge
											fjugt		fjule		fjult		fjun

					Each	of	these	pseudo-operations	always	expands	to	a	single	Motorola
					coprocessor	branch	instruction,	word	or	long.		All	Motorola
					coprocessor	branch	instructions	allow	both	word	and	long
					displacements.

�
File:	as.info,		Node:	M68K-Chars,		Prev:	M68K-Branch,		Up:	M68K-opcodes

9.23.6.2	Special	Characters
...........................

Line	comments	are	introduced	by	the	'|'	character	appearing	anywhere	on
a	line,	unless	the	'--bitwise-or'	command	line	option	has	been
specified.

			An	asterisk	('*')	as	the	first	character	on	a	line	marks	the	start	of
a	line	comment	as	well.

			A	hash	character	('#')	as	the	first	character	on	a	line	also	marks
the	start	of	a	line	comment,	but	in	this	case	it	could	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).		If	the	hash	character	appears
elsewhere	on	a	line	it	is	used	to	introduce	an	immediate	value.		(This
is	for	compatibility	with	Sun's	assembler).

			Multiple	statements	on	the	same	line	can	appear	if	they	are	separated
by	the	';'	character.

�
File:	as.info,		Node:	M68HC11-Dependent,		Next:	Meta-Dependent,		Prev:	M68K-
Dependent,		Up:	Machine	Dependencies

9.24	M68HC11	and	M68HC12	Dependent	Features
===

*	Menu:

*	M68HC11-Opts::																			M68HC11	and	M68HC12	Options
*	M68HC11-Syntax::																	Syntax
*	M68HC11-Modifiers::														Symbolic	Operand	Modifiers
*	M68HC11-Directives::													Assembler	Directives
*	M68HC11-Float::																		Floating	Point
*	M68HC11-opcodes::																Opcodes

3/25/20 as.info 231

�
File:	as.info,		Node:	M68HC11-Opts,		Next:	M68HC11-Syntax,		Up:	M68HC11-Dependent

9.24.1	M68HC11	and	M68HC12	Options

The	Motorola	68HC11	and	68HC12	version	of	'as'	have	a	few	machine
dependent	options.

'-m68hc11'
					This	option	switches	the	assembler	into	the	M68HC11	mode.		In	this
					mode,	the	assembler	only	accepts	68HC11	operands	and	mnemonics.		It
					produces	code	for	the	68HC11.

'-m68hc12'
					This	option	switches	the	assembler	into	the	M68HC12	mode.		In	this
					mode,	the	assembler	also	accepts	68HC12	operands	and	mnemonics.		It
					produces	code	for	the	68HC12.		A	few	68HC11	instructions	are
					replaced	by	some	68HC12	instructions	as	recommended	by	Motorola
					specifications.

'-m68hcs12'
					This	option	switches	the	assembler	into	the	M68HCS12	mode.		This
					mode	is	similar	to	'-m68hc12'	but	specifies	to	assemble	for	the
					68HCS12	series.		The	only	difference	is	on	the	assembling	of	the
					'movb'	and	'movw'	instruction	when	a	PC-relative	operand	is	used.

'-mm9s12x'
					This	option	switches	the	assembler	into	the	M9S12X	mode.		This	mode
					is	similar	to	'-m68hc12'	but	specifies	to	assemble	for	the	S12X
					series	which	is	a	superset	of	the	HCS12.

'-mm9s12xg'
					This	option	switches	the	assembler	into	the	XGATE	mode	for	the	RISC
					co-processor	featured	on	some	S12X-family	chips.

'--xgate-ramoffset'
					This	option	instructs	the	linker	to	offset	RAM	addresses	from	S12X
					address	space	into	XGATE	address	space.

'-mshort'
					This	option	controls	the	ABI	and	indicates	to	use	a	16-bit	integer
					ABI.	It	has	no	effect	on	the	assembled	instructions.		This	is	the
					default.

'-mlong'
					This	option	controls	the	ABI	and	indicates	to	use	a	32-bit	integer
					ABI.

'-mshort-double'
					This	option	controls	the	ABI	and	indicates	to	use	a	32-bit	float
					ABI.	This	is	the	default.

'-mlong-double'
					This	option	controls	the	ABI	and	indicates	to	use	a	64-bit	float
					ABI.

'--strict-direct-mode'
					You	can	use	the	'--strict-direct-mode'	option	to	disable	the

3/25/20 as.info 232

					automatic	translation	of	direct	page	mode	addressing	into	extended
					mode	when	the	instruction	does	not	support	direct	mode.		For
					example,	the	'clr'	instruction	does	not	support	direct	page	mode
					addressing.		When	it	is	used	with	the	direct	page	mode,	'as'	will
					ignore	it	and	generate	an	absolute	addressing.		This	option
					prevents	'as'	from	doing	this,	and	the	wrong	usage	of	the	direct
					page	mode	will	raise	an	error.

'--short-branches'
					The	'--short-branches'	option	turns	off	the	translation	of	relative
					branches	into	absolute	branches	when	the	branch	offset	is	out	of
					range.		By	default	'as'	transforms	the	relative	branch	('bsr',
					'bgt',	'bge',	'beq',	'bne',	'ble',	'blt',	'bhi',	'bcc',	'bls',
					'bcs',	'bmi',	'bvs',	'bvs',	'bra')	into	an	absolute	branch	when	the
					offset	is	out	of	the	-128	..		127	range.		In	that	case,	the	'bsr'
					instruction	is	translated	into	a	'jsr',	the	'bra'	instruction	is
					translated	into	a	'jmp'	and	the	conditional	branches	instructions
					are	inverted	and	followed	by	a	'jmp'.		This	option	disables	these
					translations	and	'as'	will	generate	an	error	if	a	relative	branch
					is	out	of	range.		This	option	does	not	affect	the	optimization
					associated	to	the	'jbra',	'jbsr'	and	'jbXX'	pseudo	opcodes.

'--force-long-branches'
					The	'--force-long-branches'	option	forces	the	translation	of
					relative	branches	into	absolute	branches.		This	option	does	not
					affect	the	optimization	associated	to	the	'jbra',	'jbsr'	and	'jbXX'
					pseudo	opcodes.

'--print-insn-syntax'
					You	can	use	the	'--print-insn-syntax'	option	to	obtain	the	syntax
					description	of	the	instruction	when	an	error	is	detected.

'--print-opcodes'
					The	'--print-opcodes'	option	prints	the	list	of	all	the
					instructions	with	their	syntax.		The	first	item	of	each	line
					represents	the	instruction	name	and	the	rest	of	the	line	indicates
					the	possible	operands	for	that	instruction.		The	list	is	printed	in
					alphabetical	order.		Once	the	list	is	printed	'as'	exits.

'--generate-example'
					The	'--generate-example'	option	is	similar	to	'--print-opcodes'	but
					it	generates	an	example	for	each	instruction	instead.

�
File:	as.info,		Node:	M68HC11-Syntax,		Next:	M68HC11-Modifiers,		Prev:	M68HC11-Opts,
Up:	M68HC11-Dependent

9.24.2	Syntax

In	the	M68HC11	syntax,	the	instruction	name	comes	first	and	it	may	be
followed	by	one	or	several	operands	(up	to	three).		Operands	are
separated	by	comma	(',').		In	the	normal	mode,	'as'	will	complain	if	too
many	operands	are	specified	for	a	given	instruction.		In	the	MRI	mode
(turned	on	with	'-M'	option),	it	will	treat	them	as	comments.		Example:

					inx
					lda		#23
					bset	2,x	#4

3/25/20 as.info 233

					brclr	*bot	#8	foo

			The	presence	of	a	';'	character	or	a	'!'	character	anywhere	on	a	line
indicates	the	start	of	a	comment	that	extends	to	the	end	of	that	line.

			A	'*'	or	a	'#'	character	at	the	start	of	a	line	also	introduces	a
line	comment,	but	these	characters	do	not	work	elsewhere	on	the	line.
If	the	first	character	of	the	line	is	a	'#'	then	as	well	as	starting	a
comment,	the	line	could	also	be	logical	line	number	directive	(*note
Comments::)	or	a	preprocessor	control	command	(*note	Preprocessing::).

			The	M68HC11	assembler	does	not	currently	support	a	line	separator
character.

			The	following	addressing	modes	are	understood	for	68HC11	and	68HC12:
"Immediate"
					'#NUMBER'

"Address	Register"
					'NUMBER,X',	'NUMBER,Y'

					The	NUMBER	may	be	omitted	in	which	case	0	is	assumed.

"Direct	Addressing	mode"
					'*SYMBOL',	or	'*DIGITS'

"Absolute"
					'SYMBOL',	or	'DIGITS'

			The	M68HC12	has	other	more	complex	addressing	modes.		All	of	them	are
supported	and	they	are	represented	below:

"Constant	Offset	Indexed	Addressing	Mode"
					'NUMBER,REG'

					The	NUMBER	may	be	omitted	in	which	case	0	is	assumed.		The	register
					can	be	either	'X',	'Y',	'SP'	or	'PC'.		The	assembler	will	use	the
					smaller	post-byte	definition	according	to	the	constant	value	(5-bit
					constant	offset,	9-bit	constant	offset	or	16-bit	constant	offset).
					If	the	constant	is	not	known	by	the	assembler	it	will	use	the
					16-bit	constant	offset	post-byte	and	the	value	will	be	resolved	at
					link	time.

"Offset	Indexed	Indirect"
					'[NUMBER,REG]'

					The	register	can	be	either	'X',	'Y',	'SP'	or	'PC'.

"Auto	Pre-Increment/Pre-Decrement/Post-Increment/Post-Decrement"
					'NUMBER,-REG'	'NUMBER,+REG'	'NUMBER,REG-'	'NUMBER,REG+'

					The	number	must	be	in	the	range	'-8'..'+8'	and	must	not	be	0.		The
					register	can	be	either	'X',	'Y',	'SP'	or	'PC'.

"Accumulator	Offset"
					'ACC,REG'

					The	accumulator	register	can	be	either	'A',	'B'	or	'D'.		The
					register	can	be	either	'X',	'Y',	'SP'	or	'PC'.

3/25/20 as.info 234

"Accumulator	D	offset	indexed-indirect"
					'[D,REG]'

					The	register	can	be	either	'X',	'Y',	'SP'	or	'PC'.

			For	example:

					ldab	1024,sp
					ldd	[10,x]
					orab	3,+x
					stab	-2,y-
					ldx	a,pc
					sty	[d,sp]

�
File:	as.info,		Node:	M68HC11-Modifiers,		Next:	M68HC11-Directives,		Prev:	M68HC11-
Syntax,		Up:	M68HC11-Dependent

9.24.3	Symbolic	Operand	Modifiers

The	assembler	supports	several	modifiers	when	using	symbol	addresses	in
68HC11	and	68HC12	instruction	operands.		The	general	syntax	is	the
following:

					%modifier(symbol)

'%addr'
					This	modifier	indicates	to	the	assembler	and	linker	to	use	the
					16-bit	physical	address	corresponding	to	the	symbol.		This	is
					intended	to	be	used	on	memory	window	systems	to	map	a	symbol	in	the
					memory	bank	window.		If	the	symbol	is	in	a	memory	expansion	part,
					the	physical	address	corresponds	to	the	symbol	address	within	the
					memory	bank	window.		If	the	symbol	is	not	in	a	memory	expansion
					part,	this	is	the	symbol	address	(using	or	not	using	the	%addr
					modifier	has	no	effect	in	that	case).

'%page'
					This	modifier	indicates	to	use	the	memory	page	number	corresponding
					to	the	symbol.		If	the	symbol	is	in	a	memory	expansion	part,	its
					page	number	is	computed	by	the	linker	as	a	number	used	to	map	the
					page	containing	the	symbol	in	the	memory	bank	window.		If	the
					symbol	is	not	in	a	memory	expansion	part,	the	page	number	is	0.

'%hi'
					This	modifier	indicates	to	use	the	8-bit	high	part	of	the	physical
					address	of	the	symbol.

'%lo'
					This	modifier	indicates	to	use	the	8-bit	low	part	of	the	physical
					address	of	the	symbol.

			For	example	a	68HC12	call	to	a	function	'foo_example'	stored	in
memory	expansion	part	could	be	written	as	follows:

					call	%addr(foo_example),%page(foo_example)

			and	this	is	equivalent	to

3/25/20 as.info 235

					call	foo_example

			And	for	68HC11	it	could	be	written	as	follows:

					ldab	#%page(foo_example)
					stab	_page_switch
					jsr		%addr(foo_example)

�
File:	as.info,		Node:	M68HC11-Directives,		Next:	M68HC11-Float,		Prev:	M68HC11-
Modifiers,		Up:	M68HC11-Dependent

9.24.4	Assembler	Directives

The	68HC11	and	68HC12	version	of	'as'	have	the	following	specific
assembler	directives:

'.relax'
					The	relax	directive	is	used	by	the	'GNU	Compiler'	to	emit	a
					specific	relocation	to	mark	a	group	of	instructions	for	linker
					relaxation.		The	sequence	of	instructions	within	the	group	must	be
					known	to	the	linker	so	that	relaxation	can	be	performed.

'.mode	[mshort|mlong|mshort-double|mlong-double]'
					This	directive	specifies	the	ABI.	It	overrides	the	'-mshort',
					'-mlong',	'-mshort-double'	and	'-mlong-double'	options.

'.far	SYMBOL'
					This	directive	marks	the	symbol	as	a	'far'	symbol	meaning	that	it
					uses	a	'call/rtc'	calling	convention	as	opposed	to	'jsr/rts'.
					During	a	final	link,	the	linker	will	identify	references	to	the
					'far'	symbol	and	will	verify	the	proper	calling	convention.

'.interrupt	SYMBOL'
					This	directive	marks	the	symbol	as	an	interrupt	entry	point.		This
					information	is	then	used	by	the	debugger	to	correctly	unwind	the
					frame	across	interrupts.

'.xrefb	SYMBOL'
					This	directive	is	defined	for	compatibility	with	the	'Specification
					for	Motorola	8	and	16-Bit	Assembly	Language	Input	Standard'	and	is
					ignored.

�
File:	as.info,		Node:	M68HC11-Float,		Next:	M68HC11-opcodes,		Prev:	M68HC11-
Directives,		Up:	M68HC11-Dependent

9.24.5	Floating	Point

Packed	decimal	(P)	format	floating	literals	are	not	supported.		Feel
free	to	add	the	code!

			The	floating	point	formats	generated	by	directives	are	these.

'.float'
					'Single'	precision	floating	point	constants.

3/25/20 as.info 236

'.double'
					'Double'	precision	floating	point	constants.

'.extend'
'.ldouble'
					'Extended'	precision	('long	double')	floating	point	constants.

�
File:	as.info,		Node:	M68HC11-opcodes,		Prev:	M68HC11-Float,		Up:	M68HC11-Dependent

9.24.6	Opcodes

*	Menu:

*	M68HC11-Branch::																	Branch	Improvement

�
File:	as.info,		Node:	M68HC11-Branch,		Up:	M68HC11-opcodes

9.24.6.1	Branch	Improvement
...........................

Certain	pseudo	opcodes	are	permitted	for	branch	instructions.		They
expand	to	the	shortest	branch	instruction	that	reach	the	target.
Generally	these	mnemonics	are	made	by	prepending	'j'	to	the	start	of
Motorola	mnemonic.		These	pseudo	opcodes	are	not	affected	by	the
'--short-branches'	or	'--force-long-branches'	options.

			The	following	table	summarizes	the	pseudo-operations.

																													Displacement	Width
										+---+
										|																					Options																																	|
										|				--short-branches											--force-long-branches									|
										+--------------------------+----------------------------------+
							Op	|BYTE													WORD					|	BYTE										WORD															|
										+--------------------------+----------------------------------+
						bsr	|	bsr	<pc-rel>				<error>		|															jsr	<abs>										|
						bra	|	bra	<pc-rel>				<error>		|															jmp	<abs>										|
					jbsr	|	bsr	<pc-rel>			jsr	<abs>	|	bsr	<pc-rel>		jsr	<abs>										|
					jbra	|	bra	<pc-rel>			jmp	<abs>	|	bra	<pc-rel>		jmp	<abs>										|
						bXX	|	bXX	<pc-rel>				<error>		|															bNX	+3;	jmp	<abs>		|
					jbXX	|	bXX	<pc-rel>			bNX	+3;			|	bXX	<pc-rel>		bNX	+3;	jmp	<abs>		|
										|																jmp	<abs>	|																																		|
										+--------------------------+----------------------------------+
					XX:	condition
					NX:	negative	of	condition	XX

'jbsr'
'jbra'
					These	are	the	simplest	jump	pseudo-operations;	they	always	map	to
					one	particular	machine	instruction,	depending	on	the	displacement
					to	the	branch	target.

'jbXX'
					Here,	'jbXX'	stands	for	an	entire	family	of	pseudo-operations,

3/25/20 as.info 237

					where	XX	is	a	conditional	branch	or	condition-code	test.		The	full
					list	of	pseudo-ops	in	this	family	is:
											jbcc			jbeq			jbge			jbgt			jbhi			jbvs			jbpl		jblo
											jbcs			jbne			jblt			jble			jbls			jbvc			jbmi

					For	the	cases	of	non-PC	relative	displacements	and	long
					displacements,	'as'	issues	a	longer	code	fragment	in	terms	of	NX,
					the	opposite	condition	to	XX.		For	example,	for	the	non-PC	relative
					case:
														jbXX	foo
					gives
															bNXs	oof
															jmp	foo
											oof:

�
File:	as.info,		Node:	Meta-Dependent,		Next:	MicroBlaze-Dependent,		Prev:	M68HC11-
Dependent,		Up:	Machine	Dependencies

9.25	Meta	Dependent	Features
============================

*	Menu:

*	Meta	Options::																Options
*	Meta	Syntax::																	Meta	Assembler	Syntax

�
File:	as.info,		Node:	Meta	Options,		Next:	Meta	Syntax,		Up:	Meta-Dependent

9.25.1	Options

The	Imagination	Technologies	Meta	architecture	is	implemented	in	a
number	of	versions,	with	each	new	version	adding	new	features	such	as
instructions	and	registers.		For	precise	details	of	what	instructions
each	core	supports,	please	see	the	chip's	technical	reference	manual.

			The	following	table	lists	all	available	Meta	options.

'-mcpu=metac11'
					Generate	code	for	Meta	1.1.

'-mcpu=metac12'
					Generate	code	for	Meta	1.2.

'-mcpu=metac21'
					Generate	code	for	Meta	2.1.

'-mfpu=metac21'
					Allow	code	to	use	FPU	hardware	of	Meta	2.1.

�
File:	as.info,		Node:	Meta	Syntax,		Prev:	Meta	Options,		Up:	Meta-Dependent

9.25.2	Syntax

*	Menu:

3/25/20 as.info 238

*	Meta-Chars::																Special	Characters
*	Meta-Regs::																	Register	Names

�
File:	as.info,		Node:	Meta-Chars,		Next:	Meta-Regs,		Up:	Meta	Syntax

9.25.2.1	Special	Characters
...........................

'!'	is	the	line	comment	character.

			You	can	use	';'	instead	of	a	newline	to	separate	statements.

			Since	'$'	has	no	special	meaning,	you	may	use	it	in	symbol	names.

�
File:	as.info,		Node:	Meta-Regs,		Prev:	Meta-Chars,		Up:	Meta	Syntax

9.25.2.2	Register	Names
.......................

Registers	can	be	specified	either	using	their	mnemonic	names,	such	as
'D0Re0',	or	using	the	unit	plus	register	number	separated	by	a	'.',	such
as	'D0.0'.

�
File:	as.info,		Node:	MicroBlaze-Dependent,		Next:	MIPS-Dependent,		Prev:	Meta-
Dependent,		Up:	Machine	Dependencies

9.26	MicroBlaze	Dependent	Features
==================================

The	Xilinx	MicroBlaze	processor	family	includes	several	variants,	all
using	the	same	core	instruction	set.		This	chapter	covers	features	of
the	GNU	assembler	that	are	specific	to	the	MicroBlaze	architecture.		For
details	about	the	MicroBlaze	instruction	set,	please	see	the	'MicroBlaze
Processor	Reference	Guide	(UG081)'	available	at	www.xilinx.com.

*	Menu:

*	MicroBlaze	Directives::											Directives	for	MicroBlaze	Processors.
*	MicroBlaze	Syntax::															Syntax	for	the	MicroBlaze

�
File:	as.info,		Node:	MicroBlaze	Directives,		Next:	MicroBlaze	Syntax,		Up:
MicroBlaze-Dependent

9.26.1	Directives

A	number	of	assembler	directives	are	available	for	MicroBlaze.

'.data8	EXPRESSION,...'
					This	directive	is	an	alias	for	'.byte'.		Each	expression	is
					assembled	into	an	eight-bit	value.

'.data16	EXPRESSION,...'
					This	directive	is	an	alias	for	'.hword'.		Each	expression	is

3/25/20 as.info 239

					assembled	into	an	16-bit	value.

'.data32	EXPRESSION,...'
					This	directive	is	an	alias	for	'.word'.		Each	expression	is
					assembled	into	an	32-bit	value.

'.ent	NAME[,LABEL]'
					This	directive	is	an	alias	for	'.func'	denoting	the	start	of
					function	NAME	at	(optional)	LABEL.

'.end	NAME[,LABEL]'
					This	directive	is	an	alias	for	'.endfunc'	denoting	the	end	of
					function	NAME.

'.gpword	LABEL,...'
					This	directive	is	an	alias	for	'.rva'.		The	resolved	address	of
					LABEL	is	stored	in	the	data	section.

'.weakext	LABEL'
					Declare	that	LABEL	is	a	weak	external	symbol.

'.rodata'
					Switch	to	.rodata	section.		Equivalent	to	'.section	.rodata'

'.sdata2'
					Switch	to	.sdata2	section.		Equivalent	to	'.section	.sdata2'

'.sdata'
					Switch	to	.sdata	section.		Equivalent	to	'.section	.sdata'

'.bss'
					Switch	to	.bss	section.		Equivalent	to	'.section	.bss'

'.sbss'
					Switch	to	.sbss	section.		Equivalent	to	'.section	.sbss'

�
File:	as.info,		Node:	MicroBlaze	Syntax,		Prev:	MicroBlaze	Directives,		Up:
MicroBlaze-Dependent

9.26.2	Syntax	for	the	MicroBlaze

*	Menu:

*	MicroBlaze-Chars::																Special	Characters

�
File:	as.info,		Node:	MicroBlaze-Chars,		Up:	MicroBlaze	Syntax

9.26.2.1	Special	Characters
...........................

The	presence	of	a	'#'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.

			If	a	'#'	appears	as	the	first	character	of	a	line,	the	whole	line	is
treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control

3/25/20 as.info 240

command	(*note	Preprocessing::).

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	MIPS-Dependent,		Next:	MMIX-Dependent,		Prev:	MicroBlaze-
Dependent,		Up:	Machine	Dependencies

9.27	MIPS	Dependent	Features
============================

GNU	'as'	for	MIPS	architectures	supports	several	different	MIPS
processors,	and	MIPS	ISA	levels	I	through	V,	MIPS32,	and	MIPS64.		For
information	about	the	MIPS	instruction	set,	see	'MIPS	RISC
Architecture',	by	Kane	and	Heindrich	(Prentice-Hall).		For	an	overview
of	MIPS	assembly	conventions,	see	"Appendix	D:	Assembly	Language
Programming"	in	the	same	work.

*	Menu:

*	MIPS	Options::			 Assembler	options
*	MIPS	Macros::	 High-level	assembly	macros
*	MIPS	Symbol	Sizes:: Directives	to	override	the	size	of	symbols
*	MIPS	Small	Data::	 Controlling	the	use	of	small	data	accesses
*	MIPS	ISA::				 Directives	to	override	the	ISA	level
*	MIPS	assembly	options::	Directives	to	control	code	generation
*	MIPS	autoextend:: Directives	for	extending	MIPS	16	bit	instructions
*	MIPS	insn:: Directive	to	mark	data	as	an	instruction
*	MIPS	FP	ABIs:: Marking	which	FP	ABI	is	in	use
*	MIPS	NaN	Encodings:: Directives	to	record	which	NaN	encoding	is	being	used
*	MIPS	Option	Stack:: Directives	to	save	and	restore	options
*	MIPS	ASE	Instruction	Generation	Overrides::	Directives	to	control
		 generation	of	MIPS	ASE	instructions
*	MIPS	Floating-Point::	Directives	to	override	floating-point	options
*	MIPS	Syntax::									MIPS	specific	syntactical	considerations

�
File:	as.info,		Node:	MIPS	Options,		Next:	MIPS	Macros,		Up:	MIPS-Dependent

9.27.1	Assembler	options

The	MIPS	configurations	of	GNU	'as'	support	these	special	options:

'-G	NUM'
					Set	the	"small	data"	limit	to	N	bytes.		The	default	limit	is	8
					bytes.		*Note	Controlling	the	use	of	small	data	accesses:	MIPS
					Small	Data.

'-EB'
'-EL'
					Any	MIPS	configuration	of	'as'	can	select	big-endian	or
					little-endian	output	at	run	time	(unlike	the	other	GNU	development
					tools,	which	must	be	configured	for	one	or	the	other).		Use	'-EB'
					to	select	big-endian	output,	and	'-EL'	for	little-endian.

'-KPIC'
					Generate	SVR4-style	PIC.	This	option	tells	the	assembler	to

3/25/20 as.info 241

					generate	SVR4-style	position-independent	macro	expansions.		It	also
					tells	the	assembler	to	mark	the	output	file	as	PIC.

'-mvxworks-pic'
					Generate	VxWorks	PIC.	This	option	tells	the	assembler	to	generate
					VxWorks-style	position-independent	macro	expansions.

'-mips1'
'-mips2'
'-mips3'
'-mips4'
'-mips5'
'-mips32'
'-mips32r2'
'-mips32r3'
'-mips32r5'
'-mips32r6'
'-mips64'
'-mips64r2'
'-mips64r3'
'-mips64r5'
'-mips64r6'
					Generate	code	for	a	particular	MIPS	Instruction	Set	Architecture
					level.		'-mips1'	corresponds	to	the	R2000	and	R3000	processors,
					'-mips2'	to	the	R6000	processor,	'-mips3'	to	the	R4000	processor,
					and	'-mips4'	to	the	R8000	and	R10000	processors.		'-mips5',
					'-mips32',	'-mips32r2',	'-mips32r3',	'-mips32r5',	'-mips32r6',
					'-mips64',	'-mips64r2',	'-mips64r3',	'-mips64r5',	and	'-mips64r6'
					correspond	to	generic	MIPS	V,	MIPS32,	MIPS32	Release	2,	MIPS32
					Release	3,	MIPS32	Release	5,	MIPS32	Release	6,	MIPS64,	and	MIPS64
					Release	2,	MIPS64	Release	3,	MIPS64	Release	5,	and	MIPS64	Release	6
					ISA	processors,	respectively.		You	can	also	switch	instruction	sets
					during	the	assembly;	see	*note	Directives	to	override	the	ISA
					level:	MIPS	ISA.

'-mgp32'
'-mfp32'
					Some	macros	have	different	expansions	for	32-bit	and	64-bit
					registers.		The	register	sizes	are	normally	inferred	from	the	ISA
					and	ABI,	but	these	flags	force	a	certain	group	of	registers	to	be
					treated	as	32	bits	wide	at	all	times.		'-mgp32'	controls	the	size
					of	general-purpose	registers	and	'-mfp32'	controls	the	size	of
					floating-point	registers.

					The	'.set	gp=32'	and	'.set	fp=32'	directives	allow	the	size	of
					registers	to	be	changed	for	parts	of	an	object.		The	default	value
					is	restored	by	'.set	gp=default'	and	'.set	fp=default'.

					On	some	MIPS	variants	there	is	a	32-bit	mode	flag;	when	this	flag
					is	set,	64-bit	instructions	generate	a	trap.		Also,	some	32-bit
					OSes	only	save	the	32-bit	registers	on	a	context	switch,	so	it	is
					essential	never	to	use	the	64-bit	registers.

'-mgp64'
'-mfp64'
					Assume	that	64-bit	registers	are	available.		This	is	provided	in
					the	interests	of	symmetry	with	'-mgp32'	and	'-mfp32'.

					The	'.set	gp=64'	and	'.set	fp=64'	directives	allow	the	size	of

3/25/20 as.info 242

					registers	to	be	changed	for	parts	of	an	object.		The	default	value
					is	restored	by	'.set	gp=default'	and	'.set	fp=default'.

'-mfpxx'
					Make	no	assumptions	about	whether	32-bit	or	64-bit	floating-point
					registers	are	available.		This	is	provided	to	support	having
					modules	compatible	with	either	'-mfp32'	or	'-mfp64'.		This	option
					can	only	be	used	with	MIPS	II	and	above.

					The	'.set	fp=xx'	directive	allows	a	part	of	an	object	to	be	marked
					as	not	making	assumptions	about	32-bit	or	64-bit	FP	registers.		The
					default	value	is	restored	by	'.set	fp=default'.

'-modd-spreg'
'-mno-odd-spreg'
					Enable	use	of	floating-point	operations	on	odd-numbered
					single-precision	registers	when	supported	by	the	ISA.	'-mfpxx'
					implies	'-mno-odd-spreg',	otherwise	the	default	is	'-modd-spreg'

'-mips16'
'-no-mips16'
					Generate	code	for	the	MIPS	16	processor.		This	is	equivalent	to
					putting	'.set	mips16'	at	the	start	of	the	assembly	file.
					'-no-mips16'	turns	off	this	option.

'-mmicromips'
'-mno-micromips'
					Generate	code	for	the	microMIPS	processor.		This	is	equivalent	to
					putting	'.set	micromips'	at	the	start	of	the	assembly	file.
					'-mno-micromips'	turns	off	this	option.		This	is	equivalent	to
					putting	'.set	nomicromips'	at	the	start	of	the	assembly	file.

'-msmartmips'
'-mno-smartmips'
					Enables	the	SmartMIPS	extensions	to	the	MIPS32	instruction	set,
					which	provides	a	number	of	new	instructions	which	target	smartcard
					and	cryptographic	applications.		This	is	equivalent	to	putting
					'.set	smartmips'	at	the	start	of	the	assembly	file.
					'-mno-smartmips'	turns	off	this	option.

'-mips3d'
'-no-mips3d'
					Generate	code	for	the	MIPS-3D	Application	Specific	Extension.		This
					tells	the	assembler	to	accept	MIPS-3D	instructions.		'-no-mips3d'
					turns	off	this	option.

'-mdmx'
'-no-mdmx'
					Generate	code	for	the	MDMX	Application	Specific	Extension.		This
					tells	the	assembler	to	accept	MDMX	instructions.		'-no-mdmx'	turns
					off	this	option.

'-mdsp'
'-mno-dsp'
					Generate	code	for	the	DSP	Release	1	Application	Specific	Extension.
					This	tells	the	assembler	to	accept	DSP	Release	1	instructions.
					'-mno-dsp'	turns	off	this	option.

'-mdspr2'

3/25/20 as.info 243

'-mno-dspr2'
					Generate	code	for	the	DSP	Release	2	Application	Specific	Extension.
					This	option	implies	'-mdsp'.		This	tells	the	assembler	to	accept
					DSP	Release	2	instructions.		'-mno-dspr2'	turns	off	this	option.

'-mdspr3'
'-mno-dspr3'
					Generate	code	for	the	DSP	Release	3	Application	Specific	Extension.
					This	option	implies	'-mdsp'	and	'-mdspr2'.		This	tells	the
					assembler	to	accept	DSP	Release	3	instructions.		'-mno-dspr3'	turns
					off	this	option.

'-mmt'
'-mno-mt'
					Generate	code	for	the	MT	Application	Specific	Extension.		This
					tells	the	assembler	to	accept	MT	instructions.		'-mno-mt'	turns	off
					this	option.

'-mmcu'
'-mno-mcu'
					Generate	code	for	the	MCU	Application	Specific	Extension.		This
					tells	the	assembler	to	accept	MCU	instructions.		'-mno-mcu'	turns
					off	this	option.

'-mmsa'
'-mno-msa'
					Generate	code	for	the	MIPS	SIMD	Architecture	Extension.		This	tells
					the	assembler	to	accept	MSA	instructions.		'-mno-msa'	turns	off
					this	option.

'-mxpa'
'-mno-xpa'
					Generate	code	for	the	MIPS	eXtended	Physical	Address	(XPA)
					Extension.		This	tells	the	assembler	to	accept	XPA	instructions.
					'-mno-xpa'	turns	off	this	option.

'-mvirt'
'-mno-virt'
					Generate	code	for	the	Virtualization	Application	Specific
					Extension.		This	tells	the	assembler	to	accept	Virtualization
					instructions.		'-mno-virt'	turns	off	this	option.

'-minsn32'
'-mno-insn32'
					Only	use	32-bit	instruction	encodings	when	generating	code	for	the
					microMIPS	processor.		This	option	inhibits	the	use	of	any	16-bit
					instructions.		This	is	equivalent	to	putting	'.set	insn32'	at	the
					start	of	the	assembly	file.		'-mno-insn32'	turns	off	this	option.
					This	is	equivalent	to	putting	'.set	noinsn32'	at	the	start	of	the
					assembly	file.		By	default	'-mno-insn32'	is	selected,	allowing	all
					instructions	to	be	used.

'-mfix7000'
'-mno-fix7000'
					Cause	nops	to	be	inserted	if	the	read	of	the	destination	register
					of	an	mfhi	or	mflo	instruction	occurs	in	the	following	two
					instructions.

'-mfix-rm7000'

3/25/20 as.info 244

'-mno-fix-rm7000'
					Cause	nops	to	be	inserted	if	a	dmult	or	dmultu	instruction	is
					followed	by	a	load	instruction.

'-mfix-loongson2f-jump'
'-mno-fix-loongson2f-jump'
					Eliminate	instruction	fetch	from	outside	256M	region	to	work	around
					the	Loongson2F	'jump'	instructions.		Without	it,	under	extreme
					cases,	the	kernel	may	crash.		The	issue	has	been	solved	in	latest
					processor	batches,	but	this	fix	has	no	side	effect	to	them.

'-mfix-loongson2f-nop'
'-mno-fix-loongson2f-nop'
					Replace	nops	by	'or	at,at,zero'	to	work	around	the	Loongson2F	'nop'
					errata.		Without	it,	under	extreme	cases,	the	CPU	might	deadlock.
					The	issue	has	been	solved	in	later	Loongson2F	batches,	but	this	fix
					has	no	side	effect	to	them.

'-mfix-vr4120'
'-mno-fix-vr4120'
					Insert	nops	to	work	around	certain	VR4120	errata.		This	option	is
					intended	to	be	used	on	GCC-generated	code:	it	is	not	designed	to
					catch	all	problems	in	hand-written	assembler	code.

'-mfix-vr4130'
'-mno-fix-vr4130'
					Insert	nops	to	work	around	the	VR4130	'mflo'/'mfhi'	errata.

'-mfix-24k'
'-mno-fix-24k'
					Insert	nops	to	work	around	the	24K	'eret'/'deret'	errata.

'-mfix-cn63xxp1'
'-mno-fix-cn63xxp1'
					Replace	'pref'	hints	0	-	4	and	6	-	24	with	hint	28	to	work	around
					certain	CN63XXP1	errata.

'-m4010'
'-no-m4010'
					Generate	code	for	the	LSI	R4010	chip.		This	tells	the	assembler	to
					accept	the	R4010-specific	instructions	('addciu',	'ffc',	etc.),	and
					to	not	schedule	'nop'	instructions	around	accesses	to	the	'HI'	and
					'LO'	registers.		'-no-m4010'	turns	off	this	option.

'-m4650'
'-no-m4650'
					Generate	code	for	the	MIPS	R4650	chip.		This	tells	the	assembler	to
					accept	the	'mad'	and	'madu'	instruction,	and	to	not	schedule	'nop'
					instructions	around	accesses	to	the	'HI'	and	'LO'	registers.
					'-no-m4650'	turns	off	this	option.

'-m3900'
'-no-m3900'
'-m4100'
'-no-m4100'
					For	each	option	'-mNNNN',	generate	code	for	the	MIPS	RNNNN	chip.
					This	tells	the	assembler	to	accept	instructions	specific	to	that
					chip,	and	to	schedule	for	that	chip's	hazards.

3/25/20 as.info 245

'-march=CPU'
					Generate	code	for	a	particular	MIPS	CPU.	It	is	exactly	equivalent
					to	'-mCPU',	except	that	there	are	more	value	of	CPU	understood.
					Valid	CPU	value	are:

										2000,	3000,	3900,	4000,	4010,	4100,	4111,	vr4120,	vr4130,
										vr4181,	4300,	4400,	4600,	4650,	5000,	rm5200,	rm5230,	rm5231,
										rm5261,	rm5721,	vr5400,	vr5500,	6000,	rm7000,	8000,	rm9000,
										10000,	12000,	14000,	16000,	4kc,	4km,	4kp,	4ksc,	4kec,	4kem,
										4kep,	4ksd,	m4k,	m4kp,	m14k,	m14kc,	m14ke,	m14kec,	24kc,
										24kf2_1,	24kf,	24kf1_1,	24kec,	24kef2_1,	24kef,	24kef1_1,
										34kc,	34kf2_1,	34kf,	34kf1_1,	34kn,	74kc,	74kf2_1,	74kf,
										74kf1_1,	74kf3_2,	1004kc,	1004kf2_1,	1004kf,	1004kf1_1,
										interaptiv,	m5100,	m5101,	p5600,	5kc,	5kf,	20kc,	25kf,	sb1,
										sb1a,	i6400,	p6600,	loongson2e,	loongson2f,	loongson3a,
										octeon,	octeon+,	octeon2,	octeon3,	xlr,	xlp

					For	compatibility	reasons,	'Nx'	and	'Bfx'	are	accepted	as	synonyms
					for	'Nf1_1'.		These	values	are	deprecated.

'-mtune=CPU'
					Schedule	and	tune	for	a	particular	MIPS	CPU.	Valid	CPU	values	are
					identical	to	'-march=CPU'.

'-mabi=ABI'
					Record	which	ABI	the	source	code	uses.		The	recognized	arguments
					are:	'32',	'n32',	'o64',	'64'	and	'eabi'.

'-msym32'
'-mno-sym32'
					Equivalent	to	adding	'.set	sym32'	or	'.set	nosym32'	to	the
					beginning	of	the	assembler	input.		*Note	MIPS	Symbol	Sizes::.

'-nocpp'
					This	option	is	ignored.		It	is	accepted	for	command-line
					compatibility	with	other	assemblers,	which	use	it	to	turn	off	C
					style	preprocessing.		With	GNU	'as',	there	is	no	need	for	'-nocpp',
					because	the	GNU	assembler	itself	never	runs	the	C	preprocessor.

'-msoft-float'
'-mhard-float'
					Disable	or	enable	floating-point	instructions.		Note	that	by
					default	floating-point	instructions	are	always	allowed	even	with
					CPU	targets	that	don't	have	support	for	these	instructions.

'-msingle-float'
'-mdouble-float'
					Disable	or	enable	double-precision	floating-point	operations.		Note
					that	by	default	double-precision	floating-point	operations	are
					always	allowed	even	with	CPU	targets	that	don't	have	support	for
					these	operations.

'--construct-floats'
'--no-construct-floats'
					The	'--no-construct-floats'	option	disables	the	construction	of
					double	width	floating	point	constants	by	loading	the	two	halves	of
					the	value	into	the	two	single	width	floating	point	registers	that
					make	up	the	double	width	register.		This	feature	is	useful	if	the
					processor	support	the	FR	bit	in	its	status	register,	and	this	bit

3/25/20 as.info 246

					is	known	(by	the	programmer)	to	be	set.		This	bit	prevents	the
					aliasing	of	the	double	width	register	by	the	single	width
					registers.

					By	default	'--construct-floats'	is	selected,	allowing	construction
					of	these	floating	point	constants.

'--relax-branch'
'--no-relax-branch'
					The	'--relax-branch'	option	enables	the	relaxation	of	out-of-range
					branches.		Any	branches	whose	target	cannot	be	reached	directly	are
					converted	to	a	small	instruction	sequence	including	an
					inverse-condition	branch	to	the	physically	next	instruction,	and	a
					jump	to	the	original	target	is	inserted	between	the	two
					instructions.		In	PIC	code	the	jump	will	involve	further
					instructions	for	address	calculation.

					The	'BC1ANY2F',	'BC1ANY2T',	'BC1ANY4F',	'BC1ANY4T',	'BPOSGE32'	and
					'BPOSGE64'	instructions	are	excluded	from	relaxation,	because	they
					have	no	complementing	counterparts.		They	could	be	relaxed	with	the
					use	of	a	longer	sequence	involving	another	branch,	however	this	has
					not	been	implemented	and	if	their	target	turns	out	of	reach,	they
					produce	an	error	even	if	branch	relaxation	is	enabled.

					Also	no	MIPS16	branches	are	ever	relaxed.

					By	default	'--no-relax-branch'	is	selected,	causing	any
					out-of-range	branches	to	produce	an	error.

'-mignore-branch-isa'
'-mno-ignore-branch-isa'
					Ignore	branch	checks	for	invalid	transitions	between	ISA	modes.

					The	semantics	of	branches	does	not	provide	for	an	ISA	mode	switch,
					so	in	most	cases	the	ISA	mode	a	branch	has	been	encoded	for	has	to
					be	the	same	as	the	ISA	mode	of	the	branch's	target	label.		If	the
					ISA	modes	do	not	match,	then	such	a	branch,	if	taken,	will	cause
					the	ISA	mode	to	remain	unchanged	and	instructions	that	follow	will
					be	executed	in	the	wrong	ISA	mode	causing	the	program	to	misbehave
					or	crash.

					In	the	case	of	the	'BAL'	instruction	it	may	be	possible	to	relax	it
					to	an	equivalent	'JALX'	instruction	so	that	the	ISA	mode	is
					switched	at	the	run	time	as	required.		For	other	branches	no
					relaxation	is	possible	and	therefore	GAS	has	checks	implemented
					that	verify	in	branch	assembly	that	the	two	ISA	modes	match,	and
					report	an	error	otherwise	so	that	the	problem	with	code	can	be
					diagnosed	at	the	assembly	time	rather	than	at	the	run	time.

					However	some	assembly	code,	including	generated	code	produced	by
					some	versions	of	GCC,	may	incorrectly	include	branches	to	data
					labels,	which	appear	to	require	a	mode	switch	but	are	either	dead
					or	immediately	followed	by	valid	instructions	encoded	for	the	same
					ISA	the	branch	has	been	encoded	for.		While	not	strictly	correct	at
					the	source	level	such	code	will	execute	as	intended,	so	to	help
					with	these	cases	'-mignore-branch-isa'	is	supported	which	disables
					ISA	mode	checks	for	branches.

					By	default	'-mno-ignore-branch-isa'	is	selected,	causing	any

3/25/20 as.info 247

					invalid	branch	requiring	a	transition	between	ISA	modes	to	produce
					an	error.

'-mnan=ENCODING'
					This	option	indicates	whether	the	source	code	uses	the	IEEE	2008
					NaN	encoding	('-mnan=2008')	or	the	original	MIPS	encoding
					('-mnan=legacy').		It	is	equivalent	to	adding	a	'.nan'	directive	to
					the	beginning	of	the	source	file.		*Note	MIPS	NaN	Encodings::.

					'-mnan=legacy'	is	the	default	if	no	'-mnan'	option	or	'.nan'
					directive	is	used.

'--trap'
'--no-break'
					'as'	automatically	macro	expands	certain	division	and
					multiplication	instructions	to	check	for	overflow	and	division	by
					zero.		This	option	causes	'as'	to	generate	code	to	take	a	trap
					exception	rather	than	a	break	exception	when	an	error	is	detected.
					The	trap	instructions	are	only	supported	at	Instruction	Set
					Architecture	level	2	and	higher.

'--break'
'--no-trap'
					Generate	code	to	take	a	break	exception	rather	than	a	trap
					exception	when	an	error	is	detected.		This	is	the	default.

'-mpdr'
'-mno-pdr'
					Control	generation	of	'.pdr'	sections.		Off	by	default	on	IRIX,	on
					elsewhere.

'-mshared'
'-mno-shared'
					When	generating	code	using	the	Unix	calling	conventions	(selected
					by	'-KPIC'	or	'-mcall_shared'),	gas	will	normally	generate	code
					which	can	go	into	a	shared	library.		The	'-mno-shared'	option	tells
					gas	to	generate	code	which	uses	the	calling	convention,	but	can	not
					go	into	a	shared	library.		The	resulting	code	is	slightly	more
					efficient.		This	option	only	affects	the	handling	of	the	'.cpload'
					and	'.cpsetup'	pseudo-ops.

�
File:	as.info,		Node:	MIPS	Macros,		Next:	MIPS	Symbol	Sizes,		Prev:	MIPS	Options,
Up:	MIPS-Dependent

9.27.2	High-level	assembly	macros

MIPS	assemblers	have	traditionally	provided	a	wider	range	of
instructions	than	the	MIPS	architecture	itself.		These	extra
instructions	are	usually	referred	to	as	"macro"	instructions	(1).

			Some	MIPS	macro	instructions	extend	an	underlying	architectural
instruction	while	others	are	entirely	new.		An	example	of	the	former
type	is	'and',	which	allows	the	third	operand	to	be	either	a	register	or
an	arbitrary	immediate	value.		Examples	of	the	latter	type	include
'bgt',	which	branches	to	the	third	operand	when	the	first	operand	is
greater	than	the	second	operand,	and	'ulh',	which	implements	an
unaligned	2-byte	load.

3/25/20 as.info 248

			One	of	the	most	common	extensions	provided	by	macros	is	to	expand
memory	offsets	to	the	full	address	range	(32	or	64	bits)	and	to	allow
symbolic	offsets	such	as	'my_data	+	4'	to	be	used	in	place	of	integer
constants.		For	example,	the	architectural	instruction	'lbu'	allows	only
a	signed	16-bit	offset,	whereas	the	macro	'lbu'	allows	code	such	as	'lbu
$4,array+32769($5)'.		The	implementation	of	these	symbolic	offsets
depends	on	several	factors,	such	as	whether	the	assembler	is	generating
SVR4-style	PIC	(selected	by	'-KPIC',	*note	Assembler	options:	MIPS
Options.),	the	size	of	symbols	(*note	Directives	to	override	the	size	of
symbols:	MIPS	Symbol	Sizes.),	and	the	small	data	limit	(*note
Controlling	the	use	of	small	data	accesses:	MIPS	Small	Data.).

			Sometimes	it	is	undesirable	to	have	one	assembly	instruction	expand
to	several	machine	instructions.		The	directive	'.set	nomacro'	tells	the
assembler	to	warn	when	this	happens.		'.set	macro'	restores	the	default
behavior.

			Some	macro	instructions	need	a	temporary	register	to	store
intermediate	results.		This	register	is	usually	'$1',	also	known	as
'$at',	but	it	can	be	changed	to	any	core	register	REG	using	'.set
at=REG'.		Note	that	'$at'	always	refers	to	'$1'	regardless	of	which
register	is	being	used	as	the	temporary	register.

			Implicit	uses	of	the	temporary	register	in	macros	could	interfere
with	explicit	uses	in	the	assembly	code.		The	assembler	therefore	warns
whenever	it	sees	an	explicit	use	of	the	temporary	register.		The
directive	'.set	noat'	silences	this	warning	while	'.set	at'	restores	the
default	behavior.		It	is	safe	to	use	'.set	noat'	while	'.set	nomacro'	is
in	effect	since	single-instruction	macros	never	need	a	temporary
register.

			Note	that	while	the	GNU	assembler	provides	these	macros	for
compatibility,	it	does	not	make	any	attempt	to	optimize	them	with	the
surrounding	code.

			----------	Footnotes	----------

			(1)	The	term	"macro"	is	somewhat	overloaded	here,	since	these	macros
have	no	relation	to	those	defined	by	'.macro',	*note	'.macro':	Macro.

�
File:	as.info,		Node:	MIPS	Symbol	Sizes,		Next:	MIPS	Small	Data,		Prev:	MIPS	Macros,
Up:	MIPS-Dependent

9.27.3	Directives	to	override	the	size	of	symbols

The	n64	ABI	allows	symbols	to	have	any	64-bit	value.		Although	this
provides	a	great	deal	of	flexibility,	it	means	that	some	macros	have
much	longer	expansions	than	their	32-bit	counterparts.		For	example,	the
non-PIC	expansion	of	'dla	$4,sym'	is	usually:

					lui					$4,%highest(sym)
					lui					$1,%hi(sym)
					daddiu		$4,$4,%higher(sym)
					daddiu		$1,$1,%lo(sym)
					dsll32		$4,$4,0
					daddu			$4,$4,$1

3/25/20 as.info 249

			whereas	the	32-bit	expansion	is	simply:

					lui					$4,%hi(sym)
					daddiu		$4,$4,%lo(sym)

			n64	code	is	sometimes	constructed	in	such	a	way	that	all	symbolic
constants	are	known	to	have	32-bit	values,	and	in	such	cases,	it's
preferable	to	use	the	32-bit	expansion	instead	of	the	64-bit	expansion.

			You	can	use	the	'.set	sym32'	directive	to	tell	the	assembler	that,
from	this	point	on,	all	expressions	of	the	form	'SYMBOL'	or	'SYMBOL	+
OFFSET'	have	32-bit	values.		For	example:

					.set	sym32
					dla					$4,sym
					lw						$4,sym+16
					sw						$4,sym+0x8000($4)

			will	cause	the	assembler	to	treat	'sym',	'sym+16'	and	'sym+0x8000'	as
32-bit	values.		The	handling	of	non-symbolic	addresses	is	not	affected.

			The	directive	'.set	nosym32'	ends	a	'.set	sym32'	block	and	reverts	to
the	normal	behavior.		It	is	also	possible	to	change	the	symbol	size
using	the	command-line	options	'-msym32'	and	'-mno-sym32'.

			These	options	and	directives	are	always	accepted,	but	at	present,
they	have	no	effect	for	anything	other	than	n64.

�
File:	as.info,		Node:	MIPS	Small	Data,		Next:	MIPS	ISA,		Prev:	MIPS	Symbol	Sizes,
Up:	MIPS-Dependent

9.27.4	Controlling	the	use	of	small	data	accesses

It	often	takes	several	instructions	to	load	the	address	of	a	symbol.
For	example,	when	'addr'	is	a	32-bit	symbol,	the	non-PIC	expansion	of
'dla	$4,addr'	is	usually:

					lui					$4,%hi(addr)
					daddiu		$4,$4,%lo(addr)

			The	sequence	is	much	longer	when	'addr'	is	a	64-bit	symbol.		*Note
Directives	to	override	the	size	of	symbols:	MIPS	Symbol	Sizes.

			In	order	to	cut	down	on	this	overhead,	most	embedded	MIPS	systems	set
aside	a	64-kilobyte	"small	data"	area	and	guarantee	that	all	data	of
size	N	and	smaller	will	be	placed	in	that	area.		The	limit	N	is	passed
to	both	the	assembler	and	the	linker	using	the	command-line	option	'-G
N',	*note	Assembler	options:	MIPS	Options.		Note	that	the	same	value	of
N	must	be	used	when	linking	and	when	assembling	all	input	files	to	the
link;	any	inconsistency	could	cause	a	relocation	overflow	error.

			The	size	of	an	object	in	the	'.bss'	section	is	set	by	the	'.comm'	or
'.lcomm'	directive	that	defines	it.		The	size	of	an	external	object	may
be	set	with	the	'.extern'	directive.		For	example,	'.extern	sym,4'
declares	that	the	object	at	'sym'	is	4	bytes	in	length,	while	leaving
'sym'	otherwise	undefined.

3/25/20 as.info 250

			When	no	'-G'	option	is	given,	the	default	limit	is	8	bytes.		The
option	'-G	0'	prevents	any	data	from	being	automatically	classified	as
small.

			It	is	also	possible	to	mark	specific	objects	as	small	by	putting	them
in	the	special	sections	'.sdata'	and	'.sbss',	which	are	"small"
counterparts	of	'.data'	and	'.bss'	respectively.		The	toolchain	will
treat	such	data	as	small	regardless	of	the	'-G'	setting.

			On	startup,	systems	that	support	a	small	data	area	are	expected	to
initialize	register	'$28',	also	known	as	'$gp',	in	such	a	way	that	small
data	can	be	accessed	using	a	16-bit	offset	from	that	register.		For
example,	when	'addr'	is	small	data,	the	'dla	$4,addr'	instruction	above
is	equivalent	to:

					daddiu		$4,$28,%gp_rel(addr)

			Small	data	is	not	supported	for	SVR4-style	PIC.

�
File:	as.info,		Node:	MIPS	ISA,		Next:	MIPS	assembly	options,		Prev:	MIPS	Small	Data,
Up:	MIPS-Dependent

9.27.5	Directives	to	override	the	ISA	level

GNU	'as'	supports	an	additional	directive	to	change	the	MIPS	Instruction
Set	Architecture	level	on	the	fly:	'.set	mipsN'.		N	should	be	a	number
from	0	to	5,	or	32,	32r2,	32r3,	32r5,	32r6,	64,	64r2,	64r3,	64r5	or
64r6.		The	values	other	than	0	make	the	assembler	accept	instructions
for	the	corresponding	ISA	level,	from	that	point	on	in	the	assembly.
'.set	mipsN'	affects	not	only	which	instructions	are	permitted,	but	also
how	certain	macros	are	expanded.		'.set	mips0'	restores	the	ISA	level	to
its	original	level:	either	the	level	you	selected	with	command	line
options,	or	the	default	for	your	configuration.		You	can	use	this
feature	to	permit	specific	MIPS	III	instructions	while	assembling	in	32
bit	mode.		Use	this	directive	with	care!

			The	'.set	arch=CPU'	directive	provides	even	finer	control.		It
changes	the	effective	CPU	target	and	allows	the	assembler	to	use
instructions	specific	to	a	particular	CPU.	All	CPUs	supported	by	the
'-march'	command	line	option	are	also	selectable	by	this	directive.		The
original	value	is	restored	by	'.set	arch=default'.

			The	directive	'.set	mips16'	puts	the	assembler	into	MIPS	16	mode,	in
which	it	will	assemble	instructions	for	the	MIPS	16	processor.		Use
'.set	nomips16'	to	return	to	normal	32	bit	mode.

			Traditional	MIPS	assemblers	do	not	support	this	directive.

			The	directive	'.set	micromips'	puts	the	assembler	into	microMIPS
mode,	in	which	it	will	assemble	instructions	for	the	microMIPS
processor.		Use	'.set	nomicromips'	to	return	to	normal	32	bit	mode.

			Traditional	MIPS	assemblers	do	not	support	this	directive.

�
File:	as.info,		Node:	MIPS	assembly	options,		Next:	MIPS	autoextend,		Prev:	MIPS	ISA,
Up:	MIPS-Dependent

3/25/20 as.info 251

File:	as.info,		Node:	MIPS	assembly	options,		Next:	MIPS	autoextend,		Prev:	MIPS	ISA,
Up:	MIPS-Dependent

9.27.6	Directives	to	control	code	generation
--

The	'.module'	directive	allows	command	line	options	to	be	set	directly
from	assembly.		The	format	of	the	directive	matches	the	'.set'	directive
but	only	those	options	which	are	relevant	to	a	whole	module	are
supported.		The	effect	of	a	'.module'	directive	is	the	same	as	the
corresponding	command	line	option.		Where	'.set'	directives	support
returning	to	a	default	then	the	'.module'	directives	do	not	as	they
define	the	defaults.

			These	module-level	directives	must	appear	first	in	assembly.

			Traditional	MIPS	assemblers	do	not	support	this	directive.

			The	directive	'.set	insn32'	makes	the	assembler	only	use	32-bit
instruction	encodings	when	generating	code	for	the	microMIPS	processor.
This	directive	inhibits	the	use	of	any	16-bit	instructions	from	that
point	on	in	the	assembly.		The	'.set	noinsn32'	directive	allows	16-bit
instructions	to	be	accepted.

			Traditional	MIPS	assemblers	do	not	support	this	directive.

�
File:	as.info,		Node:	MIPS	autoextend,		Next:	MIPS	insn,		Prev:	MIPS	assembly
options,		Up:	MIPS-Dependent

9.27.7	Directives	for	extending	MIPS	16	bit	instructions
--

By	default,	MIPS	16	instructions	are	automatically	extended	to	32	bits
when	necessary.		The	directive	'.set	noautoextend'	will	turn	this	off.
When	'.set	noautoextend'	is	in	effect,	any	32	bit	instruction	must	be
explicitly	extended	with	the	'.e'	modifier	(e.g.,	'li.e	$4,1000').		The
directive	'.set	autoextend'	may	be	used	to	once	again	automatically
extend	instructions	when	necessary.

			This	directive	is	only	meaningful	when	in	MIPS	16	mode.		Traditional
MIPS	assemblers	do	not	support	this	directive.

�
File:	as.info,		Node:	MIPS	insn,		Next:	MIPS	FP	ABIs,		Prev:	MIPS	autoextend,		Up:
MIPS-Dependent

9.27.8	Directive	to	mark	data	as	an	instruction

The	'.insn'	directive	tells	'as'	that	the	following	data	is	actually
instructions.		This	makes	a	difference	in	MIPS	16	and	microMIPS	modes:
when	loading	the	address	of	a	label	which	precedes	instructions,	'as'
automatically	adds	1	to	the	value,	so	that	jumping	to	the	loaded	address
will	do	the	right	thing.

			The	'.global'	and	'.globl'	directives	supported	by	'as'	will	by
default	mark	the	symbol	as	pointing	to	a	region	of	data	not	code.		This
means	that,	for	example,	any	instructions	following	such	a	symbol	will

3/25/20 as.info 252

not	be	disassembled	by	'objdump'	as	it	will	regard	them	as	data.		To
change	this	behavior	an	optional	section	name	can	be	placed	after	the
symbol	name	in	the	'.global'	directive.		If	this	section	exists	and	is
known	to	be	a	code	section,	then	the	symbol	will	be	marked	as	pointing
at	code	not	data.		Ie	the	syntax	for	the	directive	is:

			'.global	SYMBOL[SECTION][,	SYMBOL[SECTION]]	...',

			Here	is	a	short	example:

													.global	foo	.text,	bar,	baz	.data
					foo:
													nop
					bar:
													.word	0x0
					baz:
													.word	0x1

�
File:	as.info,		Node:	MIPS	FP	ABIs,		Next:	MIPS	NaN	Encodings,		Prev:	MIPS	insn,		Up:
MIPS-Dependent

9.27.9	Directives	to	control	the	FP	ABI

*	Menu:

*	MIPS	FP	ABI	History::																History	of	FP	ABIs
*	MIPS	FP	ABI	Variants::															Supported	FP	ABIs
*	MIPS	FP	ABI	Selection::														Automatic	selection	of	FP	ABI
*	MIPS	FP	ABI	Compatibility::										Linking	different	FP	ABI	variants

�
File:	as.info,		Node:	MIPS	FP	ABI	History,		Next:	MIPS	FP	ABI	Variants,		Up:	MIPS	FP
ABIs

9.27.9.1	History	of	FP	ABIs
...........................

The	MIPS	ABIs	support	a	variety	of	different	floating-point	extensions
where	calling-convention	and	register	sizes	vary	for	floating-point
data.		The	extensions	exist	to	support	a	wide	variety	of	optional
architecture	features.		The	resulting	ABI	variants	are	generally
incompatible	with	each	other	and	must	be	tracked	carefully.

			Traditionally	the	use	of	an	explicit	'.gnu_attribute	4,	N'	directive
is	used	to	indicate	which	ABI	is	in	use	by	a	specific	module.		It	was
then	left	to	the	user	to	ensure	that	command	line	options	and	the
selected	ABI	were	compatible	with	some	potential	for	inconsistencies.

�
File:	as.info,		Node:	MIPS	FP	ABI	Variants,		Next:	MIPS	FP	ABI	Selection,		Prev:	MIPS
FP	ABI	History,		Up:	MIPS	FP	ABIs

9.27.9.2	Supported	FP	ABIs
..........................

The	supported	floating-point	ABI	variants	are:

3/25/20 as.info 253

'0	-	No	floating-point'
					This	variant	is	used	to	indicate	that	floating-point	is	not	used
					within	the	module	at	all	and	therefore	has	no	impact	on	the	ABI.
					This	is	the	default.

'1	-	Double-precision'
					This	variant	indicates	that	double-precision	support	is	used.		For
					64-bit	ABIs	this	means	that	64-bit	wide	floating-point	registers
					are	required.		For	32-bit	ABIs	this	means	that	32-bit	wide
					floating-point	registers	are	required	and	double-precision
					operations	use	pairs	of	registers.

'2	-	Single-precision'
					This	variant	indicates	that	single-precision	support	is	used.
					Double	precision	operations	will	be	supported	via	soft-float
					routines.

'3	-	Soft-float'
					This	variant	indicates	that	although	floating-point	support	is	used
					all	operations	are	emulated	in	software.		This	means	the	ABI	is
					modified	to	pass	all	floating-point	data	in	general-purpose
					registers.

'4	-	Deprecated'
					This	variant	existed	as	an	initial	attempt	at	supporting	64-bit
					wide	floating-point	registers	for	O32	ABI	on	a	MIPS32r2	CPU.	This
					has	been	superseded	by	5,	6	and	7.

'5	-	Double-precision	32-bit	CPU,	32-bit	or	64-bit	FPU'
					This	variant	is	used	by	32-bit	ABIs	to	indicate	that	the
					floating-point	code	in	the	module	has	been	designed	to	operate
					correctly	with	either	32-bit	wide	or	64-bit	wide	floating-point
					registers.		Double-precision	support	is	used.		Only	O32	currently
					supports	this	variant	and	requires	a	minimum	architecture	of	MIPS
					II.

'6	-	Double-precision	32-bit	FPU,	64-bit	FPU'
					This	variant	is	used	by	32-bit	ABIs	to	indicate	that	the
					floating-point	code	in	the	module	requires	64-bit	wide
					floating-point	registers.		Double-precision	support	is	used.		Only
					O32	currently	supports	this	variant	and	requires	a	minimum
					architecture	of	MIPS32r2.

'7	-	Double-precision	compat	32-bit	FPU,	64-bit	FPU'
					This	variant	is	used	by	32-bit	ABIs	to	indicate	that	the
					floating-point	code	in	the	module	requires	64-bit	wide
					floating-point	registers.		Double-precision	support	is	used.		This
					differs	from	the	previous	ABI	as	it	restricts	use	of	odd-numbered
					single-precision	registers.		Only	O32	currently	supports	this
					variant	and	requires	a	minimum	architecture	of	MIPS32r2.

�
File:	as.info,		Node:	MIPS	FP	ABI	Selection,		Next:	MIPS	FP	ABI	Compatibility,		Prev:
MIPS	FP	ABI	Variants,		Up:	MIPS	FP	ABIs

9.27.9.3	Automatic	selection	of	FP	ABI
......................................

3/25/20 as.info 254

In	order	to	simplify	and	add	safety	to	the	process	of	selecting	the
correct	floating-point	ABI,	the	assembler	will	automatically	infer	the
correct	'.gnu_attribute	4,	N'	directive	based	on	command	line	options
and	'.module'	overrides.		Where	an	explicit	'.gnu_attribute	4,	N'
directive	has	been	seen	then	a	warning	will	be	raised	if	it	does	not
match	an	inferred	setting.

			The	floating-point	ABI	is	inferred	as	follows.		If	'-msoft-float'	has
been	used	the	module	will	be	marked	as	soft-float.		If	'-msingle-float'
has	been	used	then	the	module	will	be	marked	as	single-precision.		The
remaining	ABIs	are	then	selected	based	on	the	FP	register	width.
Double-precision	is	selected	if	the	width	of	GP	and	FP	registers	match
and	the	special	double-precision	variants	for	32-bit	ABIs	are	then
selected	depending	on	'-mfpxx',	'-mfp64'	and	'-mno-odd-spreg'.

�
File:	as.info,		Node:	MIPS	FP	ABI	Compatibility,		Prev:	MIPS	FP	ABI	Selection,		Up:
MIPS	FP	ABIs

9.27.9.4	Linking	different	FP	ABI	variants
..

Modules	using	the	default	FP	ABI	(no	floating-point)	can	be	linked	with
any	other	(singular)	FP	ABI	variant.

			Special	compatibility	support	exists	for	O32	with	the	four
double-precision	FP	ABI	variants.		The	'-mfpxx'	FP	ABI	is	specifically
designed	to	be	compatible	with	the	standard	double-precision	ABI	and	the
'-mfp64'	FP	ABIs.		This	makes	it	desirable	for	O32	modules	to	be	built
as	'-mfpxx'	to	ensure	the	maximum	compatibility	with	other	modules
produced	for	more	specific	needs.		The	only	FP	ABIs	which	cannot	be
linked	together	are	the	standard	double-precision	ABI	and	the	full
'-mfp64'	ABI	with	'-modd-spreg'.

�
File:	as.info,		Node:	MIPS	NaN	Encodings,		Next:	MIPS	Option	Stack,		Prev:	MIPS	FP
ABIs,		Up:	MIPS-Dependent

9.27.10	Directives	to	record	which	NaN	encoding	is	being	used

The	IEEE	754	floating-point	standard	defines	two	types	of	not-a-number
(NaN)	data:	"signalling"	NaNs	and	"quiet"	NaNs.		The	original	version	of
the	standard	did	not	specify	how	these	two	types	should	be
distinguished.		Most	implementations	followed	the	i387	model,	in	which
the	first	bit	of	the	significand	is	set	for	quiet	NaNs	and	clear	for
signalling	NaNs.		However,	the	original	MIPS	implementation	assigned	the
opposite	meaning	to	the	bit,	so	that	it	was	set	for	signalling	NaNs	and
clear	for	quiet	NaNs.

			The	2008	revision	of	the	standard	formally	suggested	the	i387	choice
and	as	from	Sep	2012	the	current	release	of	the	MIPS	architecture
therefore	optionally	supports	that	form.		Code	that	uses	one	NaN
encoding	would	usually	be	incompatible	with	code	that	uses	the	other	NaN
encoding,	so	MIPS	ELF	objects	have	a	flag	('EF_MIPS_NAN2008')	to	record
which	encoding	is	being	used.

			Assembly	files	can	use	the	'.nan'	directive	to	select	between	the	two
encodings.		'.nan	2008'	says	that	the	assembly	file	uses	the	IEEE

3/25/20 as.info 255

754-2008	encoding	while	'.nan	legacy'	says	that	the	file	uses	the
original	MIPS	encoding.		If	several	'.nan'	directives	are	given,	the
final	setting	is	the	one	that	is	used.

			The	command-line	options	'-mnan=legacy'	and	'-mnan=2008'	can	be	used
instead	of	'.nan	legacy'	and	'.nan	2008'	respectively.		However,	any
'.nan'	directive	overrides	the	command-line	setting.

			'.nan	legacy'	is	the	default	if	no	'.nan'	directive	or	'-mnan'	option
is	given.

			Note	that	GNU	'as'	does	not	produce	NaNs	itself	and	therefore	these
directives	do	not	affect	code	generation.		They	simply	control	the
setting	of	the	'EF_MIPS_NAN2008'	flag.

			Traditional	MIPS	assemblers	do	not	support	these	directives.

�
File:	as.info,		Node:	MIPS	Option	Stack,		Next:	MIPS	ASE	Instruction	Generation
Overrides,		Prev:	MIPS	NaN	Encodings,		Up:	MIPS-Dependent

9.27.11	Directives	to	save	and	restore	options
--

The	directives	'.set	push'	and	'.set	pop'	may	be	used	to	save	and
restore	the	current	settings	for	all	the	options	which	are	controlled	by
'.set'.		The	'.set	push'	directive	saves	the	current	settings	on	a
stack.		The	'.set	pop'	directive	pops	the	stack	and	restores	the
settings.

			These	directives	can	be	useful	inside	an	macro	which	must	change	an
option	such	as	the	ISA	level	or	instruction	reordering	but	does	not	want
to	change	the	state	of	the	code	which	invoked	the	macro.

			Traditional	MIPS	assemblers	do	not	support	these	directives.

�
File:	as.info,		Node:	MIPS	ASE	Instruction	Generation	Overrides,		Next:	MIPS
Floating-Point,		Prev:	MIPS	Option	Stack,		Up:	MIPS-Dependent

9.27.12	Directives	to	control	generation	of	MIPS	ASE	instructions

The	directive	'.set	mips3d'	makes	the	assembler	accept	instructions	from
the	MIPS-3D	Application	Specific	Extension	from	that	point	on	in	the
assembly.		The	'.set	nomips3d'	directive	prevents	MIPS-3D	instructions
from	being	accepted.

			The	directive	'.set	smartmips'	makes	the	assembler	accept
instructions	from	the	SmartMIPS	Application	Specific	Extension	to	the
MIPS32	ISA	from	that	point	on	in	the	assembly.		The	'.set	nosmartmips'
directive	prevents	SmartMIPS	instructions	from	being	accepted.

			The	directive	'.set	mdmx'	makes	the	assembler	accept	instructions
from	the	MDMX	Application	Specific	Extension	from	that	point	on	in	the
assembly.		The	'.set	nomdmx'	directive	prevents	MDMX	instructions	from
being	accepted.

			The	directive	'.set	dsp'	makes	the	assembler	accept	instructions	from

3/25/20 as.info 256

the	DSP	Release	1	Application	Specific	Extension	from	that	point	on	in
the	assembly.		The	'.set	nodsp'	directive	prevents	DSP	Release	1
instructions	from	being	accepted.

			The	directive	'.set	dspr2'	makes	the	assembler	accept	instructions
from	the	DSP	Release	2	Application	Specific	Extension	from	that	point	on
in	the	assembly.		This	directive	implies	'.set	dsp'.		The	'.set	nodspr2'
directive	prevents	DSP	Release	2	instructions	from	being	accepted.

			The	directive	'.set	dspr3'	makes	the	assembler	accept	instructions
from	the	DSP	Release	3	Application	Specific	Extension	from	that	point	on
in	the	assembly.		This	directive	implies	'.set	dsp'	and	'.set	dspr2'.
The	'.set	nodspr3'	directive	prevents	DSP	Release	3	instructions	from
being	accepted.

			The	directive	'.set	mt'	makes	the	assembler	accept	instructions	from
the	MT	Application	Specific	Extension	from	that	point	on	in	the
assembly.		The	'.set	nomt'	directive	prevents	MT	instructions	from	being
accepted.

			The	directive	'.set	mcu'	makes	the	assembler	accept	instructions	from
the	MCU	Application	Specific	Extension	from	that	point	on	in	the
assembly.		The	'.set	nomcu'	directive	prevents	MCU	instructions	from
being	accepted.

			The	directive	'.set	msa'	makes	the	assembler	accept	instructions	from
the	MIPS	SIMD	Architecture	Extension	from	that	point	on	in	the	assembly.
The	'.set	nomsa'	directive	prevents	MSA	instructions	from	being
accepted.

			The	directive	'.set	virt'	makes	the	assembler	accept	instructions
from	the	Virtualization	Application	Specific	Extension	from	that	point
on	in	the	assembly.		The	'.set	novirt'	directive	prevents	Virtualization
instructions	from	being	accepted.

			The	directive	'.set	xpa'	makes	the	assembler	accept	instructions	from
the	XPA	Extension	from	that	point	on	in	the	assembly.		The	'.set	noxpa'
directive	prevents	XPA	instructions	from	being	accepted.

			Traditional	MIPS	assemblers	do	not	support	these	directives.

�
File:	as.info,		Node:	MIPS	Floating-Point,		Next:	MIPS	Syntax,		Prev:	MIPS	ASE
Instruction	Generation	Overrides,		Up:	MIPS-Dependent

9.27.13	Directives	to	override	floating-point	options

The	directives	'.set	softfloat'	and	'.set	hardfloat'	provide	finer
control	of	disabling	and	enabling	float-point	instructions.		These
directives	always	override	the	default	(that	hard-float	instructions	are
accepted)	or	the	command-line	options	('-msoft-float'	and
'-mhard-float').

			The	directives	'.set	singlefloat'	and	'.set	doublefloat'	provide
finer	control	of	disabling	and	enabling	double-precision	float-point
operations.		These	directives	always	override	the	default	(that
double-precision	operations	are	accepted)	or	the	command-line	options
('-msingle-float'	and	'-mdouble-float').

3/25/20 as.info 257

			Traditional	MIPS	assemblers	do	not	support	these	directives.

�
File:	as.info,		Node:	MIPS	Syntax,		Prev:	MIPS	Floating-Point,		Up:	MIPS-Dependent

9.27.14	Syntactical	considerations	for	the	MIPS	assembler

*	Menu:

*	MIPS-Chars::																Special	Characters

�
File:	as.info,		Node:	MIPS-Chars,		Up:	MIPS	Syntax

9.27.14.1	Special	Characters
............................

The	presence	of	a	'#'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.

			If	a	'#'	appears	as	the	first	character	of	a	line,	the	whole	line	is
treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	MMIX-Dependent,		Next:	MSP430-Dependent,		Prev:	MIPS-Dependent,
Up:	Machine	Dependencies

9.28	MMIX	Dependent	Features
============================

*	Menu:

*	MMIX-Opts::														Command-line	Options
*	MMIX-Expand::												Instruction	expansion
*	MMIX-Syntax::												Syntax
*	MMIX-mmixal:: 			Differences	to	'mmixal'	syntax	and	semantics

�
File:	as.info,		Node:	MMIX-Opts,		Next:	MMIX-Expand,		Up:	MMIX-Dependent

9.28.1	Command-line	Options

The	MMIX	version	of	'as'	has	some	machine-dependent	options.

			When	'--fixed-special-register-names'	is	specified,	only	the	register
names	specified	in	*note	MMIX-Regs::	are	recognized	in	the	instructions
'PUT'	and	'GET'.

			You	can	use	the	'--globalize-symbols'	to	make	all	symbols	global.
This	option	is	useful	when	splitting	up	a	'mmixal'	program	into	several
files.

3/25/20 as.info 258

			The	'--gnu-syntax'	turns	off	most	syntax	compatibility	with	'mmixal'.
Its	usability	is	currently	doubtful.

			The	'--relax'	option	is	not	fully	supported,	but	will	eventually	make
the	object	file	prepared	for	linker	relaxation.

			If	you	want	to	avoid	inadvertently	calling	a	predefined	symbol	and
would	rather	get	an	error,	for	example	when	using	'as'	with	a	compiler
or	other	machine-generated	code,	specify	'--no-predefined-syms'.		This
turns	off	built-in	predefined	definitions	of	all	such	symbols,	including
rounding-mode	symbols,	segment	symbols,	'BIT'	symbols,	and	'TRAP'
symbols	used	in	'mmix'	"system	calls".		It	also	turns	off	predefined
special-register	names,	except	when	used	in	'PUT'	and	'GET'
instructions.

			By	default,	some	instructions	are	expanded	to	fit	the	size	of	the
operand	or	an	external	symbol	(*note	MMIX-Expand::).		By	passing
'--no-expand',	no	such	expansion	will	be	done,	instead	causing	errors	at
link	time	if	the	operand	does	not	fit.

			The	'mmixal'	documentation	(*note	mmixsite::)	specifies	that	global
registers	allocated	with	the	'GREG'	directive	(*note	MMIX-greg::)	and
initialized	to	the	same	non-zero	value,	will	refer	to	the	same	global
register.		This	isn't	strictly	enforceable	in	'as'	since	the	final
addresses	aren't	known	until	link-time,	but	it	will	do	an	effort	unless
the	'--no-merge-gregs'	option	is	specified.		(Register	merging	isn't	yet
implemented	in	'ld'.)

			'as'	will	warn	every	time	it	expands	an	instruction	to	fit	an	operand
unless	the	option	'-x'	is	specified.		It	is	believed	that	this	behaviour
is	more	useful	than	just	mimicking	'mmixal''s	behaviour,	in	which
instructions	are	only	expanded	if	the	'-x'	option	is	specified,	and
assembly	fails	otherwise,	when	an	instruction	needs	to	be	expanded.		It
needs	to	be	kept	in	mind	that	'mmixal'	is	both	an	assembler	and	linker,
while	'as'	will	expand	instructions	that	at	link	stage	can	be
contracted.		(Though	linker	relaxation	isn't	yet	implemented	in	'ld'.)
The	option	'-x'	also	imples	'--linker-allocated-gregs'.

			If	instruction	expansion	is	enabled,	'as'	can	expand	a	'PUSHJ'
instruction	into	a	series	of	instructions.		The	shortest	expansion	is	to
not	expand	it,	but	just	mark	the	call	as	redirectable	to	a	stub,	which
'ld'	creates	at	link-time,	but	only	if	the	original	'PUSHJ'	instruction
is	found	not	to	reach	the	target.		The	stub	consists	of	the	necessary
instructions	to	form	a	jump	to	the	target.		This	happens	if	'as'	can
assert	that	the	'PUSHJ'	instruction	can	reach	such	a	stub.		The	option
'--no-pushj-stubs'	disables	this	shorter	expansion,	and	the	longer
series	of	instructions	is	then	created	at	assembly-time.		The	option
'--no-stubs'	is	a	synonym,	intended	for	compatibility	with	future
releases,	where	generation	of	stubs	for	other	instructions	may	be
implemented.

			Usually	a	two-operand-expression	(*note	GREG-base::)	without	a
matching	'GREG'	directive	is	treated	as	an	error	by	'as'.		When	the
option	'--linker-allocated-gregs'	is	in	effect,	they	are	instead	passed
through	to	the	linker,	which	will	allocate	as	many	global	registers	as
is	needed.

�

3/25/20 as.info 259

File:	as.info,		Node:	MMIX-Expand,		Next:	MMIX-Syntax,		Prev:	MMIX-Opts,		Up:	MMIX-
Dependent

9.28.2	Instruction	expansion

When	'as'	encounters	an	instruction	with	an	operand	that	is	either	not
known	or	does	not	fit	the	operand	size	of	the	instruction,	'as'	(and
'ld')	will	expand	the	instruction	into	a	sequence	of	instructions
semantically	equivalent	to	the	operand	fitting	the	instruction.
Expansion	will	take	place	for	the	following	instructions:

'GETA'
					Expands	to	a	sequence	of	four	instructions:	'SETL',	'INCML',
					'INCMH'	and	'INCH'.		The	operand	must	be	a	multiple	of	four.
Conditional	branches
					A	branch	instruction	is	turned	into	a	branch	with	the	complemented
					condition	and	prediction	bit	over	five	instructions;	four
					instructions	setting	'$255'	to	the	operand	value,	which	like	with
					'GETA'	must	be	a	multiple	of	four,	and	a	final	'GO	$255,$255,0'.
'PUSHJ'
					Similar	to	expansion	for	conditional	branches;	four	instructions
					set	'$255'	to	the	operand	value,	followed	by	a	'PUSHGO
					$255,$255,0'.
'JMP'
					Similar	to	conditional	branches	and	'PUSHJ'.		The	final	instruction
					is	'GO	$255,$255,0'.

			The	linker	'ld'	is	expected	to	shrink	these	expansions	for	code
assembled	with	'--relax'	(though	not	currently	implemented).

�
File:	as.info,		Node:	MMIX-Syntax,		Next:	MMIX-mmixal,		Prev:	MMIX-Expand,		Up:	MMIX-
Dependent

9.28.3	Syntax

The	assembly	syntax	is	supposed	to	be	upward	compatible	with	that
described	in	Sections	1.3	and	1.4	of	'The	Art	of	Computer	Programming,
Volume	1'.		Draft	versions	of	those	chapters	as	well	as	other	MMIX
information	is	located	at
<http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html>.		Most	code
examples	from	the	mmixal	package	located	there	should	work	unmodified
when	assembled	and	linked	as	single	files,	with	a	few	noteworthy
exceptions	(*note	MMIX-mmixal::).

			Before	an	instruction	is	emitted,	the	current	location	is	aligned	to
the	next	four-byte	boundary.		If	a	label	is	defined	at	the	beginning	of
the	line,	its	value	will	be	the	aligned	value.

			In	addition	to	the	traditional	hex-prefix	'0x',	a	hexadecimal	number
can	also	be	specified	by	the	prefix	character	'#'.

			After	all	operands	to	an	MMIX	instruction	or	directive	have	been
specified,	the	rest	of	the	line	is	ignored,	treated	as	a	comment.

*	Menu:

3/25/20 as.info 260

*	MMIX-Chars:: 								Special	Characters
*	MMIX-Symbols:: Symbols
*	MMIX-Regs:: Register	Names
*	MMIX-Pseudos:: Assembler	Directives

�
File:	as.info,		Node:	MMIX-Chars,		Next:	MMIX-Symbols,		Up:	MMIX-Syntax

9.28.3.1	Special	Characters
...........................

The	characters	'*'	and	'#'	are	line	comment	characters;	each	start	a
comment	at	the	beginning	of	a	line,	but	only	at	the	beginning	of	a	line.
A	'#'	prefixes	a	hexadecimal	number	if	found	elsewhere	on	a	line.		If	a
'#'	appears	at	the	start	of	a	line	the	whole	line	is	treated	as	a
comment,	but	the	line	can	also	act	as	a	logical	line	number	directive
(*note	Comments::)	or	a	preprocessor	control	command	(*note
Preprocessing::).

			Two	other	characters,	'%'	and	'!',	each	start	a	comment	anywhere	on
the	line.		Thus	you	can't	use	the	'modulus'	and	'not'	operators	in
expressions	normally	associated	with	these	two	characters.

			A	';'	is	a	line	separator,	treated	as	a	new-line,	so	separate
instructions	can	be	specified	on	a	single	line.

�
File:	as.info,		Node:	MMIX-Symbols,		Next:	MMIX-Regs,		Prev:	MMIX-Chars,		Up:	MMIX-
Syntax

9.28.3.2	Symbols
................

The	character	':'	is	permitted	in	identifiers.		There	are	two	exceptions
to	it	being	treated	as	any	other	symbol	character:	if	a	symbol	begins
with	':',	it	means	that	the	symbol	is	in	the	global	namespace	and	that
the	current	prefix	should	not	be	prepended	to	that	symbol	(*note
MMIX-prefix::).		The	':'	is	then	not	considered	part	of	the	symbol.		For
a	symbol	in	the	label	position	(first	on	a	line),	a	':'	at	the	end	of	a
symbol	is	silently	stripped	off.		A	label	is	permitted,	but	not
required,	to	be	followed	by	a	':',	as	with	many	other	assembly	formats.

			The	character	'@'	in	an	expression,	is	a	synonym	for	'.',	the	current
location.

			In	addition	to	the	common	forward	and	backward	local	symbol	formats
(*note	Symbol	Names::),	they	can	be	specified	with	upper-case	'B'	and
'F',	as	in	'8B'	and	'9F'.		A	local	label	defined	for	the	current
position	is	written	with	a	'H'	appended	to	the	number:
					3H	LDB	$0,$1,2
			This	and	traditional	local-label	formats	cannot	be	mixed:	a	label
must	be	defined	and	referred	to	using	the	same	format.

			There's	a	minor	caveat:	just	as	for	the	ordinary	local	symbols,	the
local	symbols	are	translated	into	ordinary	symbols	using	control
characters	are	to	hide	the	ordinal	number	of	the	symbol.		Unfortunately,
these	symbols	are	not	translated	back	in	error	messages.		Thus	you	may
see	confusing	error	messages	when	local	symbols	are	used.		Control
characters	'\003'	(control-C)	and	'\004'	(control-D)	are	used	for	the

3/25/20 as.info 261

MMIX-specific	local-symbol	syntax.

			The	symbol	'Main'	is	handled	specially;	it	is	always	global.

			By	defining	the	symbols	'__.MMIX.start..text'	and
'__.MMIX.start..data',	the	address	of	respectively	the	'.text'	and
'.data'	segments	of	the	final	program	can	be	defined,	though	when
linking	more	than	one	object	file,	the	code	or	data	in	the	object	file
containing	the	symbol	is	not	guaranteed	to	be	start	at	that	position;
just	the	final	executable.		*Note	MMIX-loc::.

�
File:	as.info,		Node:	MMIX-Regs,		Next:	MMIX-Pseudos,		Prev:	MMIX-Symbols,		Up:	MMIX-
Syntax

9.28.3.3	Register	names
.......................

Local	and	global	registers	are	specified	as	'$0'	to	'$255'.		The
recognized	special	register	names	are	'rJ',	'rA',	'rB',	'rC',	'rD',
'rE',	'rF',	'rG',	'rH',	'rI',	'rK',	'rL',	'rM',	'rN',	'rO',	'rP',	'rQ',
'rR',	'rS',	'rT',	'rU',	'rV',	'rW',	'rX',	'rY',	'rZ',	'rBB',	'rTT',
'rWW',	'rXX',	'rYY'	and	'rZZ'.		A	leading	':'	is	optional	for	special
register	names.

			Local	and	global	symbols	can	be	equated	to	register	names	and	used	in
place	of	ordinary	registers.

			Similarly	for	special	registers,	local	and	global	symbols	can	be
used.		Also,	symbols	equated	from	numbers	and	constant	expressions	are
allowed	in	place	of	a	special	register,	except	when	either	of	the
options	'--no-predefined-syms'	and	'--fixed-special-register-names'	are
specified.		Then	only	the	special	register	names	above	are	allowed	for
the	instructions	having	a	special	register	operand;	'GET'	and	'PUT'.

�
File:	as.info,		Node:	MMIX-Pseudos,		Prev:	MMIX-Regs,		Up:	MMIX-Syntax

9.28.3.4	Assembler	Directives
.............................

'LOC'

					The	'LOC'	directive	sets	the	current	location	to	the	value	of	the
					operand	field,	which	may	include	changing	sections.		If	the	operand
					is	a	constant,	the	section	is	set	to	either	'.data'	if	the	value	is
					'0x2000000000000000'	or	larger,	else	it	is	set	to	'.text'.		Within
					a	section,	the	current	location	may	only	be	changed	to
					monotonically	higher	addresses.		A	LOC	expression	must	be	a
					previously	defined	symbol	or	a	"pure"	constant.

					An	example,	which	sets	the	label	PREV	to	the	current	location,	and
					updates	the	current	location	to	eight	bytes	forward:
										prev	LOC	@+8

					When	a	LOC	has	a	constant	as	its	operand,	a	symbol
					'__.MMIX.start..text'	or	'__.MMIX.start..data'	is	defined	depending
					on	the	address	as	mentioned	above.		Each	such	symbol	is	interpreted
					as	special	by	the	linker,	locating	the	section	at	that	address.

3/25/20 as.info 262

					Note	that	if	multiple	files	are	linked,	the	first	object	file	with
					that	section	will	be	mapped	to	that	address	(not	necessarily	the
					file	with	the	LOC	definition).

'LOCAL'

					Example:
											LOCAL	external_symbol
											LOCAL	42
											.local	asymbol

					This	directive-operation	generates	a	link-time	assertion	that	the
					operand	does	not	correspond	to	a	global	register.		The	operand	is
					an	expression	that	at	link-time	resolves	to	a	register	symbol	or	a
					number.		A	number	is	treated	as	the	register	having	that	number.
					There	is	one	restriction	on	the	use	of	this	directive:	the
					pseudo-directive	must	be	placed	in	a	section	with	contents,	code	or
					data.

'IS'

					The	'IS'	directive:
										asymbol	IS	an_expression
					sets	the	symbol	'asymbol'	to	'an_expression'.		A	symbol	may	not	be
					set	more	than	once	using	this	directive.		Local	labels	may	be	set
					using	this	directive,	for	example:
										5H	IS	@+4

'GREG'

					This	directive	reserves	a	global	register,	gives	it	an	initial
					value	and	optionally	gives	it	a	symbolic	name.		Some	examples:

										areg	GREG
										breg	GREG	data_value
															GREG	data_buffer
															.greg	creg,	another_data_value

					The	symbolic	register	name	can	be	used	in	place	of	a	(non-special)
					register.		If	a	value	isn't	provided,	it	defaults	to	zero.		Unless
					the	option	'--no-merge-gregs'	is	specified,	non-zero	registers
					allocated	with	this	directive	may	be	eliminated	by	'as';	another
					register	with	the	same	value	used	in	its	place.		Any	of	the
					instructions	'CSWAP',	'GO',	'LDA',	'LDBU',	'LDB',	'LDHT',	'LDOU',
					'LDO',	'LDSF',	'LDTU',	'LDT',	'LDUNC',	'LDVTS',	'LDWU',	'LDW',
					'PREGO',	'PRELD',	'PREST',	'PUSHGO',	'STBU',	'STB',	'STCO',	'STHT',
					'STOU',	'STSF',	'STTU',	'STT',	'STUNC',	'SYNCD',	'SYNCID',	can	have
					a	value	nearby	an	initial	value	in	place	of	its	second	and	third
					operands.		Here,	"nearby"	is	defined	as	within	the	range	0...255
					from	the	initial	value	of	such	an	allocated	register.

										buffer1	BYTE	0,0,0,0,0
										buffer2	BYTE	0,0,0,0,0
											...
											GREG	buffer1
											LDOU	$42,buffer2
					In	the	example	above,	the	'Y'	field	of	the	'LDOUI'	instruction
					(LDOU	with	a	constant	Z)	will	be	replaced	with	the	global	register
					allocated	for	'buffer1',	and	the	'Z'	field	will	have	the	value	5,

3/25/20 as.info 263

					the	offset	from	'buffer1'	to	'buffer2'.		The	result	is	equivalent
					to	this	code:
										buffer1	BYTE	0,0,0,0,0
										buffer2	BYTE	0,0,0,0,0
											...
										tmpreg	GREG	buffer1
											LDOU	$42,tmpreg,(buffer2-buffer1)

					Global	registers	allocated	with	this	directive	are	allocated	in
					order	higher-to-lower	within	a	file.		Other	than	that,	the	exact
					order	of	register	allocation	and	elimination	is	undefined.		For
					example,	the	order	is	undefined	when	more	than	one	file	with	such
					directives	are	linked	together.		With	the	options	'-x'	and
					'--linker-allocated-gregs',	'GREG'	directives	for	two-operand	cases
					like	the	one	mentioned	above	can	be	omitted.		Sufficient	global
					registers	will	then	be	allocated	by	the	linker.

'BYTE'

					The	'BYTE'	directive	takes	a	series	of	operands	separated	by	a
					comma.		If	an	operand	is	a	string	(*note	Strings::),	each	character
					of	that	string	is	emitted	as	a	byte.		Other	operands	must	be
					constant	expressions	without	forward	references,	in	the	range
					0...255.		If	you	need	operands	having	expressions	with	forward
					references,	use	'.byte'	(*note	Byte::).		An	operand	can	be	omitted,
					defaulting	to	a	zero	value.

'WYDE'
'TETRA'
'OCTA'

					The	directives	'WYDE',	'TETRA'	and	'OCTA'	emit	constants	of	two,
					four	and	eight	bytes	size	respectively.		Before	anything	else
					happens	for	the	directive,	the	current	location	is	aligned	to	the
					respective	constant-size	boundary.		If	a	label	is	defined	at	the
					beginning	of	the	line,	its	value	will	be	that	after	the	alignment.
					A	single	operand	can	be	omitted,	defaulting	to	a	zero	value	emitted
					for	the	directive.		Operands	can	be	expressed	as	strings	(*note
					Strings::),	in	which	case	each	character	in	the	string	is	emitted
					as	a	separate	constant	of	the	size	indicated	by	the	directive.

'PREFIX'

					The	'PREFIX'	directive	sets	a	symbol	name	prefix	to	be	prepended	to
					all	symbols	(except	local	symbols,	*note	MMIX-Symbols::),	that	are
					not	prefixed	with	':',	until	the	next	'PREFIX'	directive.		Such
					prefixes	accumulate.		For	example,
											PREFIX	a
											PREFIX	b
										c	IS	0
					defines	a	symbol	'abc'	with	the	value	0.

'BSPEC'
'ESPEC'

					A	pair	of	'BSPEC'	and	'ESPEC'	directives	delimit	a	section	of
					special	contents	(without	specified	semantics).		Example:
											BSPEC	42
											TETRA	1,2,3

3/25/20 as.info 264

											ESPEC
					The	single	operand	to	'BSPEC'	must	be	number	in	the	range	0...255.
					The	'BSPEC'	number	80	is	used	by	the	GNU	binutils	implementation.

�
File:	as.info,		Node:	MMIX-mmixal,		Prev:	MMIX-Syntax,		Up:	MMIX-Dependent

9.28.4	Differences	to	'mmixal'

The	binutils	'as'	and	'ld'	combination	has	a	few	differences	in	function
compared	to	'mmixal'	(*note	mmixsite::).

			The	replacement	of	a	symbol	with	a	GREG-allocated	register	(*note
GREG-base::)	is	not	handled	the	exactly	same	way	in	'as'	as	in	'mmixal'.
This	is	apparent	in	the	'mmixal'	example	file	'inout.mms',	where
different	registers	with	different	offsets,	eventually	yielding	the	same
address,	are	used	in	the	first	instruction.		This	type	of	difference
should	however	not	affect	the	function	of	any	program	unless	it	has
specific	assumptions	about	the	allocated	register	number.

			Line	numbers	(in	the	'mmo'	object	format)	are	currently	not
supported.

			Expression	operator	precedence	is	not	that	of	mmixal:	operator
precedence	is	that	of	the	C	programming	language.		It's	recommended	to
use	parentheses	to	explicitly	specify	wanted	operator	precedence
whenever	more	than	one	type	of	operators	are	used.

			The	serialize	unary	operator	'&',	the	fractional	division	operator
'//',	the	logical	not	operator	'!'	and	the	modulus	operator	'%'	are	not
available.

			Symbols	are	not	global	by	default,	unless	the	option
'--globalize-symbols'	is	passed.		Use	the	'.global'	directive	to
globalize	symbols	(*note	Global::).

			Operand	syntax	is	a	bit	stricter	with	'as'	than	'mmixal'.		For
example,	you	can't	say	'addu	1,2,3',	instead	you	must	write	'addu
$1,$2,3'.

			You	can't	LOC	to	a	lower	address	than	those	already	visited	(i.e.,
"backwards").

			A	LOC	directive	must	come	before	any	emitted	code.

			Predefined	symbols	are	visible	as	file-local	symbols	after	use.		(In
the	ELF	file,	that	is--the	linked	mmo	file	has	no	notion	of	a	file-local
symbol.)

			Some	mapping	of	constant	expressions	to	sections	in	LOC	expressions
is	attempted,	but	that	functionality	is	easily	confused	and	should	be
avoided	unless	compatibility	with	'mmixal'	is	required.		A	LOC
expression	to	'0x2000000000000000'	or	higher,	maps	to	the	'.data'
section	and	lower	addresses	map	to	the	'.text'	section	(*note
MMIX-loc::).

			The	code	and	data	areas	are	each	contiguous.		Sparse	programs	with
far-away	LOC	directives	will	take	up	the	same	amount	of	space	as	a

3/25/20 as.info 265

contiguous	program	with	zeros	filled	in	the	gaps	between	the	LOC
directives.		If	you	need	sparse	programs,	you	might	try	and	get	the
wanted	effect	with	a	linker	script	and	splitting	up	the	code	parts	into
sections	(*note	Section::).		Assembly	code	for	this,	to	be	compatible
with	'mmixal',	would	look	something	like:
						.if	0
						LOC	away_expression
						.else
						.section	away,"ax"
						.fi
			'as'	will	not	execute	the	LOC	directive	and	'mmixal'	ignores	the
lines	with	'.'.		This	construct	can	be	used	generally	to	help
compatibility.

			Symbols	can't	be	defined	twice-not	even	to	the	same	value.

			Instruction	mnemonics	are	recognized	case-insensitive,	though	the
'IS'	and	'GREG'	pseudo-operations	must	be	specified	in	upper-case
characters.

			There's	no	unicode	support.

			The	following	is	a	list	of	programs	in	'mmix.tar.gz',	available	at
<http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html>,	last	checked
with	the	version	dated	2001-08-25	(md5sum
c393470cfc86fac040487d22d2bf0172)	that	assemble	with	'mmixal'	but	do	not
assemble	with	'as':

'silly.mms'
					LOC	to	a	previous	address.
'sim.mms'
					Redefines	symbol	'Done'.
'test.mms'
					Uses	the	serial	operator	'&'.

�
File:	as.info,		Node:	MSP430-Dependent,		Next:	NDS32-Dependent,		Prev:	MMIX-
Dependent,		Up:	Machine	Dependencies

9.29	MSP	430	Dependent	Features
===============================

*	Menu:

*	MSP430	Options::														Options
*	MSP430	Syntax::															Syntax
*	MSP430	Floating	Point::							Floating	Point
*	MSP430	Directives::											MSP	430	Machine	Directives
*	MSP430	Opcodes::														Opcodes
*	MSP430	Profiling	Capability:: Profiling	Capability

�
File:	as.info,		Node:	MSP430	Options,		Next:	MSP430	Syntax,		Up:	MSP430-Dependent

9.29.1	Options

'-mmcu'
					selects	the	mcu	architecture.		If	the	architecture	is	430Xv2	then

3/25/20 as.info 266

					this	also	enables	NOP	generation	unless	the	'-mN'	is	also
					specified.

'-mcpu'
					selects	the	cpu	architecture.		If	the	architecture	is	430Xv2	then
					this	also	enables	NOP	generation	unless	the	'-mN'	is	also
					specified.

'-msilicon-errata=NAME[,NAME...]'
					Implements	a	fixup	for	named	silicon	errata.		Multiple	silicon
					errata	can	be	specified	by	multiple	uses	of	the	'-msilicon-errata'
					option	and/or	by	including	the	errata	names,	separated	by	commas,
					on	an	individual	'-msilicon-errata'	option.		Errata	names	currently
					recognised	by	the	assembler	are:

					'cpu4'
										'PUSH	#4'	and	'PUSH	#8'	need	longer	encodings	on	the	MSP430.
										This	option	is	enabled	by	default,	and	cannot	be	disabled.
					'cpu8'
										Do	not	set	the	'SP'	to	an	odd	value.
					'cpu11'
										Do	not	update	the	'SR'	and	the	'PC'	in	the	same	instruction.
					'cpu12'
										Do	not	use	the	'PC'	in	a	'CMP'	or	'BIT'	instruction.
					'cpu13'
										Do	not	use	an	arithmetic	instruction	to	modify	the	'SR'.
					'cpu19'
										Insert	'NOP'	after	'CPUOFF'.

'-msilicon-errata-warn=NAME[,NAME...]'
					Like	the	'-msilicon-errata'	option	except	that	instead	of	fixing
					the	specified	errata,	a	warning	message	is	issued	instead.		This
					option	can	be	used	alongside	'-msilicon-errata'	to	generate
					messages	whenever	a	problem	is	fixed,	or	on	its	own	in	order	to
					inspect	code	for	potential	problems.

'-mP'
					enables	polymorph	instructions	handler.

'-mQ'
					enables	relaxation	at	assembly	time.		DANGEROUS!

'-ml'
					indicates	that	the	input	uses	the	large	code	model.

'-mn'
					enables	the	generation	of	a	NOP	instruction	following	any
					instruction	that	might	change	the	interrupts	enabled/disabled
					state.		The	pipelined	nature	of	the	MSP430	core	means	that	any
					instruction	that	changes	the	interrupt	state	('EINT',	'DINT',	'BIC
					#8,	SR',	'BIS	#8,	SR'	or	'MOV.W	<>,	SR')	must	be	followed	by	a	NOP
					instruction	in	order	to	ensure	the	correct	processing	of
					interrupts.		By	default	it	is	up	to	the	programmer	to	supply	these
					NOP	instructions,	but	this	command	line	option	enables	the
					automatic	insertion	by	the	assembler,	if	they	are	missing.

'-mN'
					disables	the	generation	of	a	NOP	instruction	following	any
					instruction	that	might	change	the	interrupts	enabled/disabled

3/25/20 as.info 267

					state.		This	is	the	default	behaviour.

'-my'
					tells	the	assembler	to	generate	a	warning	message	if	a	NOP	does	not
					immediately	forllow	an	instruction	that	enables	or	disables
					interrupts.		This	is	the	default.

					Note	that	this	option	can	be	stacked	with	the	'-mn'	option	so	that
					the	assembler	will	both	warn	about	missing	NOP	instructions	and
					then	insert	them	automatically.

'-mY'
					disables	warnings	about	missing	NOP	instructions.

'-md'
					mark	the	object	file	as	one	that	requires	data	to	copied	from	ROM
					to	RAM	at	execution	startup.		Disabled	by	default.

�
File:	as.info,		Node:	MSP430	Syntax,		Next:	MSP430	Floating	Point,		Prev:	MSP430
Options,		Up:	MSP430-Dependent

9.29.2	Syntax

*	Menu:

*	MSP430-Macros:: Macros
*	MSP430-Chars::																Special	Characters
*	MSP430-Regs::																	Register	Names
*	MSP430-Ext:: Assembler	Extensions

�
File:	as.info,		Node:	MSP430-Macros,		Next:	MSP430-Chars,		Up:	MSP430	Syntax

9.29.2.1	Macros
...............

The	macro	syntax	used	on	the	MSP	430	is	like	that	described	in	the	MSP
430	Family	Assembler	Specification.		Normal	'as'	macros	should	still
work.

			Additional	built-in	macros	are:

'llo(exp)'
					Extracts	least	significant	word	from	32-bit	expression	'exp'.

'lhi(exp)'
					Extracts	most	significant	word	from	32-bit	expression	'exp'.

'hlo(exp)'
					Extracts	3rd	word	from	64-bit	expression	'exp'.

'hhi(exp)'
					Extracts	4rd	word	from	64-bit	expression	'exp'.

			They	normally	being	used	as	an	immediate	source	operand.
									mov #llo(1),	r10 ; ==	mov #1,	r10
									mov #lhi(1),	r10 ; ==	mov #0,	r10

3/25/20 as.info 268

�
File:	as.info,		Node:	MSP430-Chars,		Next:	MSP430-Regs,		Prev:	MSP430-Macros,		Up:
MSP430	Syntax

9.29.2.2	Special	Characters
...........................

A	semicolon	(';')	appearing	anywhere	on	a	line	starts	a	comment	that
extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	it	can	also	be	a	logical	line	number
directive	(*note	Comments::)	or	a	preprocessor	control	command	(*note
Preprocessing::).

			Multiple	statements	can	appear	on	the	same	line	provided	that	they
are	separated	by	the	'{'	character.

			The	character	'$'	in	jump	instructions	indicates	current	location	and
implemented	only	for	TI	syntax	compatibility.

�
File:	as.info,		Node:	MSP430-Regs,		Next:	MSP430-Ext,		Prev:	MSP430-Chars,		Up:
MSP430	Syntax

9.29.2.3	Register	Names
.......................

General-purpose	registers	are	represented	by	predefined	symbols	of	the
form	'rN'	(for	global	registers),	where	N	represents	a	number	between
'0'	and	'15'.		The	leading	letters	may	be	in	either	upper	or	lower	case;
for	example,	'r13'	and	'R7'	are	both	valid	register	names.

			Register	names	'PC',	'SP'	and	'SR'	cannot	be	used	as	register	names
and	will	be	treated	as	variables.		Use	'r0',	'r1',	and	'r2'	instead.

�
File:	as.info,		Node:	MSP430-Ext,		Prev:	MSP430-Regs,		Up:	MSP430	Syntax

9.29.2.4	Assembler	Extensions
.............................

'@rN'
					As	destination	operand	being	treated	as	'0(rn)'

'0(rN)'
					As	source	operand	being	treated	as	'@rn'

'jCOND	+N'
					Skips	next	N	bytes	followed	by	jump	instruction	and	equivalent	to
					'jCOND	$+N+2'

			Also,	there	are	some	instructions,	which	cannot	be	found	in	other
assemblers.		These	are	branch	instructions,	which	has	different	opcodes
upon	jump	distance.		They	all	got	PC	relative	addressing	mode.

'beq	label'
					A	polymorph	instruction	which	is	'jeq	label'	in	case	if	jump

3/25/20 as.info 269

					distance	within	allowed	range	for	cpu's	jump	instruction.		If	not,
					this	unrolls	into	a	sequence	of
												jne	$+6
												br		label

'bne	label'
					A	polymorph	instruction	which	is	'jne	label'	or	'jeq	+4;	br	label'

'blt	label'
					A	polymorph	instruction	which	is	'jl	label'	or	'jge	+4;	br	label'

'bltn	label'
					A	polymorph	instruction	which	is	'jn	label'	or	'jn	+2;	jmp	+4;	br
					label'

'bltu	label'
					A	polymorph	instruction	which	is	'jlo	label'	or	'jhs	+2;	br	label'

'bge	label'
					A	polymorph	instruction	which	is	'jge	label'	or	'jl	+4;	br	label'

'bgeu	label'
					A	polymorph	instruction	which	is	'jhs	label'	or	'jlo	+4;	br	label'

'bgt	label'
					A	polymorph	instruction	which	is	'jeq	+2;	jge	label'	or	'jeq	+6;	jl
					+4;	br	label'

'bgtu	label'
					A	polymorph	instruction	which	is	'jeq	+2;	jhs	label'	or	'jeq	+6;
					jlo	+4;	br	label'

'bleu	label'
					A	polymorph	instruction	which	is	'jeq	label;	jlo	label'	or	'jeq	+2;
					jhs	+4;	br	label'

'ble	label'
					A	polymorph	instruction	which	is	'jeq	label;	jl	label'	or	'jeq	+2;
					jge	+4;	br	label'

'jump	label'
					A	polymorph	instruction	which	is	'jmp	label'	or	'br	label'

�
File:	as.info,		Node:	MSP430	Floating	Point,		Next:	MSP430	Directives,		Prev:	MSP430
Syntax,		Up:	MSP430-Dependent

9.29.3	Floating	Point

The	MSP	430	family	uses	IEEE	32-bit	floating-point	numbers.

�
File:	as.info,		Node:	MSP430	Directives,		Next:	MSP430	Opcodes,		Prev:	MSP430
Floating	Point,		Up:	MSP430-Dependent

9.29.4	MSP	430	Machine	Directives

3/25/20 as.info 270

'.file'
					This	directive	is	ignored;	it	is	accepted	for	compatibility	with
					other	MSP	430	assemblers.

										Warning:	in	other	versions	of	the	GNU	assembler,	'.file'	is
										used	for	the	directive	called	'.app-file'	in	the	MSP	430
										support.

'.line'
					This	directive	is	ignored;	it	is	accepted	for	compatibility	with
					other	MSP	430	assemblers.

'.arch'
					Sets	the	target	microcontroller	in	the	same	way	as	the	'-mmcu'
					command	line	option.

'.cpu'
					Sets	the	target	architecture	in	the	same	way	as	the	'-mcpu'	command
					line	option.

'.profiler'
					This	directive	instructs	assembler	to	add	new	profile	entry	to	the
					object	file.

'.refsym'
					This	directive	instructs	assembler	to	add	an	undefined	reference	to
					the	symbol	following	the	directive.		The	maximum	symbol	name	length
					is	1023	characters.		No	relocation	is	created	for	this	symbol;	it
					will	exist	purely	for	pulling	in	object	files	from	archives.		Note
					that	this	reloc	is	not	sufficient	to	prevent	garbage	collection;
					use	a	KEEP()	directive	in	the	linker	file	to	preserve	such	objects.

�
File:	as.info,		Node:	MSP430	Opcodes,		Next:	MSP430	Profiling	Capability,		Prev:
MSP430	Directives,		Up:	MSP430-Dependent

9.29.5	Opcodes

'as'	implements	all	the	standard	MSP	430	opcodes.		No	additional
pseudo-instructions	are	needed	on	this	family.

			For	information	on	the	430	machine	instruction	set,	see	'MSP430
User's	Manual,	document	slau049d',	Texas	Instrument,	Inc.

�
File:	as.info,		Node:	MSP430	Profiling	Capability,		Prev:	MSP430	Opcodes,		Up:
MSP430-Dependent

9.29.6	Profiling	Capability

It	is	a	performance	hit	to	use	gcc's	profiling	approach	for	this	tiny
target.		Even	more	-	jtag	hardware	facility	does	not	perform	any
profiling	functions.		However	we've	got	gdb's	built-in	simulator	where
we	can	do	anything.

			We	define	new	section	'.profiler'	which	holds	all	profiling
information.		We	define	new	pseudo	operation	'.profiler'	which	will

3/25/20 as.info 271

instruct	assembler	to	add	new	profile	entry	to	the	object	file.		Profile
should	take	place	at	the	present	address.

			Pseudo	operation	format:

			'.profiler	flags,function_to_profile	[,	cycle_corrector,	extra]'

			where:

										'flags'	is	a	combination	of	the	following	characters:

					's'
										function	entry
					'x'
										function	exit
					'i'
										function	is	in	init	section
					'f'
										function	is	in	fini	section
					'l'
										library	call
					'c'
										libc	standard	call
					'd'
										stack	value	demand
					'I'
										interrupt	service	routine
					'P'
										prologue	start
					'p'
										prologue	end
					'E'
										epilogue	start
					'e'
										epilogue	end
					'j'
										long	jump	/	sjlj	unwind
					'a'
										an	arbitrary	code	fragment
					't'
										extra	parameter	saved	(a	constant	value	like	frame	size)

'function_to_profile'
					a	function	address
'cycle_corrector'
					a	value	which	should	be	added	to	the	cycle	counter,	zero	if
					omitted.
'extra'
					any	extra	parameter,	zero	if	omitted.

			For	example:
					.global	fxx
					.type	fxx,@function
					fxx:
					.LFrameOffset_fxx=0x08
					.profiler	"scdP",	fxx					;	function	entry.
					 		;	we	also	demand	stack	value	to	be	saved
							push	r11
							push	r10

3/25/20 as.info 272

							push	r9
							push	r8
					.profiler	"cdpt",fxx,0,	.LFrameOffset_fxx		;	check	stack	value	at	this	point
					 		;	(this	is	a	prologue	end)
					 		;	note,	that	spare	var	filled	with
					 		;	the	farme	size
							mov	r15,r8
					...
					.profiler	cdE,fxx									;	check	stack
							pop	r8
							pop	r9
							pop	r10
							pop	r11
					.profiler	xcde,fxx,3						;	exit	adds	3	to	the	cycle	counter
							ret																					;	cause	'ret'	insn	takes	3	cycles

�
File:	as.info,		Node:	NDS32-Dependent,		Next:	NiosII-Dependent,		Prev:	MSP430-
Dependent,		Up:	Machine	Dependencies

9.30	NDS32	Dependent	Features
=============================

The	NDS32	processors	family	includes	high-performance	and	low-power
32-bit	processors	for	high-end	to	low-end.		GNU	'as'	for	NDS32
architectures	supports	NDS32	ISA	version	3.		For	detail	about	NDS32
instruction	set,	please	see	the	AndeStar	ISA	User	Manual	which	is
availible	at	http://www.andestech.com/en/index/index.htm

*	Menu:

*	NDS32	Options::									Assembler	options
*	NDS32	Syntax::										High-level	assembly	macros

�
File:	as.info,		Node:	NDS32	Options,		Next:	NDS32	Syntax,		Up:	NDS32-Dependent

9.30.1	NDS32	Options

The	NDS32	configurations	of	GNU	'as'	support	these	special	options:

'-O1'
					Optimize	for	performance.

'-Os'
					Optimize	for	space.

'-EL'
					Produce	little	endian	data	output.

'-EB'
					Produce	little	endian	data	output.

'-mpic'
					Generate	PIC.

'-mno-fp-as-gp-relax'
					Suppress	fp-as-gp	relaxation	for	this	file.

3/25/20 as.info 273

'-mb2bb-relax'
					Back-to-back	branch	optimization.

'-mno-all-relax'
					Suppress	all	relaxation	for	this	file.

'-march=<arch	name>'
					Assemble	for	architecture	<arch	name>	which	could	be	v3,	v3j,	v3m,
					v3f,	v3s,	v2,	v2j,	v2f,	v2s.

'-mbaseline=<baseline>'
					Assemble	for	baseline	<baseline>	which	could	be	v2,	v3,	v3m.

'-mfpu-freg=FREG'
					Specify	a	FPU	configuration.
					'0	8	SP	/	4	DP	registers'
					'1	16	SP	/	8	DP	registers'
					'2	32	SP	/	16	DP	registers'
					'3	32	SP	/	32	DP	registers'

'-mabi=ABI'
					Specify	a	abi	version	<abi>	could	be	v1,	v2,	v2fp,	v2fpp.

'-m[no-]mac'
					Enable/Disable	Multiply	instructions	support.

'-m[no-]div'
					Enable/Disable	Divide	instructions	support.

'-m[no-]16bit-ext'
					Enable/Disable	16-bit	extension

'-m[no-]dx-regs'
					Enable/Disable	d0/d1	registers

'-m[no-]perf-ext'
					Enable/Disable	Performance	extension

'-m[no-]perf2-ext'
					Enable/Disable	Performance	extension	2

'-m[no-]string-ext'
					Enable/Disable	String	extension

'-m[no-]reduced-regs'
					Enable/Disable	Reduced	Register	configuration	(GPR16)	option

'-m[no-]audio-isa-ext'
					Enable/Disable	AUDIO	ISA	extension

'-m[no-]fpu-sp-ext'
					Enable/Disable	FPU	SP	extension

'-m[no-]fpu-dp-ext'
					Enable/Disable	FPU	DP	extension

'-m[no-]fpu-fma'
					Enable/Disable	FPU	fused-multiply-add	instructions

3/25/20 as.info 274

'-mall-ext'
					Turn	on	all	extensions	and	instructions	support

�
File:	as.info,		Node:	NDS32	Syntax,		Prev:	NDS32	Options,		Up:	NDS32-Dependent

9.30.2	Syntax

*	Menu:

*	NDS32-Chars::																Special	Characters
*	NDS32-Regs::																	Register	Names
*	NDS32-Ops::																		Pseudo	Instructions

�
File:	as.info,		Node:	NDS32-Chars,		Next:	NDS32-Regs,		Up:	NDS32	Syntax

9.30.2.1	Special	Characters
...........................

Use	'#'	at	column	1	and	'!'	anywhere	in	the	line	except	inside	quotes.

			Multiple	instructions	in	a	line	are	allowed	though	not	recommended
and	should	be	separated	by	';'.

			Assembler	is	not	case-sensitive	in	general	except	user	defined	label.
For	example,	'jral	F1'	is	different	from	'jral	f1'	while	it	is	the	same
as	'JRAL	F1'.

�
File:	as.info,		Node:	NDS32-Regs,		Next:	NDS32-Ops,		Prev:	NDS32-Chars,		Up:	NDS32
Syntax

9.30.2.2	Register	Names
.......................

'General	purpose	registers	(GPR)'
					There	are	32	32-bit	general	purpose	registers	$r0	to	$r31.

'Accumulators	d0	and	d1'
					64-bit	accumulators:	$d0.hi,	$d0.lo,	$d1.hi,	and	$d1.lo.

'Assembler	reserved	register	$ta'
					Register	$ta	($r15)	is	reserved	for	assembler	using.

'Operating	system	reserved	registers	$p0	and	$p1'
					Registers	$p0	($r26)	and	$p1	($r27)	are	used	by	operating	system	as
					scratch	registers.

'Frame	pointer	$fp'
					Register	$r28	is	regarded	as	the	frame	pointer.

'Global	pointer'
					Register	$r29	is	regarded	as	the	global	pointer.

'Link	pointer'
					Register	$r30	is	regarded	as	the	link	pointer.

3/25/20 as.info 275

'Stack	pointer'
					Register	$r31	is	regarded	as	the	stack	pointer.

�
File:	as.info,		Node:	NDS32-Ops,		Prev:	NDS32-Regs,		Up:	NDS32	Syntax

9.30.2.3	Pseudo	Instructions
............................

'li	rt5,imm32'
					load	32-bit	integer	into	register	rt5.		'sethi	rt5,hi20(imm32)'	and
					then	'ori	rt5,reg,lo12(imm32)'.

'la	rt5,var'
					Load	32-bit	address	of	var	into	register	rt5.		'sethi
					rt5,hi20(var)'	and	then	'ori	reg,rt5,lo12(var)'

'l.[bhw]	rt5,var'
					Load	value	of	var	into	register	rt5.		'sethi	$ta,hi20(var)'	and
					then	'l[bhw]i	rt5,[$ta+lo12(var)]'

'l.[bh]s	rt5,var'
					Load	value	of	var	into	register	rt5.		'sethi	$ta,hi20(var)'	and
					then	'l[bh]si	rt5,[$ta+lo12(var)]'

'l.[bhw]p	rt5,var,inc'
					Load	value	of	var	into	register	rt5	and	increment	$ta	by	amount
					inc.		'la	$ta,var'	and	then	'l[bhw]i.bi	rt5,[$ta],inc'

'l.[bhw]pc	rt5,inc'
					Continue	loading	value	of	var	into	register	rt5	and	increment	$ta
					by	amount	inc.		'l[bhw]i.bi	rt5,[$ta],inc.'

'l.[bh]sp	rt5,var,inc'
					Load	value	of	var	into	register	rt5	and	increment	$ta	by	amount
					inc.		'la	$ta,var'	and	then	'l[bh]si.bi	rt5,[$ta],inc'

'l.[bh]spc	rt5,inc'
					Continue	loading	value	of	var	into	register	rt5	and	increment	$ta
					by	amount	inc.		'l[bh]si.bi	rt5,[$ta],inc.'

's.[bhw]	rt5,var'
					Store	register	rt5	to	var.		'sethi	$ta,hi20(var)'	and	then	's[bhw]i
					rt5,[$ta+lo12(var)]'

's.[bhw]p	rt5,var,inc'
					Store	register	rt5	to	var	and	increment	$ta	by	amount	inc.		'la
					$ta,var'	and	then	's[bhw]i.bi	rt5,[$ta],inc'

's.[bhw]pc	rt5,inc'
					Continue	storing	register	rt5	to	var	and	increment	$ta	by	amount
					inc.		's[bhw]i.bi	rt5,[$ta],inc.'

'not	rt5,ra5'
					Alias	of	'nor	rt5,ra5,ra5'.

'neg	rt5,ra5'
					Alias	of	'subri	rt5,ra5,0'.

3/25/20 as.info 276

'br	rb5'
					Depending	on	how	it	is	assembled,	it	is	translated	into	'r5	rb5'	or
					'jr	rb5'.

'b	label'
					Branch	to	label	depending	on	how	it	is	assembled,	it	is	translated
					into	'j8	label',	'j	label',	or	"'la	$ta,label'	'br	$ta'".

'bral	rb5'
					Alias	of	jral	br5	depending	on	how	it	is	assembled,	it	is
					translated	into	'jral5	rb5'	or	'jral	rb5'.

'bal	fname'
					Alias	of	jal	fname	depending	on	how	it	is	assembled,	it	is
					translated	into	'jal	fname'	or	"'la	$ta,fname'	'bral	$ta'".

'call	fname'
					Call	function	fname	same	as	'jal	fname'.

'move	rt5,ra5'
					For	16-bit,	this	is	'mov55	rt5,ra5'.		For	no	16-bit,	this	is	'ori
					rt5,ra5,0'.

'move	rt5,var'
					This	is	the	same	as	'l.w	rt5,var'.

'move	rt5,imm32'
					This	is	the	same	as	'li	rt5,imm32'.

'pushm	ra5,rb5'
					Push	contents	of	registers	from	ra5	to	rb5	into	stack.

'push	ra5'
					Push	content	of	register	ra5	into	stack.		(same	'pushm	ra5,ra5').

'push.d	var'
					Push	value	of	double-word	variable	var	into	stack.

'push.w	var'
					Push	value	of	word	variable	var	into	stack.

'push.h	var'
					Push	value	of	half-word	variable	var	into	stack.

'push.b	var'
					Push	value	of	byte	variable	var	into	stack.

'pusha	var'
					Push	32-bit	address	of	variable	var	into	stack.

'pushi	imm32'
					Push	32-bit	immediate	value	into	stack.

'popm	ra5,rb5'
					Pop	top	of	stack	values	into	registers	ra5	to	rb5.

'pop	rt5'
					Pop	top	of	stack	value	into	register.		(same	as	'popm	rt5,rt5'.)

3/25/20 as.info 277

'pop.d	var,ra5'
					Pop	value	of	double-word	variable	var	from	stack	using	register	ra5
					as	2nd	scratch	register.		(1st	is	$ta)

'pop.w	var,ra5'
					Pop	value	of	word	variable	var	from	stack	using	register	ra5.

'pop.h	var,ra5'
					Pop	value	of	half-word	variable	var	from	stack	using	register	ra5.

'pop.b	var,ra5'
					Pop	value	of	byte	variable	var	from	stack	using	register	ra5.

�
File:	as.info,		Node:	NiosII-Dependent,		Next:	NS32K-Dependent,		Prev:	NDS32-
Dependent,		Up:	Machine	Dependencies

9.31	Nios	II	Dependent	Features
===============================

*	Menu:

*	Nios	II	Options::														Options
*	Nios	II	Syntax::															Syntax
*	Nios	II	Relocations::										Relocations
*	Nios	II	Directives::											Nios	II	Machine	Directives
*	Nios	II	Opcodes::														Opcodes

�
File:	as.info,		Node:	Nios	II	Options,		Next:	Nios	II	Syntax,		Up:	NiosII-Dependent

9.31.1	Options

'-relax-section'
					Replace	identified	out-of-range	branches	with	PC-relative	'jmp'
					sequences	when	possible.		The	generated	code	sequences	are	suitable
					for	use	in	position-independent	code,	but	there	is	a	practical
					limit	on	the	extended	branch	range	because	of	the	length	of	the
					sequences.		This	option	is	the	default.

'-relax-all'
					Replace	branch	instructions	not	determinable	to	be	in	range	and	all
					call	instructions	with	'jmp'	and	'callr'	sequences	(respectively).
					This	option	generates	absolute	relocations	against	the	target
					symbols	and	is	not	appropriate	for	position-independent	code.

'-no-relax'
					Do	not	replace	any	branches	or	calls.

'-EB'
					Generate	big-endian	output.

'-EL'
					Generate	little-endian	output.		This	is	the	default.

'-march=ARCHITECTURE'
					This	option	specifies	the	target	architecture.		The	assembler

3/25/20 as.info 278

					issues	an	error	message	if	an	attempt	is	made	to	assemble	an
					instruction	which	will	not	execute	on	the	target	architecture.		The
					following	architecture	names	are	recognized:	'r1',	'r2'.		The
					default	is	'r1'.

�
File:	as.info,		Node:	Nios	II	Syntax,		Next:	Nios	II	Relocations,		Prev:	Nios	II
Options,		Up:	NiosII-Dependent

9.31.2	Syntax

*	Menu:

*	Nios	II	Chars::																Special	Characters

�
File:	as.info,		Node:	Nios	II	Chars,		Up:	Nios	II	Syntax

9.31.2.1	Special	Characters
...........................

'#'	is	the	line	comment	character.		';'	is	the	line	separator	character.

�
File:	as.info,		Node:	Nios	II	Relocations,		Next:	Nios	II	Directives,		Prev:	Nios	II
Syntax,		Up:	NiosII-Dependent

9.31.3	Nios	II	Machine	Relocations

'%hiadj(EXPRESSION)'
					Extract	the	upper	16	bits	of	EXPRESSION	and	add	one	if	the	15th	bit
					is	set.

					The	value	of	'%hiadj(EXPRESSION)'	is:
										((EXPRESSION	>>	16)	&	0xffff)	+	((EXPRESSION	>>	15)	&	0x01)

					The	'%hiadj'	relocation	is	intended	to	be	used	with	the	'addi',
					'ld'	or	'st'	instructions	along	with	a	'%lo',	in	order	to	load	a
					32-bit	constant.

										movhi	r2,	%hiadj(symbol)
										addi	r2,	r2,	%lo(symbol)

'%hi(EXPRESSION)'
					Extract	the	upper	16	bits	of	EXPRESSION.

'%lo(EXPRESSION)'
					Extract	the	lower	16	bits	of	EXPRESSION.

'%gprel(EXPRESSION)'
					Subtract	the	value	of	the	symbol	'_gp'	from	EXPRESSION.

					The	intention	of	the	'%gprel'	relocation	is	to	have	a	fast	small
					area	of	memory	which	only	takes	a	16-bit	immediate	to	access.

										 .section	.sdata
										fastint:

3/25/20 as.info 279

										 .int	123
										 .section	.text
										 ldw	r4,	%gprel(fastint)(gp)

'%call(EXPRESSION)'
'%call_lo(EXPRESSION)'
'%call_hiadj(EXPRESSION)'
'%got(EXPRESSION)'
'%got_lo(EXPRESSION)'
'%got_hiadj(EXPRESSION)'
'%gotoff(EXPRESSION)'
'%gotoff_lo(EXPRESSION)'
'%gotoff_hiadj(EXPRESSION)'
'%tls_gd(EXPRESSION)'
'%tls_ie(EXPRESSION)'
'%tls_le(EXPRESSION)'
'%tls_ldm(EXPRESSION)'
'%tls_ldo(EXPRESSION)'

					These	relocations	support	the	ABI	for	Linux	Systems	documented	in
					the	'Nios	II	Processor	Reference	Handbook'.

�
File:	as.info,		Node:	Nios	II	Directives,		Next:	Nios	II	Opcodes,		Prev:	Nios	II
Relocations,		Up:	NiosII-Dependent

9.31.4	Nios	II	Machine	Directives

'.align	EXPRESSION	[,	EXPRESSION]'
					This	is	the	generic	'.align'	directive,	however	this	aligns	to	a
					power	of	two.

'.half	EXPRESSION'
					Create	an	aligned	constant	2	bytes	in	size.

'.word	EXPRESSION'
					Create	an	aligned	constant	4	bytes	in	size.

'.dword	EXPRESSION'
					Create	an	aligned	constant	8	bytes	in	size.

'.2byte	EXPRESSION'
					Create	an	unaligned	constant	2	bytes	in	size.

'.4byte	EXPRESSION'
					Create	an	unaligned	constant	4	bytes	in	size.

'.8byte	EXPRESSION'
					Create	an	unaligned	constant	8	bytes	in	size.

'.16byte	EXPRESSION'
					Create	an	unaligned	constant	16	bytes	in	size.

'.set	noat'
					Allows	assembly	code	to	use	'at'	register	without	warning.		Macro
					or	relaxation	expansions	generate	warnings.

'.set	at'

3/25/20 as.info 280

					Assembly	code	using	'at'	register	generates	warnings,	and	macro
					expansion	and	relaxation	are	enabled.

'.set	nobreak'
					Allows	assembly	code	to	use	'ba'	and	'bt'	registers	without
					warning.

'.set	break'
					Turns	warnings	back	on	for	using	'ba'	and	'bt'	registers.

'.set	norelax'
					Do	not	replace	any	branches	or	calls.

'.set	relaxsection'
					Replace	identified	out-of-range	branches	with	'jmp'	sequences
					(default).

'.set	relaxsection'
					Replace	all	branch	and	call	instructions	with	'jmp'	and	'callr'
					sequences.

'.set	...'
					All	other	'.set'	are	the	normal	use.

�
File:	as.info,		Node:	Nios	II	Opcodes,		Prev:	Nios	II	Directives,		Up:	NiosII-
Dependent

9.31.5	Opcodes

'as'	implements	all	the	standard	Nios	II	opcodes	documented	in	the	'Nios
II	Processor	Reference	Handbook',	including	the	assembler
pseudo-instructions.

�
File:	as.info,		Node:	NS32K-Dependent,		Next:	PDP-11-Dependent,		Prev:	NiosII-
Dependent,		Up:	Machine	Dependencies

9.32	NS32K	Dependent	Features
=============================

*	Menu:

*	NS32K	Syntax::															Syntax

�
File:	as.info,		Node:	NS32K	Syntax,		Up:	NS32K-Dependent

9.32.1	Syntax

*	Menu:

*	NS32K-Chars::																Special	Characters

�
File:	as.info,		Node:	NS32K-Chars,		Up:	NS32K	Syntax

3/25/20 as.info 281

9.32.1.1	Special	Characters
...........................

The	presence	of	a	'#'	appearing	anywhere	on	a	line	indicates	the	start
of	a	comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			If	Sequent	compatibility	has	been	configured	into	the	assembler	then
the	'|'	character	appearing	as	the	first	character	on	a	line	will	also
indicate	the	start	of	a	line	comment.

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	PDP-11-Dependent,		Next:	PJ-Dependent,		Prev:	NS32K-Dependent,
Up:	Machine	Dependencies

9.33	PDP-11	Dependent	Features
==============================

*	Menu:

*	PDP-11-Options:: Options
*	PDP-11-Pseudos:: Assembler	Directives
*	PDP-11-Syntax:: DEC	Syntax	versus	BSD	Syntax
*	PDP-11-Mnemonics:: Instruction	Naming
*	PDP-11-Synthetic:: Synthetic	Instructions

�
File:	as.info,		Node:	PDP-11-Options,		Next:	PDP-11-Pseudos,		Up:	PDP-11-Dependent

9.33.1	Options

The	PDP-11	version	of	'as'	has	a	rich	set	of	machine	dependent	options.

9.33.1.1	Code	Generation	Options
................................

'-mpic	|	-mno-pic'
					Generate	position-independent	(or	position-dependent)	code.

					The	default	is	to	generate	position-independent	code.

9.33.1.2	Instruction	Set	Extension	Options
..

These	options	enables	or	disables	the	use	of	extensions	over	the	base
line	instruction	set	as	introduced	by	the	first	PDP-11	CPU:	the	KA11.
Most	options	come	in	two	variants:	a	'-m'EXTENSION	that	enables
EXTENSION,	and	a	'-mno-'EXTENSION	that	disables	EXTENSION.

			The	default	is	to	enable	all	extensions.

3/25/20 as.info 282

'-mall	|	-mall-extensions'
					Enable	all	instruction	set	extensions.

'-mno-extensions'
					Disable	all	instruction	set	extensions.

'-mcis	|	-mno-cis'
					Enable	(or	disable)	the	use	of	the	commercial	instruction	set,
					which	consists	of	these	instructions:	'ADDNI',	'ADDN',	'ADDPI',
					'ADDP',	'ASHNI',	'ASHN',	'ASHPI',	'ASHP',	'CMPCI',	'CMPC',	'CMPNI',
					'CMPN',	'CMPPI',	'CMPP',	'CVTLNI',	'CVTLN',	'CVTLPI',	'CVTLP',
					'CVTNLI',	'CVTNL',	'CVTNPI',	'CVTNP',	'CVTPLI',	'CVTPL',	'CVTPNI',
					'CVTPN',	'DIVPI',	'DIVP',	'L2DR',	'L3DR',	'LOCCI',	'LOCC',	'MATCI',
					'MATC',	'MOVCI',	'MOVC',	'MOVRCI',	'MOVRC',	'MOVTCI',	'MOVTC',
					'MULPI',	'MULP',	'SCANCI',	'SCANC',	'SKPCI',	'SKPC',	'SPANCI',
					'SPANC',	'SUBNI',	'SUBN',	'SUBPI',	and	'SUBP'.

'-mcsm	|	-mno-csm'
					Enable	(or	disable)	the	use	of	the	'CSM'	instruction.

'-meis	|	-mno-eis'
					Enable	(or	disable)	the	use	of	the	extended	instruction	set,	which
					consists	of	these	instructions:	'ASHC',	'ASH',	'DIV',	'MARK',
					'MUL',	'RTT',	'SOB'	'SXT',	and	'XOR'.

'-mfis	|	-mkev11'
'-mno-fis	|	-mno-kev11'
					Enable	(or	disable)	the	use	of	the	KEV11	floating-point
					instructions:	'FADD',	'FDIV',	'FMUL',	and	'FSUB'.

'-mfpp	|	-mfpu	|	-mfp-11'
'-mno-fpp	|	-mno-fpu	|	-mno-fp-11'
					Enable	(or	disable)	the	use	of	FP-11	floating-point	instructions:
					'ABSF',	'ADDF',	'CFCC',	'CLRF',	'CMPF',	'DIVF',	'LDCFF',	'LDCIF',
					'LDEXP',	'LDF',	'LDFPS',	'MODF',	'MULF',	'NEGF',	'SETD',	'SETF',
					'SETI',	'SETL',	'STCFF',	'STCFI',	'STEXP',	'STF',	'STFPS',	'STST',
					'SUBF',	and	'TSTF'.

'-mlimited-eis	|	-mno-limited-eis'
					Enable	(or	disable)	the	use	of	the	limited	extended	instruction
					set:	'MARK',	'RTT',	'SOB',	'SXT',	and	'XOR'.

					The	-mno-limited-eis	options	also	implies	-mno-eis.

'-mmfpt	|	-mno-mfpt'
					Enable	(or	disable)	the	use	of	the	'MFPT'	instruction.

'-mmultiproc	|	-mno-multiproc'
					Enable	(or	disable)	the	use	of	multiprocessor	instructions:
					'TSTSET'	and	'WRTLCK'.

'-mmxps	|	-mno-mxps'
					Enable	(or	disable)	the	use	of	the	'MFPS'	and	'MTPS'	instructions.

'-mspl	|	-mno-spl'
					Enable	(or	disable)	the	use	of	the	'SPL'	instruction.

					Enable	(or	disable)	the	use	of	the	microcode	instructions:	'LDUB',
					'MED',	and	'XFC'.

3/25/20 as.info 283

9.33.1.3	CPU	Model	Options
..........................

These	options	enable	the	instruction	set	extensions	supported	by	a
particular	CPU,	and	disables	all	other	extensions.

'-mka11'
					KA11	CPU.	Base	line	instruction	set	only.

'-mkb11'
					KB11	CPU.	Enable	extended	instruction	set	and	'SPL'.

'-mkd11a'
					KD11-A	CPU.	Enable	limited	extended	instruction	set.

'-mkd11b'
					KD11-B	CPU.	Base	line	instruction	set	only.

'-mkd11d'
					KD11-D	CPU.	Base	line	instruction	set	only.

'-mkd11e'
					KD11-E	CPU.	Enable	extended	instruction	set,	'MFPS',	and	'MTPS'.

'-mkd11f	|	-mkd11h	|	-mkd11q'
					KD11-F,	KD11-H,	or	KD11-Q	CPU.	Enable	limited	extended	instruction
					set,	'MFPS',	and	'MTPS'.

'-mkd11k'
					KD11-K	CPU.	Enable	extended	instruction	set,	'LDUB',	'MED',	'MFPS',
					'MFPT',	'MTPS',	and	'XFC'.

'-mkd11z'
					KD11-Z	CPU.	Enable	extended	instruction	set,	'CSM',	'MFPS',	'MFPT',
					'MTPS',	and	'SPL'.

'-mf11'
					F11	CPU.	Enable	extended	instruction	set,	'MFPS',	'MFPT',	and
					'MTPS'.

'-mj11'
					J11	CPU.	Enable	extended	instruction	set,	'CSM',	'MFPS',	'MFPT',
					'MTPS',	'SPL',	'TSTSET',	and	'WRTLCK'.

'-mt11'
					T11	CPU.	Enable	limited	extended	instruction	set,	'MFPS',	and
					'MTPS'.

9.33.1.4	Machine	Model	Options
..............................

These	options	enable	the	instruction	set	extensions	supported	by	a
particular	machine	model,	and	disables	all	other	extensions.

'-m11/03'
					Same	as	'-mkd11f'.

'-m11/04'

3/25/20 as.info 284

					Same	as	'-mkd11d'.

'-m11/05	|	-m11/10'
					Same	as	'-mkd11b'.

'-m11/15	|	-m11/20'
					Same	as	'-mka11'.

'-m11/21'
					Same	as	'-mt11'.

'-m11/23	|	-m11/24'
					Same	as	'-mf11'.

'-m11/34'
					Same	as	'-mkd11e'.

'-m11/34a'
					Ame	as	'-mkd11e'	'-mfpp'.

'-m11/35	|	-m11/40'
					Same	as	'-mkd11a'.

'-m11/44'
					Same	as	'-mkd11z'.

'-m11/45	|	-m11/50	|	-m11/55	|	-m11/70'
					Same	as	'-mkb11'.

'-m11/53	|	-m11/73	|	-m11/83	|	-m11/84	|	-m11/93	|	-m11/94'
					Same	as	'-mj11'.

'-m11/60'
					Same	as	'-mkd11k'.

�
File:	as.info,		Node:	PDP-11-Pseudos,		Next:	PDP-11-Syntax,		Prev:	PDP-11-Options,
Up:	PDP-11-Dependent

9.33.2	Assembler	Directives

The	PDP-11	version	of	'as'	has	a	few	machine	dependent	assembler
directives.

'.bss'
					Switch	to	the	'bss'	section.

'.even'
					Align	the	location	counter	to	an	even	number.

�
File:	as.info,		Node:	PDP-11-Syntax,		Next:	PDP-11-Mnemonics,		Prev:	PDP-11-Pseudos,
Up:	PDP-11-Dependent

9.33.3	PDP-11	Assembly	Language	Syntax

'as'	supports	both	DEC	syntax	and	BSD	syntax.		The	only	difference	is

3/25/20 as.info 285

that	in	DEC	syntax,	a	'#'	character	is	used	to	denote	an	immediate
constants,	while	in	BSD	syntax	the	character	for	this	purpose	is	'$'.

			general-purpose	registers	are	named	'r0'	through	'r7'.		Mnemonic
alternatives	for	'r6'	and	'r7'	are	'sp'	and	'pc',	respectively.

			Floating-point	registers	are	named	'ac0'	through	'ac3',	or
alternatively	'fr0'	through	'fr3'.

			Comments	are	started	with	a	'#'	or	a	'/'	character,	and	extend	to	the
end	of	the	line.		(FIXME:	clash	with	immediates?)

			Multiple	statements	on	the	same	line	can	be	separated	by	the	';'
character.

�
File:	as.info,		Node:	PDP-11-Mnemonics,		Next:	PDP-11-Synthetic,		Prev:	PDP-11-
Syntax,		Up:	PDP-11-Dependent

9.33.4	Instruction	Naming

Some	instructions	have	alternative	names.

'BCC'
					'BHIS'

'BCS'
					'BLO'

'L2DR'
					'L2D'

'L3DR'
					'L3D'

'SYS'
					'TRAP'

�
File:	as.info,		Node:	PDP-11-Synthetic,		Prev:	PDP-11-Mnemonics,		Up:	PDP-11-
Dependent

9.33.5	Synthetic	Instructions

The	'JBR'	and	'J'CC	synthetic	instructions	are	not	supported	yet.

�
File:	as.info,		Node:	PJ-Dependent,		Next:	PPC-Dependent,		Prev:	PDP-11-Dependent,
Up:	Machine	Dependencies

9.34	picoJava	Dependent	Features
================================

*	Menu:

*	PJ	Options::														Options
*	PJ	Syntax::															PJ	Syntax

3/25/20 as.info 286

�
File:	as.info,		Node:	PJ	Options,		Next:	PJ	Syntax,		Up:	PJ-Dependent

9.34.1	Options

'as'	has	two	additional	command-line	options	for	the	picoJava
architecture.
'-ml'
					This	option	selects	little	endian	data	output.

'-mb'
					This	option	selects	big	endian	data	output.

�
File:	as.info,		Node:	PJ	Syntax,		Prev:	PJ	Options,		Up:	PJ-Dependent

9.34.2	PJ	Syntax

*	Menu:

*	PJ-Chars::																Special	Characters

�
File:	as.info,		Node:	PJ-Chars,		Up:	PJ	Syntax

9.34.2.1	Special	Characters
...........................

The	presence	of	a	'!'	or	'/'	on	a	line	indicates	the	start	of	a	comment
that	extends	to	the	end	of	the	current	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	PPC-Dependent,		Next:	RL78-Dependent,		Prev:	PJ-Dependent,		Up:
Machine	Dependencies

9.35	PowerPC	Dependent	Features
===============================

*	Menu:

*	PowerPC-Opts::																Options
*	PowerPC-Pseudo::														PowerPC	Assembler	Directives
*	PowerPC-Syntax::														PowerPC	Syntax

�
File:	as.info,		Node:	PowerPC-Opts,		Next:	PowerPC-Pseudo,		Up:	PPC-Dependent

9.35.1	Options

3/25/20 as.info 287

The	PowerPC	chip	family	includes	several	successive	levels,	using	the
same	core	instruction	set,	but	including	a	few	additional	instructions
at	each	level.		There	are	exceptions	to	this	however.		For	details	on
what	instructions	each	variant	supports,	please	see	the	chip's
architecture	reference	manual.

			The	following	table	lists	all	available	PowerPC	options.

'-a32'
					Generate	ELF32	or	XCOFF32.

'-a64'
					Generate	ELF64	or	XCOFF64.

'-K	PIC'
					Set	EF_PPC_RELOCATABLE_LIB	in	ELF	flags.

'-mpwrx	|	-mpwr2'
					Generate	code	for	POWER/2	(RIOS2).

'-mpwr'
					Generate	code	for	POWER	(RIOS1)

'-m601'
					Generate	code	for	PowerPC	601.

'-mppc,	-mppc32,	-m603,	-m604'
					Generate	code	for	PowerPC	603/604.

'-m403,	-m405'
					Generate	code	for	PowerPC	403/405.

'-m440'
					Generate	code	for	PowerPC	440.		BookE	and	some	405	instructions.

'-m464'
					Generate	code	for	PowerPC	464.

'-m476'
					Generate	code	for	PowerPC	476.

'-m7400,	-m7410,	-m7450,	-m7455'
					Generate	code	for	PowerPC	7400/7410/7450/7455.

'-m750cl'
					Generate	code	for	PowerPC	750CL.

'-m821,	-m850,	-m860'
					Generate	code	for	PowerPC	821/850/860.

'-mppc64,	-m620'
					Generate	code	for	PowerPC	620/625/630.

'-me500,	-me500x2'
					Generate	code	for	Motorola	e500	core	complex.

'-me500mc'

3/25/20 as.info 288

					Generate	code	for	Freescale	e500mc	core	complex.

'-me500mc64'
					Generate	code	for	Freescale	e500mc64	core	complex.

'-me5500'
					Generate	code	for	Freescale	e5500	core	complex.

'-me6500'
					Generate	code	for	Freescale	e6500	core	complex.

'-mspe'
					Generate	code	for	Motorola	SPE	instructions.

'-mtitan'
					Generate	code	for	AppliedMicro	Titan	core	complex.

'-mppc64bridge'
					Generate	code	for	PowerPC	64,	including	bridge	insns.

'-mbooke'
					Generate	code	for	32-bit	BookE.

'-ma2'
					Generate	code	for	A2	architecture.

'-me300'
					Generate	code	for	PowerPC	e300	family.

'-maltivec'
					Generate	code	for	processors	with	AltiVec	instructions.

'-mvle'
					Generate	code	for	Freescale	PowerPC	VLE	instructions.

'-mvsx'
					Generate	code	for	processors	with	Vector-Scalar	(VSX)	instructions.

'-mhtm'
					Generate	code	for	processors	with	Hardware	Transactional	Memory
					instructions.

'-mpower4,	-mpwr4'
					Generate	code	for	Power4	architecture.

'-mpower5,	-mpwr5,	-mpwr5x'
					Generate	code	for	Power5	architecture.

'-mpower6,	-mpwr6'
					Generate	code	for	Power6	architecture.

'-mpower7,	-mpwr7'
					Generate	code	for	Power7	architecture.

'-mpower8,	-mpwr8'
					Generate	code	for	Power8	architecture.

'-mpower9,	-mpwr9'
					Generate	code	for	Power9	architecture.

3/25/20 as.info 289

'-mcell'
'-mcell'
					Generate	code	for	Cell	Broadband	Engine	architecture.

'-mcom'
					Generate	code	Power/PowerPC	common	instructions.

'-many'
					Generate	code	for	any	architecture	(PWR/PWRX/PPC).

'-mregnames'
					Allow	symbolic	names	for	registers.

'-mno-regnames'
					Do	not	allow	symbolic	names	for	registers.

'-mrelocatable'
					Support	for	GCC's	-mrelocatable	option.

'-mrelocatable-lib'
					Support	for	GCC's	-mrelocatable-lib	option.

'-memb'
					Set	PPC_EMB	bit	in	ELF	flags.

'-mlittle,	-mlittle-endian,	-le'
					Generate	code	for	a	little	endian	machine.

'-mbig,	-mbig-endian,	-be'
					Generate	code	for	a	big	endian	machine.

'-msolaris'
					Generate	code	for	Solaris.

'-mno-solaris'
					Do	not	generate	code	for	Solaris.

'-nops=COUNT'
					If	an	alignment	directive	inserts	more	than	COUNT	nops,	put	a
					branch	at	the	beginning	to	skip	execution	of	the	nops.

�
File:	as.info,		Node:	PowerPC-Pseudo,		Next:	PowerPC-Syntax,		Prev:	PowerPC-Opts,
Up:	PPC-Dependent

9.35.2	PowerPC	Assembler	Directives

A	number	of	assembler	directives	are	available	for	PowerPC.	The
following	table	is	far	from	complete.

'.machine	"string"'
					This	directive	allows	you	to	change	the	machine	for	which	code	is
					generated.		'"string"'	may	be	any	of	the	-m	cpu	selection	options
					(without	the	-m)	enclosed	in	double	quotes,	'"push"',	or	'"pop"'.
					'.machine	"push"'	saves	the	currently	selected	cpu,	which	may	be
					restored	with	'.machine	"pop"'.

3/25/20 as.info 290

�
File:	as.info,		Node:	PowerPC-Syntax,		Prev:	PowerPC-Pseudo,		Up:	PPC-Dependent

9.35.3	PowerPC	Syntax

*	Menu:

*	PowerPC-Chars::																Special	Characters

�
File:	as.info,		Node:	PowerPC-Chars,		Up:	PowerPC-Syntax

9.35.3.1	Special	Characters
...........................

The	presence	of	a	'#'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			If	the	assembler	has	been	configured	for	the	ppc-*-solaris*	target
then	the	'!'	character	also	acts	as	a	line	comment	character.		This	can
be	disabled	via	the	'-mno-solaris'	command	line	option.

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	RL78-Dependent,		Next:	RISC-V-Dependent,		Prev:	PPC-Dependent,
Up:	Machine	Dependencies

9.36	RL78	Dependent	Features
============================

*	Menu:

*	RL78-Opts::																			RL78	Assembler	Command	Line	Options
*	RL78-Modifiers::														Symbolic	Operand	Modifiers
*	RL78-Directives::													Assembler	Directives
*	RL78-Syntax::																	Syntax

�
File:	as.info,		Node:	RL78-Opts,		Next:	RL78-Modifiers,		Up:	RL78-Dependent

9.36.1	RL78	Options

'relax'
					Enable	support	for	link-time	relaxation.

'norelax'
					Disable	support	for	link-time	relaxation	(default).

'mg10'
					Mark	the	generated	binary	as	targeting	the	G10	variant	of	the	RL78

3/25/20 as.info 291

					architecture.

'mg13'
					Mark	the	generated	binary	as	targeting	the	G13	variant	of	the	RL78
					architecture.

'mg14'
'mrl78'
					Mark	the	generated	binary	as	targeting	the	G14	variant	of	the	RL78
					architecture.		This	is	the	default.

'm32bit-doubles'
					Mark	the	generated	binary	as	one	that	uses	32-bits	to	hold	the
					'double'	floating	point	type.		This	is	the	default.

'm64bit-doubles'
					Mark	the	generated	binary	as	one	that	uses	64-bits	to	hold	the
					'double'	floating	point	type.

�
File:	as.info,		Node:	RL78-Modifiers,		Next:	RL78-Directives,		Prev:	RL78-Opts,		Up:
RL78-Dependent

9.36.2	Symbolic	Operand	Modifiers

The	RL78	has	three	modifiers	that	adjust	the	relocations	used	by	the
linker:

'%lo16()'

					When	loading	a	20-bit	(or	wider)	address	into	registers,	this
					modifier	selects	the	16	least	significant	bits.

												movw	ax,#%lo16(_sym)

'%hi16()'

					When	loading	a	20-bit	(or	wider)	address	into	registers,	this
					modifier	selects	the	16	most	significant	bits.

												movw	ax,#%hi16(_sym)

'%hi8()'

					When	loading	a	20-bit	(or	wider)	address	into	registers,	this
					modifier	selects	the	8	bits	that	would	go	into	CS	or	ES	(i.e.		bits
					23..16).

												mov	es,	#%hi8(_sym)

�
File:	as.info,		Node:	RL78-Directives,		Next:	RL78-Syntax,		Prev:	RL78-Modifiers,
Up:	RL78-Dependent

9.36.3	Assembler	Directives

In	addition	to	the	common	directives,	the	RL78	adds	these:

3/25/20 as.info 292

'.double'
					Output	a	constant	in	"double"	format,	which	is	either	a	32-bit	or	a
					64-bit	floating	point	value,	depending	upon	the	setting	of	the
					'-m32bit-doubles'|'-m64bit-doubles'	command	line	option.

'.bss'
					Select	the	BSS	section.

'.3byte'
					Output	a	constant	value	in	a	three	byte	format.

'.int'
'.word'
					Output	a	constant	value	in	a	four	byte	format.

�
File:	as.info,		Node:	RL78-Syntax,		Prev:	RL78-Directives,		Up:	RL78-Dependent

9.36.4	Syntax	for	the	RL78

*	Menu:

*	RL78-Chars::																Special	Characters

�
File:	as.info,		Node:	RL78-Chars,		Up:	RL78-Syntax

9.36.4.1	Special	Characters
...........................

The	presence	of	a	';'	appearing	anywhere	on	a	line	indicates	the	start
of	a	comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	'|'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	RISC-V-Dependent,		Next:	RX-Dependent,		Prev:	RL78-Dependent,
Up:	Machine	Dependencies

9.37	RISC-V	Dependent	Features
==============================

*	Menu:

*	RISC-V-Opts::						RISC-V	Options

�
File:	as.info,		Node:	RISC-V-Opts,		Up:	RISC-V-Dependent

9.37.1	Options

3/25/20 as.info 293

The	following	table	lists	all	availiable	RISC-V	specific	options

'-fpic'
					Generate	position-independent	code

'-fno-pic'
					Don't	generate	position-independent	code	(default)

'-march=ISA'
					Select	the	base	isa,	as	specified	by	ISA.	For	example
					-march=rv32ima.

'-mabi=ABI'
					Selects	the	ABI,	which	is	either	"ilp32"	or	"lp64",	optionally
					followed	by	"f",	"d",	or	"q"	to	indicate	single-precision,
					double-precision,	or	quad-precision	floating-point	calling
					convention,	or	none	to	indicate	the	soft-float	calling	convention.

�
File:	as.info,		Node:	RX-Dependent,		Next:	S/390-Dependent,		Prev:	RISC-V-Dependent,
Up:	Machine	Dependencies

9.38	RX	Dependent	Features
==========================

*	Menu:

*	RX-Opts::																			RX	Assembler	Command	Line	Options
*	RX-Modifiers::														Symbolic	Operand	Modifiers
*	RX-Directives::													Assembler	Directives
*	RX-Float::																		Floating	Point
*	RX-Syntax::																	Syntax

�
File:	as.info,		Node:	RX-Opts,		Next:	RX-Modifiers,		Up:	RX-Dependent

9.38.1	RX	Options

The	Renesas	RX	port	of	'as'	has	a	few	target	specfic	command	line
options:

'-m32bit-doubles'
					This	option	controls	the	ABI	and	indicates	to	use	a	32-bit	float
					ABI.	It	has	no	effect	on	the	assembled	instructions,	but	it	does
					influence	the	behaviour	of	the	'.double'	pseudo-op.		This	is	the
					default.

'-m64bit-doubles'
					This	option	controls	the	ABI	and	indicates	to	use	a	64-bit	float
					ABI.	It	has	no	effect	on	the	assembled	instructions,	but	it	does
					influence	the	behaviour	of	the	'.double'	pseudo-op.

'-mbig-endian'
					This	option	controls	the	ABI	and	indicates	to	use	a	big-endian	data
					ABI.	It	has	no	effect	on	the	assembled	instructions,	but	it	does
					influence	the	behaviour	of	the	'.short',	'.hword',	'.int',	'.word',
					'.long',	'.quad'	and	'.octa'	pseudo-ops.

3/25/20 as.info 294

'-mlittle-endian'
					This	option	controls	the	ABI	and	indicates	to	use	a	little-endian
					data	ABI.	It	has	no	effect	on	the	assembled	instructions,	but	it
					does	influence	the	behaviour	of	the	'.short',	'.hword',	'.int',
					'.word',	'.long',	'.quad'	and	'.octa'	pseudo-ops.		This	is	the
					default.

'-muse-conventional-section-names'
					This	option	controls	the	default	names	given	to	the	code	(.text),
					initialised	data	(.data)	and	uninitialised	data	sections	(.bss).

'-muse-renesas-section-names'
					This	option	controls	the	default	names	given	to	the	code	(.P),
					initialised	data	(.D_1)	and	uninitialised	data	sections	(.B_1).
					This	is	the	default.

'-msmall-data-limit'
					This	option	tells	the	assembler	that	the	small	data	limit	feature
					of	the	RX	port	of	GCC	is	being	used.		This	results	in	the	assembler
					generating	an	undefined	reference	to	a	symbol	called	'__gp'	for	use
					by	the	relocations	that	are	needed	to	support	the	small	data	limit
					feature.		This	option	is	not	enabled	by	default	as	it	would
					otherwise	pollute	the	symbol	table.

'-mpid'
					This	option	tells	the	assembler	that	the	position	independent	data
					of	the	RX	port	of	GCC	is	being	used.		This	results	in	the	assembler
					generating	an	undefined	reference	to	a	symbol	called	'__pid_base',
					and	also	setting	the	RX_PID	flag	bit	in	the	e_flags	field	of	the
					ELF	header	of	the	object	file.

'-mint-register=NUM'
					This	option	tells	the	assembler	how	many	registers	have	been
					reserved	for	use	by	interrupt	handlers.		This	is	needed	in	order	to
					compute	the	correct	values	for	the	'%gpreg'	and	'%pidreg'	meta
					registers.

'-mgcc-abi'
					This	option	tells	the	assembler	that	the	old	GCC	ABI	is	being	used
					by	the	assembled	code.		With	this	version	of	the	ABI	function
					arguments	that	are	passed	on	the	stack	are	aligned	to	a	32-bit
					boundary.

'-mrx-abi'
					This	option	tells	the	assembler	that	the	official	RX	ABI	is	being
					used	by	the	assembled	code.		With	this	version	of	the	ABI	function
					arguments	that	are	passed	on	the	stack	are	aligned	to	their	natural
					alignments.		This	option	is	the	default.

'-mcpu=NAME'
					This	option	tells	the	assembler	the	target	CPU	type.		Currently	the
					'rx100',	'rx200',	'rx600',	'rx610'	and	'rxv2'	are	recognised	as
					valid	cpu	names.		Attempting	to	assemble	an	instruction	not
					supported	by	the	indicated	cpu	type	will	result	in	an	error	message
					being	generated.

'-mno-allow-string-insns'
					This	option	tells	the	assembler	to	mark	the	object	file	that	it	is

3/25/20 as.info 295

					building	as	one	that	does	not	use	the	string	instructions	'SMOVF',
					'SCMPU',	'SMOVB',	'SMOVU',	'SUNTIL'	'SWHILE'	or	the	'RMPA'
					instruction.		In	addition	the	mark	tells	the	linker	to	complain	if
					an	attempt	is	made	to	link	the	binary	with	another	one	that	does
					use	any	of	these	instructions.

					Note	-	the	inverse	of	this	option,	'-mallow-string-insns',	is	not
					needed.		The	assembler	automatically	detects	the	use	of	the	the
					instructions	in	the	source	code	and	labels	the	resulting	object
					file	appropriately.		If	no	string	instructions	are	detected	then
					the	object	file	is	labelled	as	being	one	that	can	be	linked	with
					either	string-using	or	string-banned	object	files.

�
File:	as.info,		Node:	RX-Modifiers,		Next:	RX-Directives,		Prev:	RX-Opts,		Up:	RX-
Dependent

9.38.2	Symbolic	Operand	Modifiers

The	assembler	supports	one	modifier	when	using	symbol	addresses	in	RX
instruction	operands.		The	general	syntax	is	the	following:

					%gp(symbol)

			The	modifier	returns	the	offset	from	the	__GP	symbol	to	the	specified
symbol	as	a	16-bit	value.		The	intent	is	that	this	offset	should	be	used
in	a	register+offset	move	instruction	when	generating	references	to
small	data.		Ie,	like	this:

							mov.W 	%gp(_foo)[%gpreg],	r1

			The	assembler	also	supports	two	meta	register	names	which	can	be	used
to	refer	to	registers	whose	values	may	not	be	known	to	the	programmer.
These	meta	register	names	are:

'%gpreg'
					The	small	data	address	register.

'%pidreg'
					The	PID	base	address	register.

			Both	registers	normally	have	the	value	r13,	but	this	can	change	if
some	registers	have	been	reserved	for	use	by	interrupt	handlers	or	if
both	the	small	data	limit	and	position	independent	data	features	are
being	used	at	the	same	time.

�
File:	as.info,		Node:	RX-Directives,		Next:	RX-Float,		Prev:	RX-Modifiers,		Up:	RX-
Dependent

9.38.3	Assembler	Directives

The	RX	version	of	'as'	has	the	following	specific	assembler	directives:

'.3byte'
					Inserts	a	3-byte	value	into	the	output	file	at	the	current
					location.

3/25/20 as.info 296

'.fetchalign'
					If	the	next	opcode	following	this	directive	spans	a	fetch	line
					boundary	(8	byte	boundary),	the	opcode	is	aligned	to	that	boundary.
					If	the	next	opcode	does	not	span	a	fetch	line,	this	directive	has
					no	effect.		Note	that	one	or	more	labels	may	be	between	this
					directive	and	the	opcode;	those	labels	are	aligned	as	well.		Any
					inserted	bytes	due	to	alignment	will	form	a	NOP	opcode.

�
File:	as.info,		Node:	RX-Float,		Next:	RX-Syntax,		Prev:	RX-Directives,		Up:	RX-
Dependent

9.38.4	Floating	Point

The	floating	point	formats	generated	by	directives	are	these.

'.float'
					'Single'	precision	(32-bit)	floating	point	constants.

'.double'
					If	the	'-m64bit-doubles'	command	line	option	has	been	specified
					then	then	'double'	directive	generates	'double'	precision	(64-bit)
					floating	point	constants,	otherwise	it	generates	'single'	precision
					(32-bit)	floating	point	constants.		To	force	the	generation	of
					64-bit	floating	point	constants	used	the	'dc.d'	directive	instead.

�
File:	as.info,		Node:	RX-Syntax,		Prev:	RX-Float,		Up:	RX-Dependent

9.38.5	Syntax	for	the	RX

*	Menu:

*	RX-Chars::																Special	Characters

�
File:	as.info,		Node:	RX-Chars,		Up:	RX-Syntax

9.38.5.1	Special	Characters
...........................

The	presence	of	a	';'	appearing	anywhere	on	a	line	indicates	the	start
of	a	comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	'!'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	S/390-Dependent,		Next:	SCORE-Dependent,		Prev:	RX-Dependent,
Up:	Machine	Dependencies

3/25/20 as.info 297

9.39	IBM	S/390	Dependent	Features
=================================

The	s390	version	of	'as'	supports	two	architectures	modes	and	eleven
chip	levels.		The	architecture	modes	are	the	Enterprise	System
Architecture	(ESA)	and	the	newer	z/Architecture	mode.		The	chip	levels
are	g5	(or	arch3),	g6,	z900	(or	arch5),	z990	(or	arch6),	z9-109,	z9-ec
(or	arch7),	z10	(or	arch8),	z196	(or	arch9),	zEC12	(or	arch10),	z13	(or
arch11),	and	arch12.

*	Menu:

*	s390	Options::																Command-line	Options.
*	s390	Characters:: Special	Characters.
*	s390	Syntax::																	Assembler	Instruction	syntax.
*	s390	Directives::													Assembler	Directives.
*	s390	Floating	Point::									Floating	Point.

�
File:	as.info,		Node:	s390	Options,		Next:	s390	Characters,		Up:	S/390-Dependent

9.39.1	Options

The	following	table	lists	all	available	s390	specific	options:

'-m31	|	-m64'
					Select	31-	or	64-bit	ABI	implying	a	word	size	of	32-	or	64-bit.

					These	options	are	only	available	with	the	ELF	object	file	format,
					and	require	that	the	necessary	BFD	support	has	been	included	(on	a
					31-bit	platform	you	must	add	-enable-64-bit-bfd	on	the	call	to	the
					configure	script	to	enable	64-bit	usage	and	use	s390x	as	target
					platform).

'-mesa	|	-mzarch'
					Select	the	architecture	mode,	either	the	Enterprise	System
					Architecture	(esa)	mode	or	the	z/Architecture	mode	(zarch).

					The	64-bit	instructions	are	only	available	with	the	z/Architecture
					mode.		The	combination	of	'-m64'	and	'-mesa'	results	in	a	warning
					message.

'-march=CPU'
					This	option	specifies	the	target	processor.		The	following
					processor	names	are	recognized:	'g5'	(or	'arch3'),	'g6',	'z900'	(or
					'arch5'),	'z990'	(or	'arch6'),	'z9-109',	'z9-ec'	(or	'arch7'),
					'z10'	(or	'arch8'),	'z196'	(or	'arch9'),	'zEC12'	(or	'arch10')	and
					'z13'	(or	'arch11').

					Assembling	an	instruction	that	is	not	supported	on	the	target
					processor	results	in	an	error	message.

					The	processor	names	starting	with	'arch'	refer	to	the	edition
					number	in	the	Principle	of	Operations	manual.		They	can	be	used	as
					alternate	processor	names	and	have	been	added	for	compatibility
					with	the	IBM	XL	compiler.

					'arch3',	'g5'	and	'g6'	cannot	be	used	with	the	'-mzarch'	option

3/25/20 as.info 298

					since	the	z/Architecture	mode	is	not	supported	on	these	processor
					levels.

					There	is	no	'arch4'	option	supported.		'arch4'	matches
					'-march=arch5	-mesa'.

'-mregnames'
					Allow	symbolic	names	for	registers.

'-mno-regnames'
					Do	not	allow	symbolic	names	for	registers.

'-mwarn-areg-zero'
					Warn	whenever	the	operand	for	a	base	or	index	register	has	been
					specified	but	evaluates	to	zero.		This	can	indicate	the	misuse	of
					general	purpose	register	0	as	an	address	register.

�
File:	as.info,		Node:	s390	Characters,		Next:	s390	Syntax,		Prev:	s390	Options,		Up:
S/390-Dependent

9.39.2	Special	Characters

'#'	is	the	line	comment	character.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			The	';'	character	can	be	used	instead	of	a	newline	to	separate
statements.

�
File:	as.info,		Node:	s390	Syntax,		Next:	s390	Directives,		Prev:	s390	Characters,
Up:	S/390-Dependent

9.39.3	Instruction	syntax

The	assembler	syntax	closely	follows	the	syntax	outlined	in	Enterprise
Systems	Architecture/390	Principles	of	Operation	(SA22-7201)	and	the
z/Architecture	Principles	of	Operation	(SA22-7832).

			Each	instruction	has	two	major	parts,	the	instruction	mnemonic	and
the	instruction	operands.		The	instruction	format	varies.

*	Menu:

*	s390	Register::															Register	Naming
*	s390	Mnemonics::														Instruction	Mnemonics
*	s390	Operands::															Instruction	Operands
*	s390	Formats::																Instruction	Formats
*	s390	Aliases:: Instruction	Aliases
*	s390	Operand	Modifier::							Instruction	Operand	Modifier
*	s390	Instruction	Marker::					Instruction	Marker
*	s390	Literal	Pool	Entries::			Literal	Pool	Entries

3/25/20 as.info 299

�
File:	as.info,		Node:	s390	Register,		Next:	s390	Mnemonics,		Up:	s390	Syntax

9.39.3.1	Register	naming
........................

The	'as'	recognizes	a	number	of	predefined	symbols	for	the	various
processor	registers.		A	register	specification	in	one	of	the	instruction
formats	is	an	unsigned	integer	between	0	and	15.		The	specific
instruction	and	the	position	of	the	register	in	the	instruction	format
denotes	the	type	of	the	register.		The	register	symbols	are	prefixed
with	'%':

					%rN			the	16	general	purpose	registers,	0	<=	N	<=	15
					%fN			the	16	floating	point	registers,	0	<=	N	<=	15
					%aN			the	16	access	registers,	0	<=	N	<=	15
					%cN			the	16	control	registers,	0	<=	N	<=	15
					%lit		an	alias	for	the	general	purpose	register	%r13
					%sp			an	alias	for	the	general	purpose	register	%r15

�
File:	as.info,		Node:	s390	Mnemonics,		Next:	s390	Operands,		Prev:	s390	Register,
Up:	s390	Syntax

9.39.3.2	Instruction	Mnemonics
..............................

All	instructions	documented	in	the	Principles	of	Operation	are	supported
with	the	mnemonic	and	order	of	operands	as	described.		The	instruction
mnemonic	identifies	the	instruction	format	(*note	s390	Formats::)	and
the	specific	operation	code	for	the	instruction.		For	example,	the	'lr'
mnemonic	denotes	the	instruction	format	'RR'	with	the	operation	code
'0x18'.

			The	definition	of	the	various	mnemonics	follows	a	scheme,	where	the
first	character	usually	hint	at	the	type	of	the	instruction:

					a										add	instruction,	for	example	'al'	for	add	logical	32-bit
					b										branch	instruction,	for	example	'bc'	for	branch	on	condition
					c										compare	or	convert	instruction,	for	example	'cr'	for	compare
																register	32-bit
					d										divide	instruction,	for	example	'dlr'	devide	logical	register
																64-bit	to	32-bit
					i										insert	instruction,	for	example	'ic'	insert	character
					l										load	instruction,	for	example	'ltr'	load	and	test	register
					mv									move	instruction,	for	example	'mvc'	move	character
					m										multiply	instruction,	for	example	'mh'	multiply	halfword
					n										and	instruction,	for	example	'ni'	and	immediate
					o										or	instruction,	for	example	'oc'	or	character
					sla,	sll			shift	left	single	instruction
					sra,	srl			shift	right	single	instruction
					st									store	instruction,	for	example	'stm'	store	multiple
					s										subtract	instruction,	for	example	'slr'	subtract
																logical	32-bit
					t										test	or	translate	instruction,	of	example	'tm'	test	under	mask
					x										exclusive	or	instruction,	for	example	'xc'	exclusive	or
																character

			Certain	characters	at	the	end	of	the	mnemonic	may	describe	a	property

3/25/20 as.info 300

of	the	instruction:

					c			the	instruction	uses	a	8-bit	character	operand
					f			the	instruction	extends	a	32-bit	operand	to	64	bit
					g			the	operands	are	treated	as	64-bit	values
					h			the	operand	uses	a	16-bit	halfword	operand
					i			the	instruction	uses	an	immediate	operand
					l			the	instruction	uses	unsigned,	logical	operands
					m			the	instruction	uses	a	mask	or	operates	on	multiple	values
					r			if	r	is	the	last	character,	the	instruction	operates	on	registers
					y			the	instruction	uses	20-bit	displacements

			There	are	many	exceptions	to	the	scheme	outlined	in	the	above	lists,
in	particular	for	the	priviledged	instructions.		For	non-priviledged
instruction	it	works	quite	well,	for	example	the	instruction	'clgfr'	c:
compare	instruction,	l:	unsigned	operands,	g:	64-bit	operands,	f:	32-	to
64-bit	extension,	r:	register	operands.		The	instruction	compares	an
64-bit	value	in	a	register	with	the	zero	extended	32-bit	value	from	a
second	register.		For	a	complete	list	of	all	mnemonics	see	appendix	B	in
the	Principles	of	Operation.

�
File:	as.info,		Node:	s390	Operands,		Next:	s390	Formats,		Prev:	s390	Mnemonics,		Up:
s390	Syntax

9.39.3.3	Instruction	Operands
.............................

Instruction	operands	can	be	grouped	into	three	classes,	operands	located
in	registers,	immediate	operands,	and	operands	in	storage.

			A	register	operand	can	be	located	in	general,	floating-point,	access,
or	control	register.		The	register	is	identified	by	a	four-bit	field.
The	field	containing	the	register	operand	is	called	the	R	field.

			Immediate	operands	are	contained	within	the	instruction	and	can	have
8,	16	or	32	bits.		The	field	containing	the	immediate	operand	is	called
the	I	field.		Dependent	on	the	instruction	the	I	field	is	either	signed
or	unsigned.

			A	storage	operand	consists	of	an	address	and	a	length.		The	address
of	a	storage	operands	can	be	specified	in	any	of	these	ways:

			*	The	content	of	a	single	general	R
			*	The	sum	of	the	content	of	a	general	register	called	the	base
					register	B	plus	the	content	of	a	displacement	field	D
			*	The	sum	of	the	contents	of	two	general	registers	called	the	index
					register	X	and	the	base	register	B	plus	the	content	of	a
					displacement	field
			*	The	sum	of	the	current	instruction	address	and	a	32-bit	signed
					immediate	field	multiplied	by	two.

			The	length	of	a	storage	operand	can	be:

			*	Implied	by	the	instruction
			*	Specified	by	a	bitmask
			*	Specified	by	a	four-bit	or	eight-bit	length	field	L
			*	Specified	by	the	content	of	a	general	register

3/25/20 as.info 301

			The	notation	for	storage	operand	addresses	formed	from	multiple
fields	is	as	follows:

'Dn(Bn)'
					the	address	for	operand	number	n	is	formed	from	the	content	of
					general	register	Bn	called	the	base	register	and	the	displacement
					field	Dn.
'Dn(Xn,Bn)'
					the	address	for	operand	number	n	is	formed	from	the	content	of
					general	register	Xn	called	the	index	register,	general	register	Bn
					called	the	base	register	and	the	displacement	field	Dn.
'Dn(Ln,Bn)'
					the	address	for	operand	number	n	is	formed	from	the	content	of
					general	regiser	Bn	called	the	base	register	and	the	displacement
					field	Dn.		The	length	of	the	operand	n	is	specified	by	the	field
					Ln.

			The	base	registers	Bn	and	the	index	registers	Xn	of	a	storage	operand
can	be	skipped.		If	Bn	and	Xn	are	skipped,	a	zero	will	be	stored	to	the
operand	field.		The	notation	changes	as	follows:

					full	notation										short	notation
					--
					Dn(0,Bn)															Dn(Bn)
					Dn(0,0)																Dn
					Dn(0)																		Dn
					Dn(Ln,0)															Dn(Ln)

�
File:	as.info,		Node:	s390	Formats,		Next:	s390	Aliases,		Prev:	s390	Operands,		Up:
s390	Syntax

9.39.3.4	Instruction	Formats
............................

The	Principles	of	Operation	manuals	lists	26	instruction	formats	where
some	of	the	formats	have	multiple	variants.		For	the	'.insn'	pseudo
directive	the	assembler	recognizes	some	of	the	formats.		Typically,	the
most	general	variant	of	the	instruction	format	is	used	by	the	'.insn'
directive.

			The	following	table	lists	the	abbreviations	used	in	the	table	of
instruction	formats:

					OpCode	/	OpCd			Part	of	the	op	code.
					Bx														Base	register	number	for	operand	x.
					Dx														Displacement	for	operand	x.
					DLx													Displacement	lower	12	bits	for	operand	x.
					DHx													Displacement	higher	8-bits	for	operand	x.
					Rx														Register	number	for	operand	x.
					Xx														Index	register	number	for	operand	x.
					Ix														Signed	immediate	for	operand	x.
					Ux														Unsigned	immediate	for	operand	x.

			An	instruction	is	two,	four,	or	six	bytes	in	length	and	must	be
aligned	on	a	2	byte	boundary.		The	first	two	bits	of	the	instruction
specify	the	length	of	the	instruction,	00	indicates	a	two	byte
instruction,	01	and	10	indicates	a	four	byte	instruction,	and	11
indicates	a	six	byte	instruction.

3/25/20 as.info 302

			The	following	table	lists	the	s390	instruction	formats	that	are
available	with	the	'.insn'	pseudo	directive:

'E	format'
					+-------------+
					|				OpCode			|
					+-------------+
					0												15

'RI	format:	<insn>	R1,I2'
					+--------+----+----+------------------+
					|	OpCode	|	R1	|OpCd|								I2								|
					+--------+----+----+------------------+
					0								8				12			16																31

'RIE	format:	<insn>	R1,R3,I2'
					+--------+----+----+------------------+--------+--------+
					|	OpCode	|	R1	|	R3	|								I2								|////////|	OpCode	|
					+--------+----+----+------------------+--------+--------+
					0								8				12			16																	32							40						47

'RIL	format:	<insn>	R1,I2'
					+--------+----+----+------------------------------------+
					|	OpCode	|	R1	|OpCd|																		I2																|
					+--------+----+----+------------------------------------+
					0								8				12			16																																		47

'RILU	format:	<insn>	R1,U2'
					+--------+----+----+------------------------------------+
					|	OpCode	|	R1	|OpCd|																		U2																|
					+--------+----+----+------------------------------------+
					0								8				12			16																																		47

'RIS	format:	<insn>	R1,I2,M3,D4(B4)'
					+--------+----+----+----+-------------+--------+--------+
					|	OpCode	|	R1	|	M3	|	B4	|					D4						|			I2			|	Opcode	|
					+--------+----+----+----+-------------+--------+--------+
					0								8				12			16			20												32							36						47

'RR	format:	<insn>	R1,R2'
					+--------+----+----+
					|	OpCode	|	R1	|	R2	|
					+--------+----+----+
					0								8				12		15

'RRE	format:	<insn>	R1,R2'
					+------------------+--------+----+----+
					|						OpCode						|////////|	R1	|	R2	|
					+------------------+--------+----+----+
					0																		16							24			28		31

'RRF	format:	<insn>	R1,R2,R3,M4'
					+------------------+----+----+----+----+
					|						OpCode						|	R3	|	M4	|	R1	|	R2	|
					+------------------+----+----+----+----+
					0																		16			20			24			28		31

'RRS	format:	<insn>	R1,R2,M3,D4(B4)'

3/25/20 as.info 303

					+--------+----+----+----+-------------+----+----+--------+
					|	OpCode	|	R1	|	R3	|	B4	|					D4						|	M3	|////|	OpCode	|
					+--------+----+----+----+-------------+----+----+--------+
					0								8				12			16			20												32			36			40						47

'RS	format:	<insn>	R1,R3,D2(B2)'
					+--------+----+----+----+-------------+
					|	OpCode	|	R1	|	R3	|	B2	|					D2						|
					+--------+----+----+----+-------------+
					0								8				12			16			20											31

'RSE	format:	<insn>	R1,R3,D2(B2)'
					+--------+----+----+----+-------------+--------+--------+
					|	OpCode	|	R1	|	R3	|	B2	|					D2						|////////|	OpCode	|
					+--------+----+----+----+-------------+--------+--------+
					0								8				12			16			20												32							40						47

'RSI	format:	<insn>	R1,R3,I2'
					+--------+----+----+------------------------------------+
					|	OpCode	|	R1	|	R3	|																		I2																|
					+--------+----+----+------------------------------------+
					0								8				12			16																																		47

'RSY	format:	<insn>	R1,R3,D2(B2)'
					+--------+----+----+----+-------------+--------+--------+
					|	OpCode	|	R1	|	R3	|	B2	|				DL2						|		DH2			|	OpCode	|
					+--------+----+----+----+-------------+--------+--------+
					0								8				12			16			20												32							40						47

'RX	format:	<insn>	R1,D2(X2,B2)'
					+--------+----+----+----+-------------+
					|	OpCode	|	R1	|	X2	|	B2	|					D2						|
					+--------+----+----+----+-------------+
					0								8				12			16			20											31

'RXE	format:	<insn>	R1,D2(X2,B2)'
					+--------+----+----+----+-------------+--------+--------+
					|	OpCode	|	R1	|	X2	|	B2	|					D2						|////////|	OpCode	|
					+--------+----+----+----+-------------+--------+--------+
					0								8				12			16			20												32							40						47

'RXF	format:	<insn>	R1,R3,D2(X2,B2)'
					+--------+----+----+----+-------------+----+---+--------+
					|	OpCode	|	R3	|	X2	|	B2	|					D2						|	R1	|///|	OpCode	|
					+--------+----+----+----+-------------+----+---+--------+
					0								8				12			16			20												32			36		40						47

'RXY	format:	<insn>	R1,D2(X2,B2)'
					+--------+----+----+----+-------------+--------+--------+
					|	OpCode	|	R1	|	X2	|	B2	|					DL2					|			DH2		|	OpCode	|
					+--------+----+----+----+-------------+--------+--------+
					0								8				12			16			20												32			36			40						47

'S	format:	<insn>	D2(B2)'
					+------------------+----+-------------+
					|						OpCode						|	B2	|					D2						|
					+------------------+----+-------------+
					0																		16			20											31

3/25/20 as.info 304

'SI	format:	<insn>	D1(B1),I2'
					+--------+---------+----+-------------+
					|	OpCode	|			I2				|	B1	|					D1						|
					+--------+---------+----+-------------+
					0								8									16			20											31

'SIY	format:	<insn>	D1(B1),U2'
					+--------+---------+----+-------------+--------+--------+
					|	OpCode	|			I2				|	B1	|					DL1					|		DH1			|	OpCode	|
					+--------+---------+----+-------------+--------+--------+
					0								8									16			20												32			36			40						47

'SIL	format:	<insn>	D1(B1),I2'
					+------------------+----+-------------+-----------------+
					|						OpCode						|	B1	|						D1					|							I2								|
					+------------------+----+-------------+-----------------+
					0																		16			20												32															47

'SS	format:	<insn>	D1(R1,B1),D2(B3),R3'
					+--------+----+----+----+-------------+----+------------+
					|	OpCode	|	R1	|	R3	|	B1	|					D1						|	B2	|					D2					|
					+--------+----+----+----+-------------+----+------------+
					0								8				12			16			20												32			36										47

'SSE	format:	<insn>	D1(B1),D2(B2)'
					+------------------+----+-------------+----+------------+
					|						OpCode						|	B1	|					D1						|	B2	|					D2					|
					+------------------+----+-------------+----+------------+
					0								8				12			16			20												32			36											47

'SSF	format:	<insn>	D1(B1),D2(B2),R3'
					+--------+----+----+----+-------------+----+------------+
					|	OpCode	|	R3	|OpCd|	B1	|					D1						|	B2	|					D2					|
					+--------+----+----+----+-------------+----+------------+
					0								8				12			16			20												32			36											47

			For	the	complete	list	of	all	instruction	format	variants	see	the
Principles	of	Operation	manuals.

�
File:	as.info,		Node:	s390	Aliases,		Next:	s390	Operand	Modifier,		Prev:	s390
Formats,		Up:	s390	Syntax

9.39.3.5	Instruction	Aliases
............................

A	specific	bit	pattern	can	have	multiple	mnemonics,	for	example	the	bit
pattern	'0xa7000000'	has	the	mnemonics	'tmh'	and	'tmlh'.		In	addition,
there	are	a	number	of	mnemonics	recognized	by	'as'	that	are	not	present
in	the	Principles	of	Operation.		These	are	the	short	forms	of	the	branch
instructions,	where	the	condition	code	mask	operand	is	encoded	in	the
mnemonic.		This	is	relevant	for	the	branch	instructions,	the	compare	and
branch	instructions,	and	the	compare	and	trap	instructions.

			For	the	branch	instructions	there	are	20	condition	code	strings	that
can	be	used	as	part	of	the	mnemonic	in	place	of	a	mask	operand	in	the
instruction	format:

					instruction												short	form

3/25/20 as.info 305

					--
					bcr			M1,R2												b<m>r		R2
					bc				M1,D2(X2,B2)					b<m>			D2(X2,B2)
					brc			M1,I2												j<m>			I2
					brcl		M1,I2												jg<m>		I2

			In	the	mnemonic	for	a	branch	instruction	the	condition	code	string
<m>	can	be	any	of	the	following:

					o					jump	on	overflow	/	if	ones
					h					jump	on	A	high
					p					jump	on	plus
					nle			jump	on	not	low	or	equal
					l					jump	on	A	low
					m					jump	on	minus
					nhe			jump	on	not	high	or	equal
					lh				jump	on	low	or	high
					ne				jump	on	A	not	equal	B
					nz				jump	on	not	zero	/	if	not	zeros
					e					jump	on	A	equal	B
					z					jump	on	zero	/	if	zeroes
					nlh			jump	on	not	low	or	high
					he				jump	on	high	or	equal
					nl				jump	on	A	not	low
					nm				jump	on	not	minus	/	if	not	mixed
					le				jump	on	low	or	equal
					nh				jump	on	A	not	high
					np				jump	on	not	plus
					no				jump	on	not	overflow	/	if	not	ones

			For	the	compare	and	branch,	and	compare	and	trap	instructions	there
are	12	condition	code	strings	that	can	be	used	as	part	of	the	mnemonic
in	place	of	a	mask	operand	in	the	instruction	format:

					instruction																			short	form
					--
					crb				R1,R2,M3,D4(B4)								crb<m>				R1,R2,D4(B4)
					cgrb			R1,R2,M3,D4(B4)								cgrb<m>			R1,R2,D4(B4)
					crj				R1,R2,M3,I4												crj<m>				R1,R2,I4
					cgrj			R1,R2,M3,I4												cgrj<m>			R1,R2,I4
					cib				R1,I2,M3,D4(B4)								cib<m>				R1,I2,D4(B4)
					cgib			R1,I2,M3,D4(B4)								cgib<m>			R1,I2,D4(B4)
					cij				R1,I2,M3,I4												cij<m>				R1,I2,I4
					cgij			R1,I2,M3,I4												cgij<m>			R1,I2,I4
					crt				R1,R2,M3															crt<m>				R1,R2
					cgrt			R1,R2,M3															cgrt<m>			R1,R2
					cit				R1,I2,M3															cit<m>				R1,I2
					cgit			R1,I2,M3															cgit<m>			R1,I2
					clrb			R1,R2,M3,D4(B4)								clrb<m>			R1,R2,D4(B4)
					clgrb		R1,R2,M3,D4(B4)								clgrb<m>		R1,R2,D4(B4)
					clrj			R1,R2,M3,I4												clrj<m>			R1,R2,I4
					clgrj		R1,R2,M3,I4												clgrj<m>		R1,R2,I4
					clib			R1,I2,M3,D4(B4)								clib<m>			R1,I2,D4(B4)
					clgib		R1,I2,M3,D4(B4)								clgib<m>		R1,I2,D4(B4)
					clij			R1,I2,M3,I4												clij<m>			R1,I2,I4
					clgij		R1,I2,M3,I4												clgij<m>		R1,I2,I4
					clrt			R1,R2,M3															clrt<m>			R1,R2
					clgrt		R1,R2,M3															clgrt<m>		R1,R2
					clfit		R1,I2,M3															clfit<m>		R1,I2

3/25/20 as.info 306

					clgit		R1,I2,M3															clgit<m>		R1,I2

			In	the	mnemonic	for	a	compare	and	branch	and	compare	and	trap
instruction	the	condition	code	string	<m>	can	be	any	of	the	following:

					h					jump	on	A	high
					nle			jump	on	not	low	or	equal
					l					jump	on	A	low
					nhe			jump	on	not	high	or	equal
					ne				jump	on	A	not	equal	B
					lh				jump	on	low	or	high
					e					jump	on	A	equal	B
					nlh			jump	on	not	low	or	high
					nl				jump	on	A	not	low
					he				jump	on	high	or	equal
					nh				jump	on	A	not	high
					le				jump	on	low	or	equal

�
File:	as.info,		Node:	s390	Operand	Modifier,		Next:	s390	Instruction	Marker,		Prev:
s390	Aliases,		Up:	s390	Syntax

9.39.3.6	Instruction	Operand	Modifier
.....................................

If	a	symbol	modifier	is	attached	to	a	symbol	in	an	expression	for	an
instruction	operand	field,	the	symbol	term	is	replaced	with	a	reference
to	an	object	in	the	global	offset	table	(GOT)	or	the	procedure	linkage
table	(PLT).	The	following	expressions	are	allowed:	'symbol@modifier	+
constant',	'symbol@modifier	+	label	+	constant',	and	'symbol@modifier	-
label	+	constant'.		The	term	'symbol'	is	the	symbol	that	will	be	entered
into	the	GOT	or	PLT,	'label'	is	a	local	label,	and	'constant'	is	an
arbitrary	expression	that	the	assembler	can	evaluate	to	a	constant
value.

			The	term	'(symbol	+	constant1)@modifier	+/-	label	+	constant2'	is
also	accepted	but	a	warning	message	is	printed	and	the	term	is	converted
to	'symbol@modifier	+/-	label	+	constant1	+	constant2'.

'@got'
'@got12'
					The	@got	modifier	can	be	used	for	displacement	fields,	16-bit
					immediate	fields	and	32-bit	pc-relative	immediate	fields.		The
					@got12	modifier	is	synonym	to	@got.		The	symbol	is	added	to	the
					GOT.	For	displacement	fields	and	16-bit	immediate	fields	the	symbol
					term	is	replaced	with	the	offset	from	the	start	of	the	GOT	to	the
					GOT	slot	for	the	symbol.		For	a	32-bit	pc-relative	field	the
					pc-relative	offset	to	the	GOT	slot	from	the	current	instruction
					address	is	used.
'@gotent'
					The	@gotent	modifier	can	be	used	for	32-bit	pc-relative	immediate
					fields.		The	symbol	is	added	to	the	GOT	and	the	symbol	term	is
					replaced	with	the	pc-relative	offset	from	the	current	instruction
					to	the	GOT	slot	for	the	symbol.
'@gotoff'
					The	@gotoff	modifier	can	be	used	for	16-bit	immediate	fields.		The
					symbol	term	is	replaced	with	the	offset	from	the	start	of	the	GOT
					to	the	address	of	the	symbol.
'@gotplt'

3/25/20 as.info 307

					The	@gotplt	modifier	can	be	used	for	displacement	fields,	16-bit
					immediate	fields,	and	32-bit	pc-relative	immediate	fields.		A
					procedure	linkage	table	entry	is	generated	for	the	symbol	and	a
					jump	slot	for	the	symbol	is	added	to	the	GOT.	For	displacement
					fields	and	16-bit	immediate	fields	the	symbol	term	is	replaced	with
					the	offset	from	the	start	of	the	GOT	to	the	jump	slot	for	the
					symbol.		For	a	32-bit	pc-relative	field	the	pc-relative	offset	to
					the	jump	slot	from	the	current	instruction	address	is	used.
'@plt'
					The	@plt	modifier	can	be	used	for	16-bit	and	32-bit	pc-relative
					immediate	fields.		A	procedure	linkage	table	entry	is	generated	for
					the	symbol.		The	symbol	term	is	replaced	with	the	relative	offset
					from	the	current	instruction	to	the	PLT	entry	for	the	symbol.
'@pltoff'
					The	@pltoff	modifier	can	be	used	for	16-bit	immediate	fields.		The
					symbol	term	is	replaced	with	the	offset	from	the	start	of	the	PLT
					to	the	address	of	the	symbol.
'@gotntpoff'
					The	@gotntpoff	modifier	can	be	used	for	displacement	fields.		The
					symbol	is	added	to	the	static	TLS	block	and	the	negated	offset	to
					the	symbol	in	the	static	TLS	block	is	added	to	the	GOT.	The	symbol
					term	is	replaced	with	the	offset	to	the	GOT	slot	from	the	start	of
					the	GOT.
'@indntpoff'
					The	@indntpoff	modifier	can	be	used	for	32-bit	pc-relative
					immediate	fields.		The	symbol	is	added	to	the	static	TLS	block	and
					the	negated	offset	to	the	symbol	in	the	static	TLS	block	is	added
					to	the	GOT.	The	symbol	term	is	replaced	with	the	pc-relative	offset
					to	the	GOT	slot	from	the	current	instruction	address.

			For	more	information	about	the	thread	local	storage	modifiers
'gotntpoff'	and	'indntpoff'	see	the	ELF	extension	documentation	'ELF
Handling	For	Thread-Local	Storage'.

�
File:	as.info,		Node:	s390	Instruction	Marker,		Next:	s390	Literal	Pool	Entries,
Prev:	s390	Operand	Modifier,		Up:	s390	Syntax

9.39.3.7	Instruction	Marker
...........................

The	thread	local	storage	instruction	markers	are	used	by	the	linker	to
perform	code	optimization.

':tls_load'
					The	:tls_load	marker	is	used	to	flag	the	load	instruction	in	the
					initial	exec	TLS	model	that	retrieves	the	offset	from	the	thread
					pointer	to	a	thread	local	storage	variable	from	the	GOT.
':tls_gdcall'
					The	:tls_gdcall	marker	is	used	to	flag	the	branch-and-save
					instruction	to	the	__tls_get_offset	function	in	the	global	dynamic
					TLS	model.
':tls_ldcall'
					The	:tls_ldcall	marker	is	used	to	flag	the	branch-and-save
					instruction	to	the	__tls_get_offset	function	in	the	local	dynamic
					TLS	model.

			For	more	information	about	the	thread	local	storage	instruction
marker	and	the	linker	optimizations	see	the	ELF	extension	documentation

3/25/20 as.info 308

'ELF	Handling	For	Thread-Local	Storage'.

�
File:	as.info,		Node:	s390	Literal	Pool	Entries,		Prev:	s390	Instruction	Marker,		Up:
s390	Syntax

9.39.3.8	Literal	Pool	Entries
.............................

A	literal	pool	is	a	collection	of	values.		To	access	the	values	a
pointer	to	the	literal	pool	is	loaded	to	a	register,	the	literal	pool
register.		Usually,	register	%r13	is	used	as	the	literal	pool	register
(*note	s390	Register::).		Literal	pool	entries	are	created	by	adding	the
suffix	:lit1,	:lit2,	:lit4,	or	:lit8	to	the	end	of	an	expression	for	an
instruction	operand.		The	expression	is	added	to	the	literal	pool	and
the	operand	is	replaced	with	the	offset	to	the	literal	in	the	literal
pool.

':lit1'
					The	literal	pool	entry	is	created	as	an	8-bit	value.		An	operand
					modifier	must	not	be	used	for	the	original	expression.
':lit2'
					The	literal	pool	entry	is	created	as	a	16	bit	value.		The	operand
					modifier	@got	may	be	used	in	the	original	expression.		The	term
					'x@got:lit2'	will	put	the	got	offset	for	the	global	symbol	x	to	the
					literal	pool	as	16	bit	value.
':lit4'
					The	literal	pool	entry	is	created	as	a	32-bit	value.		The	operand
					modifier	@got	and	@plt	may	be	used	in	the	original	expression.		The
					term	'x@got:lit4'	will	put	the	got	offset	for	the	global	symbol	x
					to	the	literal	pool	as	a	32-bit	value.		The	term	'x@plt:lit4'	will
					put	the	plt	offset	for	the	global	symbol	x	to	the	literal	pool	as	a
					32-bit	value.
':lit8'
					The	literal	pool	entry	is	created	as	a	64-bit	value.		The	operand
					modifier	@got	and	@plt	may	be	used	in	the	original	expression.		The
					term	'x@got:lit8'	will	put	the	got	offset	for	the	global	symbol	x
					to	the	literal	pool	as	a	64-bit	value.		The	term	'x@plt:lit8'	will
					put	the	plt	offset	for	the	global	symbol	x	to	the	literal	pool	as	a
					64-bit	value.

			The	assembler	directive	'.ltorg'	is	used	to	emit	all	literal	pool
entries	to	the	current	position.

�
File:	as.info,		Node:	s390	Directives,		Next:	s390	Floating	Point,		Prev:	s390
Syntax,		Up:	S/390-Dependent

9.39.4	Assembler	Directives

'as'	for	s390	supports	all	of	the	standard	ELF	assembler	directives	as
outlined	in	the	main	part	of	this	document.		Some	directives	have	been
extended	and	there	are	some	additional	directives,	which	are	only
available	for	the	s390	'as'.

'.insn'
					This	directive	permits	the	numeric	representation	of	an
					instructions	and	makes	the	assembler	insert	the	operands	according

3/25/20 as.info 309

					to	one	of	the	instructions	formats	for	'.insn'	(*note	s390
					Formats::).		For	example,	the	instruction	'l	%r1,24(%r15)'	could	be
					written	as	'.insn	rx,0x58000000,%r1,24(%r15)'.
'.short'
'.long'
'.quad'
					This	directive	places	one	or	more	16-bit	(.short),	32-bit	(.long),
					or	64-bit	(.quad)	values	into	the	current	section.		If	an	ELF	or
					TLS	modifier	is	used	only	the	following	expressions	are	allowed:
					'symbol@modifier	+	constant',	'symbol@modifier	+	label	+	constant',
					and	'symbol@modifier	-	label	+	constant'.		The	following	modifiers
					are	available:
					'@got'
					'@got12'
										The	@got	modifier	can	be	used	for	.short,	.long	and	.quad.
										The	@got12	modifier	is	synonym	to	@got.		The	symbol	is	added
										to	the	GOT.	The	symbol	term	is	replaced	with	offset	from	the
										start	of	the	GOT	to	the	GOT	slot	for	the	symbol.
					'@gotoff'
										The	@gotoff	modifier	can	be	used	for	.short,	.long	and	.quad.
										The	symbol	term	is	replaced	with	the	offset	from	the	start	of
										the	GOT	to	the	address	of	the	symbol.
					'@gotplt'
										The	@gotplt	modifier	can	be	used	for	.long	and	.quad.		A
										procedure	linkage	table	entry	is	generated	for	the	symbol	and
										a	jump	slot	for	the	symbol	is	added	to	the	GOT.	The	symbol
										term	is	replaced	with	the	offset	from	the	start	of	the	GOT	to
										the	jump	slot	for	the	symbol.
					'@plt'
										The	@plt	modifier	can	be	used	for	.long	and	.quad.		A
										procedure	linkage	table	entry	us	generated	for	the	symbol.
										The	symbol	term	is	replaced	with	the	address	of	the	PLT	entry
										for	the	symbol.
					'@pltoff'
										The	@pltoff	modifier	can	be	used	for	.short,	.long	and	.quad.
										The	symbol	term	is	replaced	with	the	offset	from	the	start	of
										the	PLT	to	the	address	of	the	symbol.
					'@tlsgd'
					'@tlsldm'
										The	@tlsgd	and	@tlsldm	modifier	can	be	used	for	.long	and
										.quad.		A	tls_index	structure	for	the	symbol	is	added	to	the
										GOT.	The	symbol	term	is	replaced	with	the	offset	from	the
										start	of	the	GOT	to	the	tls_index	structure.
					'@gotntpoff'
					'@indntpoff'
										The	@gotntpoff	and	@indntpoff	modifier	can	be	used	for	.long
										and	.quad.		The	symbol	is	added	to	the	static	TLS	block	and
										the	negated	offset	to	the	symbol	in	the	static	TLS	block	is
										added	to	the	GOT.	For	@gotntpoff	the	symbol	term	is	replaced
										with	the	offset	from	the	start	of	the	GOT	to	the	GOT	slot,	for
										@indntpoff	the	symbol	term	is	replaced	with	the	address	of	the
										GOT	slot.
					'@dtpoff'
										The	@dtpoff	modifier	can	be	used	for	.long	and	.quad.		The
										symbol	term	is	replaced	with	the	offset	of	the	symbol	relative
										to	the	start	of	the	TLS	block	it	is	contained	in.
					'@ntpoff'
										The	@ntpoff	modifier	can	be	used	for	.long	and	.quad.		The
										symbol	term	is	replaced	with	the	offset	of	the	symbol	relative

3/25/20 as.info 310

										to	the	TCB	pointer.

					For	more	information	about	the	thread	local	storage	modifiers	see
					the	ELF	extension	documentation	'ELF	Handling	For	Thread-Local
					Storage'.

'.ltorg'
					This	directive	causes	the	current	contents	of	the	literal	pool	to
					be	dumped	to	the	current	location	(*note	s390	Literal	Pool
					Entries::).

'.machine	STRING[+EXTENSION]...'

					This	directive	allows	changing	the	machine	for	which	code	is
					generated.		'string'	may	be	any	of	the	'-march='	selection	options,
					or	'push',	or	'pop'.		'.machine	push'	saves	the	currently	selected
					cpu,	which	may	be	restored	with	'.machine	pop'.		Be	aware	that	the
					cpu	string	has	to	be	put	into	double	quotes	in	case	it	contains
					characters	not	appropriate	for	identifiers.		So	you	have	to	write
					'"z9-109"'	instead	of	just	'z9-109'.		Extensions	can	be	specified
					after	the	cpu	name,	separated	by	plus	charaters.		Valid	extensions
					are:	'htm',	'nohtm',	'vx',	'novx'.		They	extend	the	basic
					instruction	set	with	features	from	a	higher	cpu	level,	or	remove
					support	for	a	feature	from	the	given	cpu	level.

					Example:	'z13+nohtm'	allows	all	instructions	of	the	z13	cpu	except
					instructions	from	the	HTM	facility.

'.machinemode	string'
					This	directive	allows	to	change	the	architecture	mode	for	which
					code	is	being	generated.		'string'	may	be	'esa',	'zarch',
					'zarch_nohighgprs',	'push',	or	'pop'.		'.machinemode
					zarch_nohighgprs'	can	be	used	to	prevent	the	'highgprs'	flag	from
					being	set	in	the	ELF	header	of	the	output	file.		This	is	useful	in
					situations	where	the	code	is	gated	with	a	runtime	check	which	makes
					sure	that	the	code	is	only	executed	on	kernels	providing	the
					'highgprs'	feature.		'.machinemode	push'	saves	the	currently
					selected	mode,	which	may	be	restored	with	'.machinemode	pop'.

�
File:	as.info,		Node:	s390	Floating	Point,		Prev:	s390	Directives,		Up:	S/390-
Dependent

9.39.5	Floating	Point

The	assembler	recognizes	both	the	IEEE	floating-point	instruction	and
the	hexadecimal	floating-point	instructions.		The	floating-point
constructors	'.float',	'.single',	and	'.double'	always	emit	the	IEEE
format.		To	assemble	hexadecimal	floating-point	constants	the	'.long'
and	'.quad'	directives	must	be	used.

�
File:	as.info,		Node:	SCORE-Dependent,		Next:	SH-Dependent,		Prev:	S/390-Dependent,
Up:	Machine	Dependencies

9.40	SCORE	Dependent	Features
=============================

3/25/20 as.info 311

*	Menu:

*	SCORE-Opts::			 Assembler	options
*	SCORE-Pseudo::								SCORE	Assembler	Directives
*	SCORE-Syntax::								Syntax

�
File:	as.info,		Node:	SCORE-Opts,		Next:	SCORE-Pseudo,		Up:	SCORE-Dependent

9.40.1	Options

The	following	table	lists	all	available	SCORE	options.

'-G	NUM'
					This	option	sets	the	largest	size	of	an	object	that	can	be
					referenced	implicitly	with	the	'gp'	register.		The	default	value	is
					8.

'-EB'
					Assemble	code	for	a	big-endian	cpu

'-EL'
					Assemble	code	for	a	little-endian	cpu

'-FIXDD'
					Assemble	code	for	fix	data	dependency

'-NWARN'
					Assemble	code	for	no	warning	message	for	fix	data	dependency

'-SCORE5'
					Assemble	code	for	target	is	SCORE5

'-SCORE5U'
					Assemble	code	for	target	is	SCORE5U

'-SCORE7'
					Assemble	code	for	target	is	SCORE7,	this	is	default	setting

'-SCORE3'
					Assemble	code	for	target	is	SCORE3

'-march=score7'
					Assemble	code	for	target	is	SCORE7,	this	is	default	setting

'-march=score3'
					Assemble	code	for	target	is	SCORE3

'-USE_R1'
					Assemble	code	for	no	warning	message	when	using	temp	register	r1

'-KPIC'
					Generate	code	for	PIC.	This	option	tells	the	assembler	to	generate
					score	position-independent	macro	expansions.		It	also	tells	the
					assembler	to	mark	the	output	file	as	PIC.

'-O0'
					Assembler	will	not	perform	any	optimizations

3/25/20 as.info 312

'-V'
					Sunplus	release	version

�
File:	as.info,		Node:	SCORE-Pseudo,		Next:	SCORE-Syntax,		Prev:	SCORE-Opts,		Up:
SCORE-Dependent

9.40.2	SCORE	Assembler	Directives

A	number	of	assembler	directives	are	available	for	SCORE.	The	following
table	is	far	from	complete.

'.set	nwarn'
					Let	the	assembler	not	to	generate	warnings	if	the	source	machine
					language	instructions	happen	data	dependency.

'.set	fixdd'
					Let	the	assembler	to	insert	bubbles	(32	bit	nop	instruction	/	16
					bit	nop!		Instruction)	if	the	source	machine	language	instructions
					happen	data	dependency.

'.set	nofixdd'
					Let	the	assembler	to	generate	warnings	if	the	source	machine
					language	instructions	happen	data	dependency.		(Default)

'.set	r1'
					Let	the	assembler	not	to	generate	warnings	if	the	source	program
					uses	r1.		allow	user	to	use	r1

'set	nor1'
					Let	the	assembler	to	generate	warnings	if	the	source	program	uses
					r1.		(Default)

'.sdata'
					Tell	the	assembler	to	add	subsequent	data	into	the	sdata	section

'.rdata'
					Tell	the	assembler	to	add	subsequent	data	into	the	rdata	section

'.frame	"frame-register",	"offset",	"return-pc-register"'
					Describe	a	stack	frame.		"frame-register"	is	the	frame	register,
					"offset"	is	the	distance	from	the	frame	register	to	the	virtual
					frame	pointer,	"return-pc-register"	is	the	return	program	register.
					You	must	use	".ent"	before	".frame"	and	only	one	".frame"	can	be
					used	per	".ent".

'.mask	"bitmask",	"frameoffset"'
					Indicate	which	of	the	integer	registers	are	saved	in	the	current
					function's	stack	frame,	this	is	for	the	debugger	to	explain	the
					frame	chain.

'.ent	"proc-name"'
					Set	the	beginning	of	the	procedure	"proc_name".		Use	this	directive
					when	you	want	to	generate	information	for	the	debugger.

'.end	proc-name'
					Set	the	end	of	a	procedure.		Use	this	directive	to	generate

3/25/20 as.info 313

					information	for	the	debugger.

'.bss'
					Switch	the	destination	of	following	statements	into	the	bss
					section,	which	is	used	for	data	that	is	uninitialized	anywhere.

�
File:	as.info,		Node:	SCORE-Syntax,		Prev:	SCORE-Pseudo,		Up:	SCORE-Dependent

9.40.3	SCORE	Syntax

*	Menu:

*	SCORE-Chars::																Special	Characters

�
File:	as.info,		Node:	SCORE-Chars,		Up:	SCORE-Syntax

9.40.3.1	Special	Characters
...........................

The	presence	of	a	'#'	appearing	anywhere	on	a	line	indicates	the	start
of	a	comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	SH-Dependent,		Next:	SH64-Dependent,		Prev:	SCORE-Dependent,
Up:	Machine	Dependencies

9.41	Renesas	/	SuperH	SH	Dependent	Features
===

*	Menu:

*	SH	Options::														Options
*	SH	Syntax::															Syntax
*	SH	Floating	Point::							Floating	Point
*	SH	Directives::											SH	Machine	Directives
*	SH	Opcodes::														Opcodes

�
File:	as.info,		Node:	SH	Options,		Next:	SH	Syntax,		Up:	SH-Dependent

9.41.1	Options

'as'	has	following	command-line	options	for	the	Renesas	(formerly
Hitachi)	/	SuperH	SH	family.

'--little'
					Generate	little	endian	code.

3/25/20 as.info 314

'--big'
					Generate	big	endian	code.

'--relax'
					Alter	jump	instructions	for	long	displacements.

'--small'
					Align	sections	to	4	byte	boundaries,	not	16.

'--dsp'
					Enable	sh-dsp	insns,	and	disable	sh3e	/	sh4	insns.

'--renesas'
					Disable	optimization	with	section	symbol	for	compatibility	with
					Renesas	assembler.

'--allow-reg-prefix'
					Allow	'$'	as	a	register	name	prefix.

'--fdpic'
					Generate	an	FDPIC	object	file.

'--isa=sh4	|	sh4a'
					Specify	the	sh4	or	sh4a	instruction	set.
'--isa=dsp'
					Enable	sh-dsp	insns,	and	disable	sh3e	/	sh4	insns.
'--isa=fp'
					Enable	sh2e,	sh3e,	sh4,	and	sh4a	insn	sets.
'--isa=all'
					Enable	sh1,	sh2,	sh2e,	sh3,	sh3e,	sh4,	sh4a,	and	sh-dsp	insn	sets.

'-h-tick-hex'
					Support	H'00	style	hex	constants	in	addition	to	0x00	style.

�
File:	as.info,		Node:	SH	Syntax,		Next:	SH	Floating	Point,		Prev:	SH	Options,		Up:
SH-Dependent

9.41.2	Syntax

*	Menu:

*	SH-Chars::																Special	Characters
*	SH-Regs::																	Register	Names
*	SH-Addressing::											Addressing	Modes

�
File:	as.info,		Node:	SH-Chars,		Next:	SH-Regs,		Up:	SH	Syntax

9.41.2.1	Special	Characters
...........................

'!'	is	the	line	comment	character.

			You	can	use	';'	instead	of	a	newline	to	separate	statements.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line

3/25/20 as.info 315

is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			Since	'$'	has	no	special	meaning,	you	may	use	it	in	symbol	names.

�
File:	as.info,		Node:	SH-Regs,		Next:	SH-Addressing,		Prev:	SH-Chars,		Up:	SH	Syntax

9.41.2.2	Register	Names
.......................

You	can	use	the	predefined	symbols	'r0',	'r1',	'r2',	'r3',	'r4',	'r5',
'r6',	'r7',	'r8',	'r9',	'r10',	'r11',	'r12',	'r13',	'r14',	and	'r15'	to
refer	to	the	SH	registers.

			The	SH	also	has	these	control	registers:

'pr'
					procedure	register	(holds	return	address)

'pc'
					program	counter

'mach'
'macl'
					high	and	low	multiply	accumulator	registers

'sr'
					status	register

'gbr'
					global	base	register

'vbr'
					vector	base	register	(for	interrupt	vectors)

�
File:	as.info,		Node:	SH-Addressing,		Prev:	SH-Regs,		Up:	SH	Syntax

9.41.2.3	Addressing	Modes
.........................

'as'	understands	the	following	addressing	modes	for	the	SH.	'RN'	in	the
following	refers	to	any	of	the	numbered	registers,	but	_not_	the	control
registers.

'RN'
					Register	direct

'@RN'
					Register	indirect

'@-RN'
					Register	indirect	with	pre-decrement

'@RN+'
					Register	indirect	with	post-increment

3/25/20 as.info 316

'@(DISP,	RN)'
					Register	indirect	with	displacement

'@(R0,	RN)'
					Register	indexed

'@(DISP,	GBR)'
					'GBR'	offset

'@(R0,	GBR)'
					GBR	indexed

'ADDR'
'@(DISP,	PC)'
					PC	relative	address	(for	branch	or	for	addressing	memory).		The
					'as'	implementation	allows	you	to	use	the	simpler	form	ADDR
					anywhere	a	PC	relative	address	is	called	for;	the	alternate	form	is
					supported	for	compatibility	with	other	assemblers.

'#IMM'
					Immediate	data

�
File:	as.info,		Node:	SH	Floating	Point,		Next:	SH	Directives,		Prev:	SH	Syntax,		Up:
SH-Dependent

9.41.3	Floating	Point

SH2E,	SH3E	and	SH4	groups	have	on-chip	floating-point	unit	(FPU).	Other
SH	groups	can	use	'.float'	directive	to	generate	IEEE	floating-point
numbers.

			SH2E	and	SH3E	support	single-precision	floating	point	calculations	as
well	as	entirely	PCAPI	compatible	emulation	of	double-precision	floating
point	calculations.		SH2E	and	SH3E	instructions	are	a	subset	of	the
floating	point	calculations	conforming	to	the	IEEE754	standard.

			In	addition	to	single-precision	and	double-precision	floating-point
operation	capability,	the	on-chip	FPU	of	SH4	has	a	128-bit	graphic
engine	that	enables	32-bit	floating-point	data	to	be	processed	128	bits
at	a	time.		It	also	supports	4	*	4	array	operations	and	inner	product
operations.		Also,	a	superscalar	architecture	is	employed	that	enables
simultaneous	execution	of	two	instructions	(including	FPU	instructions),
providing	performance	of	up	to	twice	that	of	conventional	architectures
at	the	same	frequency.

�
File:	as.info,		Node:	SH	Directives,		Next:	SH	Opcodes,		Prev:	SH	Floating	Point,
Up:	SH-Dependent

9.41.4	SH	Machine	Directives

'uaword'
'ualong'
'uaquad'
					'as'	will	issue	a	warning	when	a	misaligned	'.word',	'.long',	or
					'.quad'	directive	is	used.		You	may	use	'.uaword',	'.ualong',	or

3/25/20 as.info 317

					'.uaquad'	to	indicate	that	the	value	is	intentionally	misaligned.

�
File:	as.info,		Node:	SH	Opcodes,		Prev:	SH	Directives,		Up:	SH-Dependent

9.41.5	Opcodes

For	detailed	information	on	the	SH	machine	instruction	set,	see
'SH-Microcomputer	User's	Manual'	(Renesas)	or	'SH-4	32-bit	CPU	Core
Architecture'	(SuperH)	and	'SuperH	(SH)	64-Bit	RISC	Series'	(SuperH).

			'as'	implements	all	the	standard	SH	opcodes.		No	additional
pseudo-instructions	are	needed	on	this	family.		Note,	however,	that
because	'as'	supports	a	simpler	form	of	PC-relative	addressing,	you	may
simply	write	(for	example)

					mov.l		bar,r0

where	other	assemblers	might	require	an	explicit	displacement	to	'bar'
from	the	program	counter:

					mov.l		@(DISP,	PC)

			Here	is	a	summary	of	SH	opcodes:

					Legend:
					Rn								a	numbered	register
					Rm								another	numbered	register
					#imm						immediate	data
					disp						displacement
					disp8					8-bit	displacement
					disp12				12-bit	displacement

					add	#imm,Rn																				lds.l	@Rn+,PR
					add	Rm,Rn																						mac.w	@Rm+,@Rn+
					addc	Rm,Rn																					mov	#imm,Rn
					addv	Rm,Rn																					mov	Rm,Rn
					and	#imm,R0																				mov.b	Rm,@(R0,Rn)
					and	Rm,Rn																						mov.b	Rm,@-Rn
					and.b	#imm,@(R0,GBR)											mov.b	Rm,@Rn
					bf	disp8																							mov.b	@(disp,Rm),R0
					bra	disp12																					mov.b	@(disp,GBR),R0
					bsr	disp12																					mov.b	@(R0,Rm),Rn
					bt	disp8																							mov.b	@Rm+,Rn
					clrmac																									mov.b	@Rm,Rn
					clrt																											mov.b	R0,@(disp,Rm)
					cmp/eq	#imm,R0																	mov.b	R0,@(disp,GBR)
					cmp/eq	Rm,Rn																			mov.l	Rm,@(disp,Rn)
					cmp/ge	Rm,Rn																			mov.l	Rm,@(R0,Rn)
					cmp/gt	Rm,Rn																			mov.l	Rm,@-Rn
					cmp/hi	Rm,Rn																			mov.l	Rm,@Rn
					cmp/hs	Rm,Rn																			mov.l	@(disp,Rn),Rm
					cmp/pl	Rn																						mov.l	@(disp,GBR),R0
					cmp/pz	Rn																						mov.l	@(disp,PC),Rn
					cmp/str	Rm,Rn																		mov.l	@(R0,Rm),Rn
					div0s	Rm,Rn																				mov.l	@Rm+,Rn
					div0u																										mov.l	@Rm,Rn
					div1	Rm,Rn																					mov.l	R0,@(disp,GBR)

3/25/20 as.info 318

					exts.b	Rm,Rn																			mov.w	Rm,@(R0,Rn)
					exts.w	Rm,Rn																			mov.w	Rm,@-Rn
					extu.b	Rm,Rn																			mov.w	Rm,@Rn
					extu.w	Rm,Rn																			mov.w	@(disp,Rm),R0
					jmp	@Rn																								mov.w	@(disp,GBR),R0
					jsr	@Rn																								mov.w	@(disp,PC),Rn
					ldc	Rn,GBR																					mov.w	@(R0,Rm),Rn
					ldc	Rn,SR																						mov.w	@Rm+,Rn
					ldc	Rn,VBR																					mov.w	@Rm,Rn
					ldc.l	@Rn+,GBR																	mov.w	R0,@(disp,Rm)
					ldc.l	@Rn+,SR																		mov.w	R0,@(disp,GBR)
					ldc.l	@Rn+,VBR																	mova	@(disp,PC),R0
					lds	Rn,MACH																				movt	Rn
					lds	Rn,MACL																				muls	Rm,Rn
					lds	Rn,PR																						mulu	Rm,Rn
					lds.l	@Rn+,MACH																neg	Rm,Rn
					lds.l	@Rn+,MACL																negc	Rm,Rn
					nop																												stc	VBR,Rn
					not	Rm,Rn																						stc.l	GBR,@-Rn
					or	#imm,R0																					stc.l	SR,@-Rn
					or	Rm,Rn																							stc.l	VBR,@-Rn
					or.b	#imm,@(R0,GBR)												sts	MACH,Rn
					rotcl	Rn																							sts	MACL,Rn
					rotcr	Rn																							sts	PR,Rn
					rotl	Rn																								sts.l	MACH,@-Rn
					rotr	Rn																								sts.l	MACL,@-Rn
					rte																												sts.l	PR,@-Rn
					rts																												sub	Rm,Rn
					sett																											subc	Rm,Rn
					shal	Rn																								subv	Rm,Rn
					shar	Rn																								swap.b	Rm,Rn
					shll	Rn																								swap.w	Rm,Rn
					shll16	Rn																						tas.b	@Rn
					shll2	Rn																							trapa	#imm
					shll8	Rn																							tst	#imm,R0
					shlr	Rn																								tst	Rm,Rn
					shlr16	Rn																						tst.b	#imm,@(R0,GBR)
					shlr2	Rn																							xor	#imm,R0
					shlr8	Rn																							xor	Rm,Rn
					sleep																										xor.b	#imm,@(R0,GBR)
					stc	GBR,Rn																					xtrct	Rm,Rn
					stc	SR,Rn

�
File:	as.info,		Node:	SH64-Dependent,		Next:	Sparc-Dependent,		Prev:	SH-Dependent,
Up:	Machine	Dependencies

9.42	SuperH	SH64	Dependent	Features
===================================

*	Menu:

*	SH64	Options::														Options
*	SH64	Syntax::															Syntax
*	SH64	Directives::											SH64	Machine	Directives
*	SH64	Opcodes::														Opcodes

�
File:	as.info,		Node:	SH64	Options,		Next:	SH64	Syntax,		Up:	SH64-Dependent

3/25/20 as.info 319

9.42.1	Options

'-isa=sh4	|	sh4a'
					Specify	the	sh4	or	sh4a	instruction	set.
'-isa=dsp'
					Enable	sh-dsp	insns,	and	disable	sh3e	/	sh4	insns.
'-isa=fp'
					Enable	sh2e,	sh3e,	sh4,	and	sh4a	insn	sets.
'-isa=all'
					Enable	sh1,	sh2,	sh2e,	sh3,	sh3e,	sh4,	sh4a,	and	sh-dsp	insn	sets.
'-isa=shmedia	|	-isa=shcompact'
					Specify	the	default	instruction	set.		'SHmedia'	specifies	the
					32-bit	opcodes,	and	'SHcompact'	specifies	the	16-bit	opcodes
					compatible	with	previous	SH	families.		The	default	depends	on	the
					ABI	selected;	the	default	for	the	64-bit	ABI	is	SHmedia,	and	the
					default	for	the	32-bit	ABI	is	SHcompact.		If	neither	the	ABI	nor
					the	ISA	is	specified,	the	default	is	32-bit	SHcompact.

					Note	that	the	'.mode'	pseudo-op	is	not	permitted	if	the	ISA	is	not
					specified	on	the	command	line.

'-abi=32	|	-abi=64'
					Specify	the	default	ABI.	If	the	ISA	is	specified	and	the	ABI	is
					not,	the	default	ABI	depends	on	the	ISA,	with	SHmedia	defaulting	to
					64-bit	and	SHcompact	defaulting	to	32-bit.

					Note	that	the	'.abi'	pseudo-op	is	not	permitted	if	the	ABI	is	not
					specified	on	the	command	line.		When	the	ABI	is	specified	on	the
					command	line,	any	'.abi'	pseudo-ops	in	the	source	must	match	it.

'-shcompact-const-crange'
					Emit	code-range	descriptors	for	constants	in	SHcompact	code
					sections.

'-no-mix'
					Disallow	SHmedia	code	in	the	same	section	as	constants	and
					SHcompact	code.

'-no-expand'
					Do	not	expand	MOVI,	PT,	PTA	or	PTB	instructions.

'-expand-pt32'
					With	-abi=64,	expand	PT,	PTA	and	PTB	instructions	to	32	bits	only.

'-h-tick-hex'
					Support	H'00	style	hex	constants	in	addition	to	0x00	style.

�
File:	as.info,		Node:	SH64	Syntax,		Next:	SH64	Directives,		Prev:	SH64	Options,		Up:
SH64-Dependent

9.42.2	Syntax

*	Menu:

*	SH64-Chars::																Special	Characters

3/25/20 as.info 320

*	SH64-Regs::																	Register	Names
*	SH64-Addressing::											Addressing	Modes

�
File:	as.info,		Node:	SH64-Chars,		Next:	SH64-Regs,		Up:	SH64	Syntax

9.42.2.1	Special	Characters
...........................

'!'	is	the	line	comment	character.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			You	can	use	';'	instead	of	a	newline	to	separate	statements.

			Since	'$'	has	no	special	meaning,	you	may	use	it	in	symbol	names.

�
File:	as.info,		Node:	SH64-Regs,		Next:	SH64-Addressing,		Prev:	SH64-Chars,		Up:	SH64
Syntax

9.42.2.2	Register	Names
.......................

You	can	use	the	predefined	symbols	'r0'	through	'r63'	to	refer	to	the
SH64	general	registers,	'cr0'	through	'cr63'	for	control	registers,
'tr0'	through	'tr7'	for	target	address	registers,	'fr0'	through	'fr63'
for	single-precision	floating	point	registers,	'dr0'	through	'dr62'
(even	numbered	registers	only)	for	double-precision	floating	point
registers,	'fv0'	through	'fv60'	(multiples	of	four	only)	for
single-precision	floating	point	vectors,	'fp0'	through	'fp62'	(even
numbered	registers	only)	for	single-precision	floating	point	pairs,
'mtrx0'	through	'mtrx48'	(multiples	of	16	only)	for	4x4	matrices	of
single-precision	floating	point	registers,	'pc'	for	the	program	counter,
and	'fpscr'	for	the	floating	point	status	and	control	register.

			You	can	also	refer	to	the	control	registers	by	the	mnemonics	'sr',
'ssr',	'pssr',	'intevt',	'expevt',	'pexpevt',	'tra',	'spc',	'pspc',
'resvec',	'vbr',	'tea',	'dcr',	'kcr0',	'kcr1',	'ctc',	and	'usr'.

�
File:	as.info,		Node:	SH64-Addressing,		Prev:	SH64-Regs,		Up:	SH64	Syntax

9.42.2.3	Addressing	Modes
.........................

SH64	operands	consist	of	either	a	register	or	immediate	value.		The
immediate	value	can	be	a	constant	or	label	reference	(or	portion	of	a
label	reference),	as	in	this	example:

					 movi 4,r2
					 pt function,	tr4
					 movi (function	>>	16)	&	65535,r0
					 shori function	&	65535,	r0
					 ld.l r0,4,r0

3/25/20 as.info 321

			Instruction	label	references	can	reference	labels	in	either	SHmedia
or	SHcompact.		To	differentiate	between	the	two,	labels	in	SHmedia
sections	will	always	have	the	least	significant	bit	set	(i.e.		they	will
be	odd),	which	SHcompact	labels	will	have	the	least	significant	bit
reset	(i.e.		they	will	be	even).		If	you	need	to	reference	the	actual
address	of	a	label,	you	can	use	the	'datalabel'	modifier,	as	in	this
example:

					 .long function
					 .long datalabel	function

			In	that	example,	the	first	longword	may	or	may	not	have	the	least
significant	bit	set	depending	on	whether	the	label	is	an	SHmedia	label
or	an	SHcompact	label.		The	second	longword	will	be	the	actual	address
of	the	label,	regardless	of	what	type	of	label	it	is.

�
File:	as.info,		Node:	SH64	Directives,		Next:	SH64	Opcodes,		Prev:	SH64	Syntax,		Up:
SH64-Dependent

9.42.3	SH64	Machine	Directives

In	addition	to	the	SH	directives,	the	SH64	provides	the	following
directives:

'.mode	[shmedia|shcompact]'
'.isa	[shmedia|shcompact]'
					Specify	the	ISA	for	the	following	instructions	(the	two	directives
					are	equivalent).		Note	that	programs	such	as	'objdump'	rely	on
					symbolic	labels	to	determine	when	such	mode	switches	occur	(by
					checking	the	least	significant	bit	of	the	label's	address),	so	such
					mode/isa	changes	should	always	be	followed	by	a	label	(in	practice,
					this	is	true	anyway).		Note	that	you	cannot	use	these	directives	if
					you	didn't	specify	an	ISA	on	the	command	line.

'.abi	[32|64]'
					Specify	the	ABI	for	the	following	instructions.		Note	that	you
					cannot	use	this	directive	unless	you	specified	an	ABI	on	the
					command	line,	and	the	ABIs	specified	must	match.

�
File:	as.info,		Node:	SH64	Opcodes,		Prev:	SH64	Directives,		Up:	SH64-Dependent

9.42.4	Opcodes

For	detailed	information	on	the	SH64	machine	instruction	set,	see
'SuperH	64	bit	RISC	Series	Architecture	Manual'	(SuperH,	Inc.).

			'as'	implements	all	the	standard	SH64	opcodes.		In	addition,	the
following	pseudo-opcodes	may	be	expanded	into	one	or	more	alternate
opcodes:

'movi'
					If	the	value	doesn't	fit	into	a	standard	'movi'	opcode,	'as'	will
					replace	the	'movi'	with	a	sequence	of	'movi'	and	'shori'	opcodes.

'pt'

3/25/20 as.info 322

					This	expands	to	a	sequence	of	'movi'	and	'shori'	opcode,	followed
					by	a	'ptrel'	opcode,	or	to	a	'pta'	or	'ptb'	opcode,	depending	on
					the	label	referenced.

�
File:	as.info,		Node:	Sparc-Dependent,		Next:	TIC54X-Dependent,		Prev:	SH64-
Dependent,		Up:	Machine	Dependencies

9.43	SPARC	Dependent	Features
=============================

*	Menu:

*	Sparc-Opts::																		Options
*	Sparc-Aligned-Data:: Option	to	enforce	aligned	data
*	Sparc-Syntax:: Syntax
*	Sparc-Float::																	Floating	Point
*	Sparc-Directives::												Sparc	Machine	Directives

�
File:	as.info,		Node:	Sparc-Opts,		Next:	Sparc-Aligned-Data,		Up:	Sparc-Dependent

9.43.1	Options

The	SPARC	chip	family	includes	several	successive	versions,	using	the
same	core	instruction	set,	but	including	a	few	additional	instructions
at	each	version.		There	are	exceptions	to	this	however.		For	details	on
what	instructions	each	variant	supports,	please	see	the	chip's
architecture	reference	manual.

			By	default,	'as'	assumes	the	core	instruction	set	(SPARC	v6),	but
"bumps"	the	architecture	level	as	needed:	it	switches	to	successively
higher	architectures	as	it	encounters	instructions	that	only	exist	in
the	higher	levels.

			If	not	configured	for	SPARC	v9	('sparc64-*-*')	GAS	will	not	bump	past
sparclite	by	default,	an	option	must	be	passed	to	enable	the	v9
instructions.

			GAS	treats	sparclite	as	being	compatible	with	v8,	unless	an
architecture	is	explicitly	requested.		SPARC	v9	is	always	incompatible
with	sparclite.

'-Av6	|	-Av7	|	-Av8	|	-Aleon	|	-Asparclet	|	-Asparclite'
'-Av8plus	|	-Av8plusa	|	-Av8plusb	|	-Av8plusc	|	-Av8plusd	|	-Av8plusv	|	-Av8plusm'
'-Av9	|	-Av9a	|	-Av9b	|	-Av9c	|	-Av9d	|	-Av9e	|	-Av9v	|	-Av9m'
'-Asparc	|	-Asparcvis	|	-Asparcvis2	|	-Asparcfmaf	|	-Asparcima'
'-Asparcvis3	|	-Asparcvis3r	|	-Asparc5'
					Use	one	of	the	'-A'	options	to	select	one	of	the	SPARC
					architectures	explicitly.		If	you	select	an	architecture
					explicitly,	'as'	reports	a	fatal	error	if	it	encounters	an
					instruction	or	feature	requiring	an	incompatible	or	higher	level.

					'-Av8plus',	'-Av8plusa',	'-Av8plusb',	'-Av8plusc',	'-Av8plusd',	and
					'-Av8plusv'	select	a	32	bit	environment.

					'-Av9',	'-Av9a',	'-Av9b',	'-Av9c',	'-Av9d',	'-Av9e',	'-Av9v'	and
					'-Av9m'	select	a	64	bit	environment	and	are	not	available	unless

3/25/20 as.info 323

					GAS	is	explicitly	configured	with	64	bit	environment	support.

					'-Av8plusa'	and	'-Av9a'	enable	the	SPARC	V9	instruction	set	with
					UltraSPARC	VIS	1.0	extensions.

					'-Av8plusb'	and	'-Av9b'	enable	the	UltraSPARC	VIS	2.0	instructions,
					as	well	as	the	instructions	enabled	by	'-Av8plusa'	and	'-Av9a'.

					'-Av8plusc'	and	'-Av9c'	enable	the	UltraSPARC	Niagara	instructions,
					as	well	as	the	instructions	enabled	by	'-Av8plusb'	and	'-Av9b'.

					'-Av8plusd'	and	'-Av9d'	enable	the	floating	point	fused
					multiply-add,	VIS	3.0,	and	HPC	extension	instructions,	as	well	as
					the	instructions	enabled	by	'-Av8plusc'	and	'-Av9c'.

					'-Av8pluse'	and	'-Av9e'	enable	the	cryptographic	instructions,	as
					well	as	the	instructions	enabled	by	'-Av8plusd'	and	'-Av9d'.

					'-Av8plusv'	and	'-Av9v'	enable	floating	point	unfused	multiply-add,
					and	integer	multiply-add,	as	well	as	the	instructions	enabled	by
					'-Av8pluse'	and	'-Av9e'.

					'-Av8plusm'	and	'-Av9m'	enable	the	VIS	4.0,	subtract	extended,
					xmpmul,	xmontmul	and	xmontsqr	instructions,	as	well	as	the
					instructions	enabled	by	'-Av8plusv'	and	'-Av9v'.

					'-Asparc'	specifies	a	v9	environment.		It	is	equivalent	to	'-Av9'
					if	the	word	size	is	64-bit,	and	'-Av8plus'	otherwise.

					'-Asparcvis'	specifies	a	v9a	environment.		It	is	equivalent	to
					'-Av9a'	if	the	word	size	is	64-bit,	and	'-Av8plusa'	otherwise.

					'-Asparcvis2'	specifies	a	v9b	environment.		It	is	equivalent	to
					'-Av9b'	if	the	word	size	is	64-bit,	and	'-Av8plusb'	otherwise.

					'-Asparcfmaf'	specifies	a	v9b	environment	with	the	floating	point
					fused	multiply-add	instructions	enabled.

					'-Asparcima'	specifies	a	v9b	environment	with	the	integer
					multiply-add	instructions	enabled.

					'-Asparcvis3'	specifies	a	v9b	environment	with	the	VIS	3.0,	HPC	,
					and	floating	point	fused	multiply-add	instructions	enabled.

					'-Asparcvis3r'	specifies	a	v9b	environment	with	the	VIS	3.0,	HPC,
					and	floating	point	unfused	multiply-add	instructions	enabled.

					'-Asparc5'	is	equivalent	to	'-Av9m'.

'-xarch=v8plus	|	-xarch=v8plusa	|	-xarch=v8plusb	|	-xarch=v8plusc'
'-xarch=v8plusd	|	-xarch=v8plusv	|	-xarch=v8plusm	|	-xarch=v9	|	-xarch=v9a'
'-xarch=v9b	|	-xarch=v9c	|	-xarch=v9d	|	-xarch=v9e	|	-xarch=v9v	|	-xarch=v9m'
'-xarch=sparc	|	-xarch=sparcvis	|	-xarch=sparcvis2'
'-xarch=sparcfmaf	|	-xarch=sparcima	|	-xarch=sparcvis3'
'-xarch=sparcvis3r	|	-xarch=sparc5'
					For	compatibility	with	the	SunOS	v9	assembler.		These	options	are
					equivalent	to	-Av8plus,	-Av8plusa,	-Av8plusb,	-Av8plusc,	-Av8plusd,
					-Av8plusv,	-Av8plusm,	-Av9,	-Av9a,	-Av9b,	-Av9c,	-Av9d,	-Av9e,
					-Av9v,	-Av9m,	-Asparc,	-Asparcvis,	-Asparcvis2,	-Asparcfmaf,

3/25/20 as.info 324

					-Asparcima,	-Asparcvis3,	and	-Asparcvis3r,	respectively.

'-bump'
					Warn	whenever	it	is	necessary	to	switch	to	another	level.		If	an
					architecture	level	is	explicitly	requested,	GAS	will	not	issue
					warnings	until	that	level	is	reached,	and	will	then	bump	the	level
					as	required	(except	between	incompatible	levels).

'-32	|	-64'
					Select	the	word	size,	either	32	bits	or	64	bits.		These	options	are
					only	available	with	the	ELF	object	file	format,	and	require	that
					the	necessary	BFD	support	has	been	included.

'--dcti-couples-detect'
					Warn	if	a	DCTI	(delayed	control	transfer	instruction)	couple	is
					found	when	generating	code	for	a	variant	of	the	SPARC	architecture
					in	which	the	execution	of	the	couple	is	unpredictable,	or	very
					slow.		This	is	disabled	by	default.

�
File:	as.info,		Node:	Sparc-Aligned-Data,		Next:	Sparc-Syntax,		Prev:	Sparc-Opts,
Up:	Sparc-Dependent

9.43.2	Enforcing	aligned	data

SPARC	GAS	normally	permits	data	to	be	misaligned.		For	example,	it
permits	the	'.long'	pseudo-op	to	be	used	on	a	byte	boundary.		However,
the	native	SunOS	assemblers	issue	an	error	when	they	see	misaligned
data.

			You	can	use	the	'--enforce-aligned-data'	option	to	make	SPARC	GAS
also	issue	an	error	about	misaligned	data,	just	as	the	SunOS	assemblers
do.

			The	'--enforce-aligned-data'	option	is	not	the	default	because	gcc
issues	misaligned	data	pseudo-ops	when	it	initializes	certain	packed
data	structures	(structures	defined	using	the	'packed'	attribute).		You
may	have	to	assemble	with	GAS	in	order	to	initialize	packed	data
structures	in	your	own	code.

�
File:	as.info,		Node:	Sparc-Syntax,		Next:	Sparc-Float,		Prev:	Sparc-Aligned-Data,
Up:	Sparc-Dependent

9.43.3	Sparc	Syntax

The	assembler	syntax	closely	follows	The	Sparc	Architecture	Manual,
versions	8	and	9,	as	well	as	most	extensions	defined	by	Sun	for	their
UltraSPARC	and	Niagara	line	of	processors.

*	Menu:

*	Sparc-Chars::																Special	Characters
*	Sparc-Regs::																	Register	Names
*	Sparc-Constants::												Constant	Names
*	Sparc-Relocs::															Relocations
*	Sparc-Size-Translations::				Size	Translations

3/25/20 as.info 325

�
File:	as.info,		Node:	Sparc-Chars,		Next:	Sparc-Regs,		Up:	Sparc-Syntax

9.43.3.1	Special	Characters
...........................

A	'!'	character	appearing	anywhere	on	a	line	indicates	the	start	of	a
comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			';'	can	be	used	instead	of	a	newline	to	separate	statements.

�
File:	as.info,		Node:	Sparc-Regs,		Next:	Sparc-Constants,		Prev:	Sparc-Chars,		Up:
Sparc-Syntax

9.43.3.2	Register	Names
.......................

The	Sparc	integer	register	file	is	broken	down	into	global,	outgoing,
local,	and	incoming.

			*	The	8	global	registers	are	referred	to	as	'%gN'.

			*	The	8	outgoing	registers	are	referred	to	as	'%oN'.

			*	The	8	local	registers	are	referred	to	as	'%lN'.

			*	The	8	incoming	registers	are	referred	to	as	'%iN'.

			*	The	frame	pointer	register	'%i6'	can	be	referenced	using	the	alias
					'%fp'.

			*	The	stack	pointer	register	'%o6'	can	be	referenced	using	the	alias
					'%sp'.

			Floating	point	registers	are	simply	referred	to	as	'%fN'.		When
assembling	for	pre-V9,	only	32	floating	point	registers	are	available.
For	V9	and	later	there	are	64,	but	there	are	restrictions	when
referencing	the	upper	32	registers.		They	can	only	be	accessed	as	double
or	quad,	and	thus	only	even	or	quad	numbered	accesses	are	allowed.		For
example,	'%f34'	is	a	legal	floating	point	register,	but	'%f35'	is	not.

			Floating	point	registers	accessed	as	double	can	also	be	referred
using	the	'%dN'	notation,	where	N	is	even.		Similarly,	floating	point
registers	accessed	as	quad	can	be	referred	using	the	'%qN'	notation,
where	N	is	a	multiple	of	4.		For	example,	'%f4'	can	be	denoted	as	both
'%d4'	and	'%q4'.		On	the	other	hand,	'%f2'	can	be	denoted	as	'%d2'	but
not	as	'%q2'.

			Certain	V9	instructions	allow	access	to	ancillary	state	registers.
Most	simply	they	can	be	referred	to	as	'%asrN'	where	N	can	be	from	16	to
31.		However,	there	are	some	aliases	defined	to	reference	ASR	registers
defined	for	various	UltraSPARC	processors:

3/25/20 as.info 326

			*	The	tick	compare	register	is	referred	to	as	'%tick_cmpr'.

			*	The	system	tick	register	is	referred	to	as	'%stick'.		An	alias,
					'%sys_tick',	exists	but	is	deprecated	and	should	not	be	used	by	new
					software.

			*	The	system	tick	compare	register	is	referred	to	as	'%stick_cmpr'.
					An	alias,	'%sys_tick_cmpr',	exists	but	is	deprecated	and	should	not
					be	used	by	new	software.

			*	The	software	interrupt	register	is	referred	to	as	'%softint'.

			*	The	set	software	interrupt	register	is	referred	to	as
					'%set_softint'.		The	mnemonic	'%softint_set'	is	provided	as	an
					alias.

			*	The	clear	software	interrupt	register	is	referred	to	as
					'%clear_softint'.		The	mnemonic	'%softint_clear'	is	provided	as	an
					alias.

			*	The	performance	instrumentation	counters	register	is	referred	to	as
					'%pic'.

			*	The	performance	control	register	is	referred	to	as	'%pcr'.

			*	The	graphics	status	register	is	referred	to	as	'%gsr'.

			*	The	V9	dispatch	control	register	is	referred	to	as	'%dcr'.

			Various	V9	branch	and	conditional	move	instructions	allow
specification	of	which	set	of	integer	condition	codes	to	test.		These
are	referred	to	as	'%xcc'	and	'%icc'.

			Additionally,	GAS	supports	the	so-called	"natural"	condition	codes;
these	are	referred	to	as	'%ncc'	and	reference	to	'%icc'	if	the	word	size
is	32,	'%xcc'	if	the	word	size	is	64.

			In	V9,	there	are	4	sets	of	floating	point	condition	codes	which	are
referred	to	as	'%fccN'.

			Several	special	privileged	and	non-privileged	registers	exist:

			*	The	V9	address	space	identifier	register	is	referred	to	as	'%asi'.

			*	The	V9	restorable	windows	register	is	referred	to	as	'%canrestore'.

			*	The	V9	savable	windows	register	is	referred	to	as	'%cansave'.

			*	The	V9	clean	windows	register	is	referred	to	as	'%cleanwin'.

			*	The	V9	current	window	pointer	register	is	referred	to	as	'%cwp'.

			*	The	floating-point	queue	register	is	referred	to	as	'%fq'.

			*	The	V8	co-processor	queue	register	is	referred	to	as	'%cq'.

			*	The	floating	point	status	register	is	referred	to	as	'%fsr'.

3/25/20 as.info 327

			*	The	other	windows	register	is	referred	to	as	'%otherwin'.

			*	The	V9	program	counter	register	is	referred	to	as	'%pc'.

			*	The	V9	next	program	counter	register	is	referred	to	as	'%npc'.

			*	The	V9	processor	interrupt	level	register	is	referred	to	as	'%pil'.

			*	The	V9	processor	state	register	is	referred	to	as	'%pstate'.

			*	The	trap	base	address	register	is	referred	to	as	'%tba'.

			*	The	V9	tick	register	is	referred	to	as	'%tick'.

			*	The	V9	trap	level	is	referred	to	as	'%tl'.

			*	The	V9	trap	program	counter	is	referred	to	as	'%tpc'.

			*	The	V9	trap	next	program	counter	is	referred	to	as	'%tnpc'.

			*	The	V9	trap	state	is	referred	to	as	'%tstate'.

			*	The	V9	trap	type	is	referred	to	as	'%tt'.

			*	The	V9	condition	codes	is	referred	to	as	'%ccr'.

			*	The	V9	floating-point	registers	state	is	referred	to	as	'%fprs'.

			*	The	V9	version	register	is	referred	to	as	'%ver'.

			*	The	V9	window	state	register	is	referred	to	as	'%wstate'.

			*	The	Y	register	is	referred	to	as	'%y'.

			*	The	V8	window	invalid	mask	register	is	referred	to	as	'%wim'.

			*	The	V8	processor	state	register	is	referred	to	as	'%psr'.

			*	The	V9	global	register	level	register	is	referred	to	as	'%gl'.

			Several	special	register	names	exist	for	hypervisor	mode	code:

			*	The	hyperprivileged	processor	state	register	is	referred	to	as
					'%hpstate'.

			*	The	hyperprivileged	trap	state	register	is	referred	to	as
					'%htstate'.

			*	The	hyperprivileged	interrupt	pending	register	is	referred	to	as
					'%hintp'.

			*	The	hyperprivileged	trap	base	address	register	is	referred	to	as
					'%htba'.

			*	The	hyperprivileged	implementation	version	register	is	referred	to
					as	'%hver'.

			*	The	hyperprivileged	system	tick	offset	register	is	referred	to	as
					'%hstick_offset'.		Note	that	there	is	no	'%hstick'	register,	the

3/25/20 as.info 328

					normal	'%stick'	is	used.

			*	The	hyperprivileged	system	tick	enable	register	is	referred	to	as
					'%hstick_enable'.

			*	The	hyperprivileged	system	tick	compare	register	is	referred	to	as
					'%hstick_cmpr'.

�
File:	as.info,		Node:	Sparc-Constants,		Next:	Sparc-Relocs,		Prev:	Sparc-Regs,		Up:
Sparc-Syntax

9.43.3.3	Constants
..................

Several	Sparc	instructions	take	an	immediate	operand	field	for	which
mnemonic	names	exist.		Two	such	examples	are	'membar'	and	'prefetch'.
Another	example	are	the	set	of	V9	memory	access	instruction	that	allow
specification	of	an	address	space	identifier.

			The	'membar'	instruction	specifies	a	memory	barrier	that	is	the
defined	by	the	operand	which	is	a	bitmask.		The	supported	mask	mnemonics
are:

			*	'#Sync'	requests	that	all	operations	(including	nonmemory	reference
					operations)	appearing	prior	to	the	'membar'	must	have	been
					performed	and	the	effects	of	any	exceptions	become	visible	before
					any	instructions	after	the	'membar'	may	be	initiated.		This
					corresponds	to	'membar'	cmask	field	bit	2.

			*	'#MemIssue'	requests	that	all	memory	reference	operations	appearing
					prior	to	the	'membar'	must	have	been	performed	before	any	memory
					operation	after	the	'membar'	may	be	initiated.		This	corresponds	to
					'membar'	cmask	field	bit	1.

			*	'#Lookaside'	requests	that	a	store	appearing	prior	to	the	'membar'
					must	complete	before	any	load	following	the	'membar'	referencing
					the	same	address	can	be	initiated.		This	corresponds	to	'membar'
					cmask	field	bit	0.

			*	'#StoreStore'	defines	that	the	effects	of	all	stores	appearing
					prior	to	the	'membar'	instruction	must	be	visible	to	all	processors
					before	the	effect	of	any	stores	following	the	'membar'.		Equivalent
					to	the	deprecated	'stbar'	instruction.		This	corresponds	to
					'membar'	mmask	field	bit	3.

			*	'#LoadStore'	defines	all	loads	appearing	prior	to	the	'membar'
					instruction	must	have	been	performed	before	the	effect	of	any
					stores	following	the	'membar'	is	visible	to	any	other	processor.
					This	corresponds	to	'membar'	mmask	field	bit	2.

			*	'#StoreLoad'	defines	that	the	effects	of	all	stores	appearing	prior
					to	the	'membar'	instruction	must	be	visible	to	all	processors
					before	loads	following	the	'membar'	may	be	performed.		This
					corresponds	to	'membar'	mmask	field	bit	1.

			*	'#LoadLoad'	defines	that	all	loads	appearing	prior	to	the	'membar'
					instruction	must	have	been	performed	before	any	loads	following	the
					'membar'	may	be	performed.		This	corresponds	to	'membar'	mmask

3/25/20 as.info 329

					field	bit	0.

			These	values	can	be	ored	together,	for	example:

					membar	#Sync
					membar	#StoreLoad	|	#LoadLoad
					membar	#StoreLoad	|	#StoreStore

			The	'prefetch'	and	'prefetcha'	instructions	take	a	prefetch	function
code.		The	following	prefetch	function	code	constant	mnemonics	are
available:

			*	'#n_reads'	requests	a	prefetch	for	several	reads,	and	corresponds
					to	a	prefetch	function	code	of	0.

					'#one_read'	requests	a	prefetch	for	one	read,	and	corresponds	to	a
					prefetch	function	code	of	1.

					'#n_writes'	requests	a	prefetch	for	several	writes	(and	possibly
					reads),	and	corresponds	to	a	prefetch	function	code	of	2.

					'#one_write'	requests	a	prefetch	for	one	write,	and	corresponds	to
					a	prefetch	function	code	of	3.

					'#page'	requests	a	prefetch	page,	and	corresponds	to	a	prefetch
					function	code	of	4.

					'#invalidate'	requests	a	prefetch	invalidate,	and	corresponds	to	a
					prefetch	function	code	of	16.

					'#unified'	requests	a	prefetch	to	the	nearest	unified	cache,	and
					corresponds	to	a	prefetch	function	code	of	17.

					'#n_reads_strong'	requests	a	strong	prefetch	for	several	reads,	and
					corresponds	to	a	prefetch	function	code	of	20.

					'#one_read_strong'	requests	a	strong	prefetch	for	one	read,	and
					corresponds	to	a	prefetch	function	code	of	21.

					'#n_writes_strong'	requests	a	strong	prefetch	for	several	writes,
					and	corresponds	to	a	prefetch	function	code	of	22.

					'#one_write_strong'	requests	a	strong	prefetch	for	one	write,	and
					corresponds	to	a	prefetch	function	code	of	23.

					Onle	one	prefetch	code	may	be	specified.		Here	are	some	examples:

										prefetch		[%l0	+	%l2],	#one_read
										prefetch		[%g2	+	8],	#n_writes
										prefetcha	[%g1]	0x8,	#unified
										prefetcha	[%o0	+	0x10]	%asi,	#n_reads

					The	actual	behavior	of	a	given	prefetch	function	code	is	processor
					specific.		If	a	processor	does	not	implement	a	given	prefetch
					function	code,	it	will	treat	the	prefetch	instruction	as	a	nop.

					For	instructions	that	accept	an	immediate	address	space	identifier,
					'as'	provides	many	mnemonics	corresponding	to	V9	defined	as	well	as
					UltraSPARC	and	Niagara	extended	values.		For	example,	'#ASI_P'	and

3/25/20 as.info 330

					'#ASI_BLK_INIT_QUAD_LDD_AIUS'.		See	the	V9	and	processor	specific
					manuals	for	details.

�
File:	as.info,		Node:	Sparc-Relocs,		Next:	Sparc-Size-Translations,		Prev:	Sparc-
Constants,		Up:	Sparc-Syntax

9.43.3.4	Relocations
....................

ELF	relocations	are	available	as	defined	in	the	32-bit	and	64-bit	Sparc
ELF	specifications.

			'R_SPARC_HI22'	is	obtained	using	'%hi'	and	'R_SPARC_LO10'	is	obtained
using	'%lo'.		Likewise	'R_SPARC_HIX22'	is	obtained	from	'%hix'	and
'R_SPARC_LOX10'	is	obtained	using	'%lox'.		For	example:

					sethi	%hi(symbol),	%g1
					or				%g1,	%lo(symbol),	%g1

					sethi	%hix(symbol),	%g1
					xor			%g1,	%lox(symbol),	%g1

			These	"high"	mnemonics	extract	bits	31:10	of	their	operand,	and	the
"low"	mnemonics	extract	bits	9:0	of	their	operand.

			V9	code	model	relocations	can	be	requested	as	follows:

			*	'R_SPARC_HH22'	is	requested	using	'%hh'.		It	can	also	be	generated
					using	'%uhi'.
			*	'R_SPARC_HM10'	is	requested	using	'%hm'.		It	can	also	be	generated
					using	'%ulo'.
			*	'R_SPARC_LM22'	is	requested	using	'%lm'.

			*	'R_SPARC_H44'	is	requested	using	'%h44'.
			*	'R_SPARC_M44'	is	requested	using	'%m44'.
			*	'R_SPARC_L44'	is	requested	using	'%l44'	or	'%l34'.
			*	'R_SPARC_H34'	is	requested	using	'%h34'.

			The	'%l34'	generates	a	'R_SPARC_L44'	relocation	because	it	calculates
the	necessary	value,	and	therefore	no	explicit	'R_SPARC_L34'	relocation
needed	to	be	created	for	this	purpose.

			The	'%h34'	and	'%l34'	relocations	are	used	for	the	abs34	code	model.
Here	is	an	example	abs34	address	generation	sequence:

					sethi	%h34(symbol),	%g1
					sllx		%g1,	2,	%g1
					or				%g1,	%l34(symbol),	%g1

			The	PC	relative	relocation	'R_SPARC_PC22'	can	be	obtained	by
enclosing	an	operand	inside	of	'%pc22'.		Likewise,	the	'R_SPARC_PC10'
relocation	can	be	obtained	using	'%pc10'.		These	are	mostly	used	when
assembling	PIC	code.		For	example,	the	standard	PIC	sequence	on	Sparc	to
get	the	base	of	the	global	offset	table,	PC	relative,	into	a	register,
can	be	performed	as:

					sethi	%pc22(_GLOBAL_OFFSET_TABLE_-4),	%l7
					add			%l7,	%pc10(_GLOBAL_OFFSET_TABLE_+4),	%l7

3/25/20 as.info 331

			Several	relocations	exist	to	allow	the	link	editor	to	potentially
optimize	GOT	data	references.		The	'R_SPARC_GOTDATA_OP_HIX22'	relocation
can	obtained	by	enclosing	an	operand	inside	of	'%gdop_hix22'.		The
'R_SPARC_GOTDATA_OP_LOX10'	relocation	can	obtained	by	enclosing	an
operand	inside	of	'%gdop_lox10'.		Likewise,	'R_SPARC_GOTDATA_OP'	can	be
obtained	by	enclosing	an	operand	inside	of	'%gdop'.		For	example,
assuming	the	GOT	base	is	in	register	'%l7':

					sethi	%gdop_hix22(symbol),	%l1
					xor			%l1,	%gdop_lox10(symbol),	%l1
					ld				[%l7	+	%l1],	%l2,	%gdop(symbol)

			There	are	many	relocations	that	can	be	requested	for	access	to	thread
local	storage	variables.		All	of	the	Sparc	TLS	mnemonics	are	supported:

			*	'R_SPARC_TLS_GD_HI22'	is	requested	using	'%tgd_hi22'.
			*	'R_SPARC_TLS_GD_LO10'	is	requested	using	'%tgd_lo10'.
			*	'R_SPARC_TLS_GD_ADD'	is	requested	using	'%tgd_add'.
			*	'R_SPARC_TLS_GD_CALL'	is	requested	using	'%tgd_call'.

			*	'R_SPARC_TLS_LDM_HI22'	is	requested	using	'%tldm_hi22'.
			*	'R_SPARC_TLS_LDM_LO10'	is	requested	using	'%tldm_lo10'.
			*	'R_SPARC_TLS_LDM_ADD'	is	requested	using	'%tldm_add'.
			*	'R_SPARC_TLS_LDM_CALL'	is	requested	using	'%tldm_call'.

			*	'R_SPARC_TLS_LDO_HIX22'	is	requested	using	'%tldo_hix22'.
			*	'R_SPARC_TLS_LDO_LOX10'	is	requested	using	'%tldo_lox10'.
			*	'R_SPARC_TLS_LDO_ADD'	is	requested	using	'%tldo_add'.

			*	'R_SPARC_TLS_IE_HI22'	is	requested	using	'%tie_hi22'.
			*	'R_SPARC_TLS_IE_LO10'	is	requested	using	'%tie_lo10'.
			*	'R_SPARC_TLS_IE_LD'	is	requested	using	'%tie_ld'.
			*	'R_SPARC_TLS_IE_LDX'	is	requested	using	'%tie_ldx'.
			*	'R_SPARC_TLS_IE_ADD'	is	requested	using	'%tie_add'.

			*	'R_SPARC_TLS_LE_HIX22'	is	requested	using	'%tle_hix22'.
			*	'R_SPARC_TLS_LE_LOX10'	is	requested	using	'%tle_lox10'.

			Here	are	some	example	TLS	model	sequences.

			First,	General	Dynamic:

					sethi		%tgd_hi22(symbol),	%l1
					add				%l1,	%tgd_lo10(symbol),	%l1
					add				%l7,	%l1,	%o0,	%tgd_add(symbol)
					call			__tls_get_addr,	%tgd_call(symbol)
					nop

			Local	Dynamic:

					sethi		%tldm_hi22(symbol),	%l1
					add				%l1,	%tldm_lo10(symbol),	%l1
					add				%l7,	%l1,	%o0,	%tldm_add(symbol)
					call			__tls_get_addr,	%tldm_call(symbol)
					nop

					sethi		%tldo_hix22(symbol),	%l1
					xor				%l1,	%tldo_lox10(symbol),	%l1

3/25/20 as.info 332

					add				%o0,	%l1,	%l1,	%tldo_add(symbol)

			Initial	Exec:

					sethi		%tie_hi22(symbol),	%l1
					add				%l1,	%tie_lo10(symbol),	%l1
					ld					[%l7	+	%l1],	%o0,	%tie_ld(symbol)
					add				%g7,	%o0,	%o0,	%tie_add(symbol)

					sethi		%tie_hi22(symbol),	%l1
					add				%l1,	%tie_lo10(symbol),	%l1
					ldx				[%l7	+	%l1],	%o0,	%tie_ldx(symbol)
					add				%g7,	%o0,	%o0,	%tie_add(symbol)

			And	finally,	Local	Exec:

					sethi		%tle_hix22(symbol),	%l1
					add				%l1,	%tle_lox10(symbol),	%l1
					add				%g7,	%l1,	%l1

			When	assembling	for	64-bit,	and	a	secondary	constant	addend	is
specified	in	an	address	expression	that	would	normally	generate	an
'R_SPARC_LO10'	relocation,	the	assembler	will	emit	an	'R_SPARC_OLO10'
instead.

�
File:	as.info,		Node:	Sparc-Size-Translations,		Prev:	Sparc-Relocs,		Up:	Sparc-Syntax

9.43.3.5	Size	Translations
..........................

Often	it	is	desirable	to	write	code	in	an	operand	size	agnostic	manner.
'as'	provides	support	for	this	via	operand	size	opcode	translations.
Translations	are	supported	for	loads,	stores,	shifts,	compare-and-swap
atomics,	and	the	'clr'	synthetic	instruction.

			If	generating	32-bit	code,	'as'	will	generate	the	32-bit	opcode.
Whereas	if	64-bit	code	is	being	generated,	the	64-bit	opcode	will	be
emitted.		For	example	'ldn'	will	be	transformed	into	'ld'	for	32-bit
code	and	'ldx'	for	64-bit	code.

			Here	is	an	example	meant	to	demonstrate	all	the	supported	opcode
translations:

					ldn			[%o0],	%o1
					ldna		[%o0]	%asi,	%o2
					stn			%o1,	[%o0]
					stna		%o2,	[%o0]	%asi
					slln		%o3,	3,	%o3
					srln		%o4,	8,	%o4
					sran		%o5,	12,	%o5
					casn		[%o0],	%o1,	%o2
					casna	[%o0]	%asi,	%o1,	%o2
					clrn		%g1

			In	32-bit	mode	'as'	will	emit:

					ld			[%o0],	%o1
					lda		[%o0]	%asi,	%o2

3/25/20 as.info 333

					st			%o1,	[%o0]
					sta		%o2,	[%o0]	%asi
					sll		%o3,	3,	%o3
					srl		%o4,	8,	%o4
					sra		%o5,	12,	%o5
					cas		[%o0],	%o1,	%o2
					casa	[%o0]	%asi,	%o1,	%o2
					clr		%g1

			And	in	64-bit	mode	'as'	will	emit:

					ldx			[%o0],	%o1
					ldxa		[%o0]	%asi,	%o2
					stx			%o1,	[%o0]
					stxa		%o2,	[%o0]	%asi
					sllx		%o3,	3,	%o3
					srlx		%o4,	8,	%o4
					srax		%o5,	12,	%o5
					casx		[%o0],	%o1,	%o2
					casxa	[%o0]	%asi,	%o1,	%o2
					clrx		%g1

			Finally,	the	'.nword'	translating	directive	is	supported	as	well.		It
is	documented	in	the	section	on	Sparc	machine	directives.

�
File:	as.info,		Node:	Sparc-Float,		Next:	Sparc-Directives,		Prev:	Sparc-Syntax,		Up:
Sparc-Dependent

9.43.4	Floating	Point

The	Sparc	uses	IEEE	floating-point	numbers.

�
File:	as.info,		Node:	Sparc-Directives,		Prev:	Sparc-Float,		Up:	Sparc-Dependent

9.43.5	Sparc	Machine	Directives

The	Sparc	version	of	'as'	supports	the	following	additional	machine
directives:

'.align'
					This	must	be	followed	by	the	desired	alignment	in	bytes.

'.common'
					This	must	be	followed	by	a	symbol	name,	a	positive	number,	and
					'"bss"'.		This	behaves	somewhat	like	'.comm',	but	the	syntax	is
					different.

'.half'
					This	is	functionally	identical	to	'.short'.

'.nword'
					On	the	Sparc,	the	'.nword'	directive	produces	native	word	sized
					value,	ie.		if	assembling	with	-32	it	is	equivalent	to	'.word',	if
					assembling	with	-64	it	is	equivalent	to	'.xword'.

3/25/20 as.info 334

'.proc'
					This	directive	is	ignored.		Any	text	following	it	on	the	same	line
					is	also	ignored.

'.register'
					This	directive	declares	use	of	a	global	application	or	system
					register.		It	must	be	followed	by	a	register	name	%g2,	%g3,	%g6	or
					%g7,	comma	and	the	symbol	name	for	that	register.		If	symbol	name
					is	'#scratch',	it	is	a	scratch	register,	if	it	is	'#ignore',	it
					just	suppresses	any	errors	about	using	undeclared	global	register,
					but	does	not	emit	any	information	about	it	into	the	object	file.
					This	can	be	useful	e.g.		if	you	save	the	register	before	use	and
					restore	it	after.

'.reserve'
					This	must	be	followed	by	a	symbol	name,	a	positive	number,	and
					'"bss"'.		This	behaves	somewhat	like	'.lcomm',	but	the	syntax	is
					different.

'.seg'
					This	must	be	followed	by	'"text"',	'"data"',	or	'"data1"'.		It
					behaves	like	'.text',	'.data',	or	'.data	1'.

'.skip'
					This	is	functionally	identical	to	the	'.space'	directive.

'.word'
					On	the	Sparc,	the	'.word'	directive	produces	32	bit	values,	instead
					of	the	16	bit	values	it	produces	on	many	other	machines.

'.xword'
					On	the	Sparc	V9	processor,	the	'.xword'	directive	produces	64	bit
					values.

�
File:	as.info,		Node:	TIC54X-Dependent,		Next:	TIC6X-Dependent,		Prev:	Sparc-
Dependent,		Up:	Machine	Dependencies

9.44	TIC54X	Dependent	Features
==============================

*	Menu:

*	TIC54X-Opts::														Command-line	Options
*	TIC54X-Block::													Blocking
*	TIC54X-Env::															Environment	Settings
*	TIC54X-Constants::									Constants	Syntax
*	TIC54X-Subsyms::											String	Substitution
*	TIC54X-Locals::												Local	Label	Syntax
*	TIC54X-Builtins::										Builtin	Assembler	Math	Functions
*	TIC54X-Ext::															Extended	Addressing	Support
*	TIC54X-Directives::								Directives
*	TIC54X-Macros::												Macro	Features
*	TIC54X-MMRegs::												Memory-mapped	Registers
*	TIC54X-Syntax::												Syntax

�
File:	as.info,		Node:	TIC54X-Opts,		Next:	TIC54X-Block,		Up:	TIC54X-Dependent

3/25/20 as.info 335

9.44.1	Options

The	TMS320C54X	version	of	'as'	has	a	few	machine-dependent	options.

			You	can	use	the	'-mfar-mode'	option	to	enable	extended	addressing
mode.		All	addresses	will	be	assumed	to	be	>	16	bits,	and	the
appropriate	relocation	types	will	be	used.		This	option	is	equivalent	to
using	the	'.far_mode'	directive	in	the	assembly	code.		If	you	do	not	use
the	'-mfar-mode'	option,	all	references	will	be	assumed	to	be	16	bits.
This	option	may	be	abbreviated	to	'-mf'.

			You	can	use	the	'-mcpu'	option	to	specify	a	particular	CPU.	This
option	is	equivalent	to	using	the	'.version'	directive	in	the	assembly
code.		For	recognized	CPU	codes,	see	*Note	'.version':
TIC54X-Directives.		The	default	CPU	version	is	'542'.

			You	can	use	the	'-merrors-to-file'	option	to	redirect	error	output	to
a	file	(this	provided	for	those	deficient	environments	which	don't
provide	adequate	output	redirection).		This	option	may	be	abbreviated	to
'-me'.

�
File:	as.info,		Node:	TIC54X-Block,		Next:	TIC54X-Env,		Prev:	TIC54X-Opts,		Up:
TIC54X-Dependent

9.44.2	Blocking

A	blocked	section	or	memory	block	is	guaranteed	not	to	cross	the
blocking	boundary	(usually	a	page,	or	128	words)	if	it	is	smaller	than
the	blocking	size,	or	to	start	on	a	page	boundary	if	it	is	larger	than
the	blocking	size.

�
File:	as.info,		Node:	TIC54X-Env,		Next:	TIC54X-Constants,		Prev:	TIC54X-Block,		Up:
TIC54X-Dependent

9.44.3	Environment	Settings

'C54XDSP_DIR'	and	'A_DIR'	are	semicolon-separated	paths	which	are	added
to	the	list	of	directories	normally	searched	for	source	and	include
files.		'C54XDSP_DIR'	will	override	'A_DIR'.

�
File:	as.info,		Node:	TIC54X-Constants,		Next:	TIC54X-Subsyms,		Prev:	TIC54X-Env,
Up:	TIC54X-Dependent

9.44.4	Constants	Syntax

The	TIC54X	version	of	'as'	allows	the	following	additional	constant
formats,	using	a	suffix	to	indicate	the	radix:

					Binary																		000000B,	011000b
					Octal																			10Q,	224q
					Hexadecimal													45h,	0FH

3/25/20 as.info 336

�
File:	as.info,		Node:	TIC54X-Subsyms,		Next:	TIC54X-Locals,		Prev:	TIC54X-Constants,
Up:	TIC54X-Dependent

9.44.5	String	Substitution

A	subset	of	allowable	symbols	(which	we'll	call	subsyms)	may	be	assigned
arbitrary	string	values.		This	is	roughly	equivalent	to	C	preprocessor
#define	macros.		When	'as'	encounters	one	of	these	symbols,	the	symbol
is	replaced	in	the	input	stream	by	its	string	value.		Subsym	names
must	begin	with	a	letter.

			Subsyms	may	be	defined	using	the	'.asg'	and	'.eval'	directives	(*Note
'.asg':	TIC54X-Directives,	*Note	'.eval':	TIC54X-Directives.

			Expansion	is	recursive	until	a	previously	encountered	symbol	is	seen,
at	which	point	substitution	stops.

			In	this	example,	x	is	replaced	with	SYM2;	SYM2	is	replaced	with	SYM1,
and	SYM1	is	replaced	with	x.		At	this	point,	x	has	already	been
encountered	and	the	substitution	stops.

						.asg			"x",SYM1
						.asg			"SYM1",SYM2
						.asg			"SYM2",x
						add				x,a													;	final	code	assembled	is	"add		x,	a"

			Macro	parameters	are	converted	to	subsyms;	a	side	effect	of	this	is
the	normal	'as'	'\ARG'	dereferencing	syntax	is	unnecessary.		Subsyms
defined	within	a	macro	will	have	global	scope,	unless	the	'.var'
directive	is	used	to	identify	the	subsym	as	a	local	macro	variable	*note
'.var':	TIC54X-Directives.

			Substitution	may	be	forced	in	situations	where	replacement	might	be
ambiguous	by	placing	colons	on	either	side	of	the	subsym.		The	following
code:

						.eval		"10",x
					LAB:X:		add					#x,	a

			When	assembled	becomes:

					LAB10		add					#10,	a

			Smaller	parts	of	the	string	assigned	to	a	subsym	may	be	accessed	with
the	following	syntax:

':SYMBOL(CHAR_INDEX):'
					Evaluates	to	a	single-character	string,	the	character	at
					CHAR_INDEX.
':SYMBOL(START,LENGTH):'
					Evaluates	to	a	substring	of	SYMBOL	beginning	at	START	with	length
					LENGTH.

�
File:	as.info,		Node:	TIC54X-Locals,		Next:	TIC54X-Builtins,		Prev:	TIC54X-Subsyms,
Up:	TIC54X-Dependent

3/25/20 as.info 337

9.44.6	Local	Labels

Local	labels	may	be	defined	in	two	ways:

			*	$N,	where	N	is	a	decimal	number	between	0	and	9
			*	LABEL?,	where	LABEL	is	any	legal	symbol	name.

			Local	labels	thus	defined	may	be	redefined	or	automatically
generated.		The	scope	of	a	local	label	is	based	on	when	it	may	be
undefined	or	reset.		This	happens	when	one	of	the	following	situations
is	encountered:

			*	.newblock	directive	*note	'.newblock':	TIC54X-Directives.
			*	The	current	section	is	changed	(.sect,	.text,	or	.data)
			*	Entering	or	leaving	an	included	file
			*	The	macro	scope	where	the	label	was	defined	is	exited

�
File:	as.info,		Node:	TIC54X-Builtins,		Next:	TIC54X-Ext,		Prev:	TIC54X-Locals,		Up:
TIC54X-Dependent

9.44.7	Math	Builtins

The	following	built-in	functions	may	be	used	to	generate	a
floating-point	value.		All	return	a	floating-point	value	except	'$cvi',
'$int',	and	'$sgn',	which	return	an	integer	value.

'$acos(EXPR)'
					Returns	the	floating	point	arccosine	of	EXPR.

'$asin(EXPR)'
					Returns	the	floating	point	arcsine	of	EXPR.

'$atan(EXPR)'
					Returns	the	floating	point	arctangent	of	EXPR.

'$atan2(EXPR1,EXPR2)'
					Returns	the	floating	point	arctangent	of	EXPR1	/	EXPR2.

'$ceil(EXPR)'
					Returns	the	smallest	integer	not	less	than	EXPR	as	floating	point.

'$cosh(EXPR)'
					Returns	the	floating	point	hyperbolic	cosine	of	EXPR.

'$cos(EXPR)'
					Returns	the	floating	point	cosine	of	EXPR.

'$cvf(EXPR)'
					Returns	the	integer	value	EXPR	converted	to	floating-point.

'$cvi(EXPR)'
					Returns	the	floating	point	value	EXPR	converted	to	integer.

'$exp(EXPR)'
					Returns	the	floating	point	value	e	^	EXPR.

3/25/20 as.info 338

'$fabs(EXPR)'
					Returns	the	floating	point	absolute	value	of	EXPR.

'$floor(EXPR)'
					Returns	the	largest	integer	that	is	not	greater	than	EXPR	as
					floating	point.

'$fmod(EXPR1,EXPR2)'
					Returns	the	floating	point	remainder	of	EXPR1	/	EXPR2.

'$int(EXPR)'
					Returns	1	if	EXPR	evaluates	to	an	integer,	zero	otherwise.

'$ldexp(EXPR1,EXPR2)'
					Returns	the	floating	point	value	EXPR1	*	2	^	EXPR2.

'$log10(EXPR)'
					Returns	the	base	10	logarithm	of	EXPR.

'$log(EXPR)'
					Returns	the	natural	logarithm	of	EXPR.

'$max(EXPR1,EXPR2)'
					Returns	the	floating	point	maximum	of	EXPR1	and	EXPR2.

'$min(EXPR1,EXPR2)'
					Returns	the	floating	point	minimum	of	EXPR1	and	EXPR2.

'$pow(EXPR1,EXPR2)'
					Returns	the	floating	point	value	EXPR1	^	EXPR2.

'$round(EXPR)'
					Returns	the	nearest	integer	to	EXPR	as	a	floating	point	number.

'$sgn(EXPR)'
					Returns	-1,	0,	or	1	based	on	the	sign	of	EXPR.

'$sin(EXPR)'
					Returns	the	floating	point	sine	of	EXPR.

'$sinh(EXPR)'
					Returns	the	floating	point	hyperbolic	sine	of	EXPR.

'$sqrt(EXPR)'
					Returns	the	floating	point	square	root	of	EXPR.

'$tan(EXPR)'
					Returns	the	floating	point	tangent	of	EXPR.

'$tanh(EXPR)'
					Returns	the	floating	point	hyperbolic	tangent	of	EXPR.

'$trunc(EXPR)'
					Returns	the	integer	value	of	EXPR	truncated	towards	zero	as
					floating	point.

�
File:	as.info,		Node:	TIC54X-Ext,		Next:	TIC54X-Directives,		Prev:	TIC54X-Builtins,
Up:	TIC54X-Dependent

3/25/20 as.info 339

File:	as.info,		Node:	TIC54X-Ext,		Next:	TIC54X-Directives,		Prev:	TIC54X-Builtins,
Up:	TIC54X-Dependent

9.44.8	Extended	Addressing

The	'LDX'	pseudo-op	is	provided	for	loading	the	extended	addressing	bits
of	a	label	or	address.		For	example,	if	an	address	'_label'	resides	in
extended	program	memory,	the	value	of	'_label'	may	be	loaded	as	follows:
						ldx					#_label,16,a				;	loads	extended	bits	of	_label
						or						#_label,a							;	loads	lower	16	bits	of	_label
						bacc				a															;	full	address	is	in	accumulator	A

�
File:	as.info,		Node:	TIC54X-Directives,		Next:	TIC54X-Macros,		Prev:	TIC54X-Ext,
Up:	TIC54X-Dependent

9.44.9	Directives

'.align	[SIZE]'
'.even'
					Align	the	section	program	counter	on	the	next	boundary,	based	on
					SIZE.		SIZE	may	be	any	power	of	2.		'.even'	is	equivalent	to
					'.align'	with	a	SIZE	of	2.
					'1'
										Align	SPC	to	word	boundary
					'2'
										Align	SPC	to	longword	boundary	(same	as	.even)
					'128'
										Align	SPC	to	page	boundary

'.asg	STRING,	NAME'
					Assign	NAME	the	string	STRING.		String	replacement	is	performed	on
					STRING	before	assignment.

'.eval	STRING,	NAME'
					Evaluate	the	contents	of	string	STRING	and	assign	the	result	as	a
					string	to	the	subsym	NAME.		String	replacement	is	performed	on
					STRING	before	assignment.

'.bss	SYMBOL,	SIZE	[,	[BLOCKING_FLAG]	[,ALIGNMENT_FLAG]]'
					Reserve	space	for	SYMBOL	in	the	.bss	section.		SIZE	is	in	words.
					If	present,	BLOCKING_FLAG	indicates	the	allocated	space	should	be
					aligned	on	a	page	boundary	if	it	would	otherwise	cross	a	page
					boundary.		If	present,	ALIGNMENT_FLAG	causes	the	assembler	to
					allocate	SIZE	on	a	long	word	boundary.

'.byte	VALUE	[,...,VALUE_N]'
'.ubyte	VALUE	[,...,VALUE_N]'
'.char	VALUE	[,...,VALUE_N]'
'.uchar	VALUE	[,...,VALUE_N]'
					Place	one	or	more	bytes	into	consecutive	words	of	the	current
					section.		The	upper	8	bits	of	each	word	is	zero-filled.		If	a	label
					is	used,	it	points	to	the	word	allocated	for	the	first	byte
					encountered.

'.clink	["SECTION_NAME"]'
					Set	STYP_CLINK	flag	for	this	section,	which	indicates	to	the	linker

3/25/20 as.info 340

					that	if	no	symbols	from	this	section	are	referenced,	the	section
					should	not	be	included	in	the	link.		If	SECTION_NAME	is	omitted,
					the	current	section	is	used.

'.c_mode'
					TBD.

'.copy	"FILENAME"	|	FILENAME'
'.include	"FILENAME"	|	FILENAME'
					Read	source	statements	from	FILENAME.		The	normal	include	search
					path	is	used.		Normally	.copy	will	cause	statements	from	the
					included	file	to	be	printed	in	the	assembly	listing	and	.include
					will	not,	but	this	distinction	is	not	currently	implemented.

'.data'
					Begin	assembling	code	into	the	.data	section.

'.double	VALUE	[,...,VALUE_N]'
'.ldouble	VALUE	[,...,VALUE_N]'
'.float	VALUE	[,...,VALUE_N]'
'.xfloat	VALUE	[,...,VALUE_N]'
					Place	an	IEEE	single-precision	floating-point	representation	of	one
					or	more	floating-point	values	into	the	current	section.		All	but
					'.xfloat'	align	the	result	on	a	longword	boundary.		Values	are
					stored	most-significant	word	first.

'.drlist'
'.drnolist'
					Control	printing	of	directives	to	the	listing	file.		Ignored.

'.emsg	STRING'
'.mmsg	STRING'
'.wmsg	STRING'
					Emit	a	user-defined	error,	message,	or	warning,	respectively.

'.far_mode'
					Use	extended	addressing	when	assembling	statements.		This	should
					appear	only	once	per	file,	and	is	equivalent	to	the	-mfar-mode
					option	*note	'-mfar-mode':	TIC54X-Opts.

'.fclist'
'.fcnolist'
					Control	printing	of	false	conditional	blocks	to	the	listing	file.

'.field	VALUE	[,SIZE]'
					Initialize	a	bitfield	of	SIZE	bits	in	the	current	section.		If
					VALUE	is	relocatable,	then	SIZE	must	be	16.		SIZE	defaults	to	16
					bits.		If	VALUE	does	not	fit	into	SIZE	bits,	the	value	will	be
					truncated.		Successive	'.field'	directives	will	pack	starting	at
					the	current	word,	filling	the	most	significant	bits	first,	and
					aligning	to	the	start	of	the	next	word	if	the	field	size	does	not
					fit	into	the	space	remaining	in	the	current	word.		A	'.align'
					directive	with	an	operand	of	1	will	force	the	next	'.field'
					directive	to	begin	packing	into	a	new	word.		If	a	label	is	used,	it
					points	to	the	word	that	contains	the	specified	field.

'.global	SYMBOL	[,...,SYMBOL_N]'
'.def	SYMBOL	[,...,SYMBOL_N]'
'.ref	SYMBOL	[,...,SYMBOL_N]'

3/25/20 as.info 341

					'.def'	nominally	identifies	a	symbol	defined	in	the	current	file
					and	available	to	other	files.		'.ref'	identifies	a	symbol	used	in
					the	current	file	but	defined	elsewhere.		Both	map	to	the	standard
					'.global'	directive.

'.half	VALUE	[,...,VALUE_N]'
'.uhalf	VALUE	[,...,VALUE_N]'
'.short	VALUE	[,...,VALUE_N]'
'.ushort	VALUE	[,...,VALUE_N]'
'.int	VALUE	[,...,VALUE_N]'
'.uint	VALUE	[,...,VALUE_N]'
'.word	VALUE	[,...,VALUE_N]'
'.uword	VALUE	[,...,VALUE_N]'
					Place	one	or	more	values	into	consecutive	words	of	the	current
					section.		If	a	label	is	used,	it	points	to	the	word	allocated	for
					the	first	value	encountered.

'.label	SYMBOL'
					Define	a	special	SYMBOL	to	refer	to	the	load	time	address	of	the
					current	section	program	counter.

'.length'
'.width'
					Set	the	page	length	and	width	of	the	output	listing	file.		Ignored.

'.list'
'.nolist'
					Control	whether	the	source	listing	is	printed.		Ignored.

'.long	VALUE	[,...,VALUE_N]'
'.ulong	VALUE	[,...,VALUE_N]'
'.xlong	VALUE	[,...,VALUE_N]'
					Place	one	or	more	32-bit	values	into	consecutive	words	in	the
					current	section.		The	most	significant	word	is	stored	first.
					'.long'	and	'.ulong'	align	the	result	on	a	longword	boundary;
					'xlong'	does	not.

'.loop	[COUNT]'
'.break	[CONDITION]'
'.endloop'
					Repeatedly	assemble	a	block	of	code.		'.loop'	begins	the	block,	and
					'.endloop'	marks	its	termination.		COUNT	defaults	to	1024,	and
					indicates	the	number	of	times	the	block	should	be	repeated.
					'.break'	terminates	the	loop	so	that	assembly	begins	after	the
					'.endloop'	directive.		The	optional	CONDITION	will	cause	the	loop
					to	terminate	only	if	it	evaluates	to	zero.

'MACRO_NAME	.macro	[PARAM1][,...PARAM_N]'
'[.mexit]'
'.endm'
					See	the	section	on	macros	for	more	explanation	(*Note
					TIC54X-Macros::.

'.mlib	"FILENAME"	|	FILENAME'
					Load	the	macro	library	FILENAME.		FILENAME	must	be	an	archived
					library	(BFD	ar-compatible)	of	text	files,	expected	to	contain	only
					macro	definitions.		The	standard	include	search	path	is	used.

'.mlist'

3/25/20 as.info 342

'.mnolist'
					Control	whether	to	include	macro	and	loop	block	expansions	in	the
					listing	output.		Ignored.

'.mmregs'
					Define	global	symbolic	names	for	the	'c54x	registers.		Supposedly
					equivalent	to	executing	'.set'	directives	for	each	register	with
					its	memory-mapped	value,	but	in	reality	is	provided	only	for
					compatibility	and	does	nothing.

'.newblock'
					This	directive	resets	any	TIC54X	local	labels	currently	defined.
					Normal	'as'	local	labels	are	unaffected.

'.option	OPTION_LIST'
					Set	listing	options.		Ignored.

'.sblock	"SECTION_NAME"	|	SECTION_NAME	[,"NAME_N"	|	NAME_N]'
					Designate	SECTION_NAME	for	blocking.		Blocking	guarantees	that	a
					section	will	start	on	a	page	boundary	(128	words)	if	it	would
					otherwise	cross	a	page	boundary.		Only	initialized	sections	may	be
					designated	with	this	directive.		See	also	*Note	TIC54X-Block::.

'.sect	"SECTION_NAME"'
					Define	a	named	initialized	section	and	make	it	the	current	section.

'SYMBOL	.set	"VALUE"'
'SYMBOL	.equ	"VALUE"'
					Equate	a	constant	VALUE	to	a	SYMBOL,	which	is	placed	in	the	symbol
					table.		SYMBOL	may	not	be	previously	defined.

'.space	SIZE_IN_BITS'
'.bes	SIZE_IN_BITS'
					Reserve	the	given	number	of	bits	in	the	current	section	and
					zero-fill	them.		If	a	label	is	used	with	'.space',	it	points	to	the
					first	word	reserved.		With	'.bes',	the	label	points	to	the	*last*
					word	reserved.

'.sslist'
'.ssnolist'
					Controls	the	inclusion	of	subsym	replacement	in	the	listing	output.
					Ignored.

'.string	"STRING"	[,...,"STRING_N"]'
'.pstring	"STRING"	[,...,"STRING_N"]'
					Place	8-bit	characters	from	STRING	into	the	current	section.
					'.string'	zero-fills	the	upper	8	bits	of	each	word,	while
					'.pstring'	puts	two	characters	into	each	word,	filling	the
					most-significant	bits	first.		Unused	space	is	zero-filled.		If	a
					label	is	used,	it	points	to	the	first	word	initialized.

'[STAG]	.struct	[OFFSET]'
'[NAME_1]	element	[COUNT_1]'
'[NAME_2]	element	[COUNT_2]'
'[TNAME]	.tag	STAGX	[TCOUNT]'
'...'
'[NAME_N]	element	[COUNT_N]'
'[SSIZE]	.endstruct'
'LABEL	.tag	[STAG]'

3/25/20 as.info 343

					Assign	symbolic	offsets	to	the	elements	of	a	structure.		STAG
					defines	a	symbol	to	use	to	reference	the	structure.		OFFSET
					indicates	a	starting	value	to	use	for	the	first	element
					encountered;	otherwise	it	defaults	to	zero.		Each	element	can	have
					a	named	offset,	NAME,	which	is	a	symbol	assigned	the	value	of	the
					element's	offset	into	the	structure.		If	STAG	is	missing,	these
					become	global	symbols.		COUNT	adjusts	the	offset	that	many	times,
					as	if	'element'	were	an	array.		'element'	may	be	one	of	'.byte',
					'.word',	'.long',	'.float',	or	any	equivalent	of	those,	and	the
					structure	offset	is	adjusted	accordingly.		'.field'	and	'.string'
					are	also	allowed;	the	size	of	'.field'	is	one	bit,	and	'.string'	is
					considered	to	be	one	word	in	size.		Only	element	descriptors,
					structure/union	tags,	'.align'	and	conditional	assembly	directives
					are	allowed	within	'.struct'/'.endstruct'.		'.align'	aligns	member
					offsets	to	word	boundaries	only.		SSIZE,	if	provided,	will	always
					be	assigned	the	size	of	the	structure.

					The	'.tag'	directive,	in	addition	to	being	used	to	define	a
					structure/union	element	within	a	structure,	may	be	used	to	apply	a
					structure	to	a	symbol.		Once	applied	to	LABEL,	the	individual
					structure	elements	may	be	applied	to	LABEL	to	produce	the	desired
					offsets	using	LABEL	as	the	structure	base.

'.tab'
					Set	the	tab	size	in	the	output	listing.		Ignored.

'[UTAG]	.union'
'[NAME_1]	element	[COUNT_1]'
'[NAME_2]	element	[COUNT_2]'
'[TNAME]	.tag	UTAGX[,TCOUNT]'
'...'
'[NAME_N]	element	[COUNT_N]'
'[USIZE]	.endstruct'
'LABEL	.tag	[UTAG]'
					Similar	to	'.struct',	but	the	offset	after	each	element	is	reset	to
					zero,	and	the	USIZE	is	set	to	the	maximum	of	all	defined	elements.
					Starting	offset	for	the	union	is	always	zero.

'[SYMBOL]	.usect	"SECTION_NAME",	SIZE,	[,[BLOCKING_FLAG]	[,ALIGNMENT_FLAG]]'
					Reserve	space	for	variables	in	a	named,	uninitialized	section
					(similar	to	.bss).		'.usect'	allows	definitions	sections
					independent	of	.bss.		SYMBOL	points	to	the	first	location	reserved
					by	this	allocation.		The	symbol	may	be	used	as	a	variable	name.
					SIZE	is	the	allocated	size	in	words.		BLOCKING_FLAG	indicates
					whether	to	block	this	section	on	a	page	boundary	(128	words)	(*note
					TIC54X-Block::).		ALIGNMENT	FLAG	indicates	whether	the	section
					should	be	longword-aligned.

'.var	SYM[,...,	SYM_N]'
					Define	a	subsym	to	be	a	local	variable	within	a	macro.		See	*Note
					TIC54X-Macros::.

'.version	VERSION'
					Set	which	processor	to	build	instructions	for.		Though	the
					following	values	are	accepted,	the	op	is	ignored.
					'541'
					'542'
					'543'
					'545'

3/25/20 as.info 344

					'545LP'
					'546LP'
					'548'
					'549'

�
File:	as.info,		Node:	TIC54X-Macros,		Next:	TIC54X-MMRegs,		Prev:	TIC54X-Directives,
Up:	TIC54X-Dependent

9.44.10	Macros

Macros	do	not	require	explicit	dereferencing	of	arguments	(i.e.,	\ARG).

			During	macro	expansion,	the	macro	parameters	are	converted	to
subsyms.		If	the	number	of	arguments	passed	the	macro	invocation	exceeds
the	number	of	parameters	defined,	the	last	parameter	is	assigned	the
string	equivalent	of	all	remaining	arguments.		If	fewer	arguments	are
given	than	parameters,	the	missing	parameters	are	assigned	empty
strings.		To	include	a	comma	in	an	argument,	you	must	enclose	the
argument	in	quotes.

			The	following	built-in	subsym	functions	allow	examination	of	the
string	value	of	subsyms	(or	ordinary	strings).		The	arguments	are
strings	unless	otherwise	indicated	(subsyms	passed	as	args	will	be
replaced	by	the	strings	they	represent).
'$symlen(STR)'
					Returns	the	length	of	STR.

'$symcmp(STR1,STR2)'
					Returns	0	if	STR1	==	STR2,	non-zero	otherwise.

'$firstch(STR,CH)'
					Returns	index	of	the	first	occurrence	of	character	constant	CH	in
					STR.

'$lastch(STR,CH)'
					Returns	index	of	the	last	occurrence	of	character	constant	CH	in
					STR.

'$isdefed(SYMBOL)'
					Returns	zero	if	the	symbol	SYMBOL	is	not	in	the	symbol	table,
					non-zero	otherwise.

'$ismember(SYMBOL,LIST)'
					Assign	the	first	member	of	comma-separated	string	LIST	to	SYMBOL;
					LIST	is	reassigned	the	remainder	of	the	list.		Returns	zero	if	LIST
					is	a	null	string.		Both	arguments	must	be	subsyms.

'$iscons(EXPR)'
					Returns	1	if	string	EXPR	is	binary,	2	if	octal,	3	if	hexadecimal,	4
					if	a	character,	5	if	decimal,	and	zero	if	not	an	integer.

'$isname(NAME)'
					Returns	1	if	NAME	is	a	valid	symbol	name,	zero	otherwise.

'$isreg(REG)'
					Returns	1	if	REG	is	a	valid	predefined	register	name	(AR0-AR7
					only).

3/25/20 as.info 345

'$structsz(STAG)'
					Returns	the	size	of	the	structure	or	union	represented	by	STAG.

'$structacc(STAG)'
					Returns	the	reference	point	of	the	structure	or	union	represented
					by	STAG.		Always	returns	zero.

�
File:	as.info,		Node:	TIC54X-MMRegs,		Next:	TIC54X-Syntax,		Prev:	TIC54X-Macros,		Up:
TIC54X-Dependent

9.44.11	Memory-mapped	Registers

The	following	symbols	are	recognized	as	memory-mapped	registers:

�
File:	as.info,		Node:	TIC54X-Syntax,		Prev:	TIC54X-MMRegs,		Up:	TIC54X-Dependent

9.44.12	TIC54X	Syntax

*	Menu:

*	TIC54X-Chars::																Special	Characters

�
File:	as.info,		Node:	TIC54X-Chars,		Up:	TIC54X-Syntax

9.44.12.1	Special	Characters
............................

The	presence	of	a	';'	appearing	anywhere	on	a	line	indicates	the	start
of	a	comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	presence	of	an	asterisk	('*')	at	the	start	of	a	line	also
indicates	a	comment	that	extends	to	the	end	of	that	line.

			The	TIC54X	assembler	does	not	currently	support	a	line	separator
character.

�
File:	as.info,		Node:	TIC6X-Dependent,		Next:	TILE-Gx-Dependent,		Prev:	TIC54X-
Dependent,		Up:	Machine	Dependencies

9.45	TIC6X	Dependent	Features
=============================

*	Menu:

*	TIC6X	Options::												Options
*	TIC6X	Syntax::													Syntax
*	TIC6X	Directives::									Directives

3/25/20 as.info 346

�
File:	as.info,		Node:	TIC6X	Options,		Next:	TIC6X	Syntax,		Up:	TIC6X-Dependent

9.45.1	TIC6X	Options

'-march=ARCH'
					Enable	(only)	instructions	from	architecture	ARCH.		By	default,	all
					instructions	are	permitted.

					The	following	values	of	ARCH	are	accepted:	'c62x',	'c64x',	'c64x+',
					'c67x',	'c67x+',	'c674x'.

'-mdsbt'
'-mno-dsbt'
					The	'-mdsbt'	option	causes	the	assembler	to	generate	the
					'Tag_ABI_DSBT'	attribute	with	a	value	of	1,	indicating	that	the
					code	is	using	DSBT	addressing.		The	'-mno-dsbt'	option,	the
					default,	causes	the	tag	to	have	a	value	of	0,	indicating	that	the
					code	does	not	use	DSBT	addressing.		The	linker	will	emit	a	warning
					if	objects	of	different	type	(DSBT	and	non-DSBT)	are	linked
					together.

'-mpid=no'
'-mpid=near'
'-mpid=far'
					The	'-mpid='	option	causes	the	assembler	to	generate	the
					'Tag_ABI_PID'	attribute	with	a	value	indicating	the	form	of	data
					addressing	used	by	the	code.		'-mpid=no',	the	default,	indicates
					position-dependent	data	addressing,	'-mpid=near'	indicates
					position-independent	addressing	with	GOT	accesses	using	near	DP
					addressing,	and	'-mpid=far'	indicates	position-independent
					addressing	with	GOT	accesses	using	far	DP	addressing.		The	linker
					will	emit	a	warning	if	objects	built	with	different	settings	of
					this	option	are	linked	together.

'-mpic'
'-mno-pic'
					The	'-mpic'	option	causes	the	assembler	to	generate	the
					'Tag_ABI_PIC'	attribute	with	a	value	of	1,	indicating	that	the	code
					is	using	position-independent	code	addressing,	The	'-mno-pic'
					option,	the	default,	causes	the	tag	to	have	a	value	of	0,
					indicating	position-dependent	code	addressing.		The	linker	will
					emit	a	warning	if	objects	of	different	type	(position-dependent	and
					position-independent)	are	linked	together.

'-mbig-endian'
'-mlittle-endian'
					Generate	code	for	the	specified	endianness.		The	default	is
					little-endian.

�
File:	as.info,		Node:	TIC6X	Syntax,		Next:	TIC6X	Directives,		Prev:	TIC6X	Options,
Up:	TIC6X-Dependent

9.45.2	TIC6X	Syntax

3/25/20 as.info 347

The	presence	of	a	';'	on	a	line	indicates	the	start	of	a	comment	that
extends	to	the	end	of	the	current	line.		If	a	'#'	or	'*'	appears	as	the
first	character	of	a	line,	the	whole	line	is	treated	as	a	comment.		Note
that	if	a	line	starts	with	a	'#'	character	then	it	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	'@'	character	can	be	used	instead	of	a	newline	to	separate
statements.

			Instruction,	register	and	functional	unit	names	are	case-insensitive.
'as'	requires	fully-specified	functional	unit	names,	such	as	'.S1',
'.L1X'	or	'.D1T2',	on	all	instructions	using	a	functional	unit.

			For	some	instructions,	there	may	be	syntactic	ambiguity	between
register	or	functional	unit	names	and	the	names	of	labels	or	other
symbols.		To	avoid	this,	enclose	the	ambiguous	symbol	name	in
parentheses;	register	and	functional	unit	names	may	not	be	enclosed	in
parentheses.

�
File:	as.info,		Node:	TIC6X	Directives,		Prev:	TIC6X	Syntax,		Up:	TIC6X-Dependent

9.45.3	TIC6X	Directives

Directives	controlling	the	set	of	instructions	accepted	by	the	assembler
have	effect	for	instructions	between	the	directive	and	any	subsequent
directive	overriding	it.

'.arch	ARCH'
					This	has	the	same	effect	as	'-march=ARCH'.

'.cantunwind'
					Prevents	unwinding	through	the	current	function.		No	personality
					routine	or	exception	table	data	is	required	or	permitted.

					If	this	is	not	specified	then	frame	unwinding	information	will	be
					constructed	from	CFI	directives.		*note	CFI	directives::.

'.c6xabi_attribute	TAG,	VALUE'
					Set	the	C6000	EABI	build	attribute	TAG	to	VALUE.

					The	TAG	is	either	an	attribute	number	or	one	of	'Tag_ISA',
					'Tag_ABI_wchar_t',	'Tag_ABI_stack_align_needed',
					'Tag_ABI_stack_align_preserved',	'Tag_ABI_DSBT',	'Tag_ABI_PID',
					'Tag_ABI_PIC',	'TAG_ABI_array_object_alignment',
					'TAG_ABI_array_object_align_expected',	'Tag_ABI_compatibility'	and
					'Tag_ABI_conformance'.		The	VALUE	is	either	a	'number',	'"string"',
					or	'number,	"string"'	depending	on	the	tag.

'.ehtype	SYMBOL'
					Output	an	exception	type	table	reference	to	SYMBOL.

'.endp'
					Marks	the	end	of	and	exception	table	or	function.		If	preceeded	by
					a	'.handlerdata'	directive	then	this	also	switched	back	to	the
					previous	text	section.

3/25/20 as.info 348

'.handlerdata'
					Marks	the	end	of	the	current	function,	and	the	start	of	the
					exception	table	entry	for	that	function.		Anything	between	this
					directive	and	the	'.endp'	directive	will	be	added	to	the	exception
					table	entry.

					Must	be	preceded	by	a	CFI	block	containing	a	'.cfi_lsda'	directive.

'.nocmp'
					Disallow	use	of	C64x+	compact	instructions	in	the	current	text
					section.

'.personalityindex	INDEX'
					Sets	the	personality	routine	for	the	current	function	to	the	ABI
					specified	compact	routine	number	INDEX

'.personality	NAME'
					Sets	the	personality	routine	for	the	current	function	to	NAME.

'.scomm	SYMBOL,	SIZE,	ALIGN'
					Like	'.comm',	creating	a	common	symbol	SYMBOL	with	size	SIZE	and
					alignment	ALIGN,	but	unlike	when	using	'.comm',	this	symbol	will	be
					placed	into	the	small	BSS	section	by	the	linker.

�
File:	as.info,		Node:	TILE-Gx-Dependent,		Next:	TILEPro-Dependent,		Prev:	TIC6X-
Dependent,		Up:	Machine	Dependencies

9.46	TILE-Gx	Dependent	Features
===============================

*	Menu:

*	TILE-Gx	Options:: TILE-Gx	Options
*	TILE-Gx	Syntax:: TILE-Gx	Syntax
*	TILE-Gx	Directives:: TILE-Gx	Directives

�
File:	as.info,		Node:	TILE-Gx	Options,		Next:	TILE-Gx	Syntax,		Up:	TILE-Gx-Dependent

9.46.1	Options

The	following	table	lists	all	available	TILE-Gx	specific	options:

'-m32	|	-m64'
					Select	the	word	size,	either	32	bits	or	64	bits.

'-EB	|	-EL'
					Select	the	endianness,	either	big-endian	(-EB)	or	little-endian
					(-EL).

�
File:	as.info,		Node:	TILE-Gx	Syntax,		Next:	TILE-Gx	Directives,		Prev:	TILE-Gx
Options,		Up:	TILE-Gx-Dependent

9.46.2	Syntax

3/25/20 as.info 349

Block	comments	are	delimited	by	'/*'	and	'*/'.		End	of	line	comments	may
be	introduced	by	'#'.

			Instructions	consist	of	a	leading	opcode	or	macro	name	followed	by
whitespace	and	an	optional	comma-separated	list	of	operands:

					OPCODE	[OPERAND,	...]

			Instructions	must	be	separated	by	a	newline	or	semicolon.

			There	are	two	ways	to	write	code:	either	write	naked	instructions,
which	the	assembler	is	free	to	combine	into	VLIW	bundles,	or	specify	the
VLIW	bundles	explicitly.

			Bundles	are	specified	using	curly	braces:

					{	ADD	r3,r4,r5	;	ADD	r7,r8,r9	;	LW	r10,r11	}

			A	bundle	can	span	multiple	lines.		If	you	want	to	put	multiple
instructions	on	a	line,	whether	in	a	bundle	or	not,	you	need	to	separate
them	with	semicolons	as	in	this	example.

			A	bundle	may	contain	one	or	more	instructions,	up	to	the	limit
specified	by	the	ISA	(currently	three).		If	fewer	instructions	are
specified	than	the	hardware	supports	in	a	bundle,	the	assembler	inserts
'fnop'	instructions	automatically.

			The	assembler	will	prefer	to	preserve	the	ordering	of	instructions
within	the	bundle,	putting	the	first	instruction	in	a	lower-numbered
pipeline	than	the	next	one,	etc.		This	fact,	combined	with	the	optional
use	of	explicit	'fnop'	or	'nop'	instructions,	allows	precise	control
over	which	pipeline	executes	each	instruction.

			If	the	instructions	cannot	be	bundled	in	the	listed	order,	the
assembler	will	automatically	try	to	find	a	valid	pipeline	assignment.
If	there	is	no	way	to	bundle	the	instructions	together,	the	assembler
reports	an	error.

			The	assembler	does	not	yet	auto-bundle	(automatically	combine
multiple	instructions	into	one	bundle),	but	it	reserves	the	right	to	do
so	in	the	future.		If	you	want	to	force	an	instruction	to	run	by	itself,
put	it	in	a	bundle	explicitly	with	curly	braces	and	use	'nop'
instructions	(not	'fnop')	to	fill	the	remaining	pipeline	slots	in	that
bundle.

*	Menu:

*	TILE-Gx	Opcodes::														Opcode	Naming	Conventions.
*	TILE-Gx	Registers::												Register	Naming.
*	TILE-Gx	Modifiers::												Symbolic	Operand	Modifiers.

�
File:	as.info,		Node:	TILE-Gx	Opcodes,		Next:	TILE-Gx	Registers,		Up:	TILE-Gx	Syntax

9.46.2.1	Opcode	Names
.....................

For	a	complete	list	of	opcodes	and	descriptions	of	their	semantics,	see
'TILE-Gx	Instruction	Set	Architecture',	available	upon	request	at

3/25/20 as.info 350

www.tilera.com.

�
File:	as.info,		Node:	TILE-Gx	Registers,		Next:	TILE-Gx	Modifiers,		Prev:	TILE-Gx
Opcodes,		Up:	TILE-Gx	Syntax

9.46.2.2	Register	Names
.......................

General-purpose	registers	are	represented	by	predefined	symbols	of	the
form	'rN',	where	N	represents	a	number	between	'0'	and	'63'.		However,
the	following	registers	have	canonical	names	that	must	be	used	instead:

'r54'
					sp

'r55'
					lr

'r56'
					sn

'r57'
					idn0

'r58'
					idn1

'r59'
					udn0

'r60'
					udn1

'r61'
					udn2

'r62'
					udn3

'r63'
					zero

			The	assembler	will	emit	a	warning	if	a	numeric	name	is	used	instead
of	the	non-numeric	name.		The	'.no_require_canonical_reg_names'
assembler	pseudo-op	turns	off	this	warning.
'.require_canonical_reg_names'	turns	it	back	on.

�
File:	as.info,		Node:	TILE-Gx	Modifiers,		Prev:	TILE-Gx	Registers,		Up:	TILE-Gx
Syntax

9.46.2.3	Symbolic	Operand	Modifiers
...................................

The	assembler	supports	several	modifiers	when	using	symbol	addresses	in
TILE-Gx	instruction	operands.		The	general	syntax	is	the	following:

					modifier(symbol)

3/25/20 as.info 351

			The	following	modifiers	are	supported:

'hw0'

					This	modifier	is	used	to	load	bits	0-15	of	the	symbol's	address.

'hw1'

					This	modifier	is	used	to	load	bits	16-31	of	the	symbol's	address.

'hw2'

					This	modifier	is	used	to	load	bits	32-47	of	the	symbol's	address.

'hw3'

					This	modifier	is	used	to	load	bits	48-63	of	the	symbol's	address.

'hw0_last'

					This	modifier	yields	the	same	value	as	'hw0',	but	it	also	checks
					that	the	value	does	not	overflow.

'hw1_last'

					This	modifier	yields	the	same	value	as	'hw1',	but	it	also	checks
					that	the	value	does	not	overflow.

'hw2_last'

					This	modifier	yields	the	same	value	as	'hw2',	but	it	also	checks
					that	the	value	does	not	overflow.

					A	48-bit	symbolic	value	is	constructed	by	using	the	following
					idiom:

										moveli	r0,	hw2_last(sym)
										shl16insli	r0,	r0,	hw1(sym)
										shl16insli	r0,	r0,	hw0(sym)

'hw0_got'

					This	modifier	is	used	to	load	bits	0-15	of	the	symbol's	offset	in
					the	GOT	entry	corresponding	to	the	symbol.

'hw0_last_got'

					This	modifier	yields	the	same	value	as	'hw0_got',	but	it	also
					checks	that	the	value	does	not	overflow.

'hw1_last_got'

					This	modifier	is	used	to	load	bits	16-31	of	the	symbol's	offset	in
					the	GOT	entry	corresponding	to	the	symbol,	and	it	also	checks	that
					the	value	does	not	overflow.

'plt'

3/25/20 as.info 352

					This	modifier	is	used	for	function	symbols.		It	causes	a	_procedure
					linkage	table_,	an	array	of	code	stubs,	to	be	created	at	the	time
					the	shared	object	is	created	or	linked	against,	together	with	a
					global	offset	table	entry.		The	value	is	a	pc-relative	offset	to
					the	corresponding	stub	code	in	the	procedure	linkage	table.		This
					arrangement	causes	the	run-time	symbol	resolver	to	be	called	to
					look	up	and	set	the	value	of	the	symbol	the	first	time	the	function
					is	called	(at	latest;	depending	environment	variables).		It	is	only
					safe	to	leave	the	symbol	unresolved	this	way	if	all	references	are
					function	calls.

'hw0_plt'

					This	modifier	is	used	to	load	bits	0-15	of	the	pc-relative	address
					of	a	plt	entry.

'hw1_plt'

					This	modifier	is	used	to	load	bits	16-31	of	the	pc-relative	address
					of	a	plt	entry.

'hw1_last_plt'

					This	modifier	yields	the	same	value	as	'hw1_plt',	but	it	also
					checks	that	the	value	does	not	overflow.

'hw2_last_plt'

					This	modifier	is	used	to	load	bits	32-47	of	the	pc-relative	address
					of	a	plt	entry,	and	it	also	checks	that	the	value	does	not
					overflow.

'hw0_tls_gd'

					This	modifier	is	used	to	load	bits	0-15	of	the	offset	of	the	GOT
					entry	of	the	symbol's	TLS	descriptor,	to	be	used	for
					general-dynamic	TLS	accesses.

'hw0_last_tls_gd'

					This	modifier	yields	the	same	value	as	'hw0_tls_gd',	but	it	also
					checks	that	the	value	does	not	overflow.

'hw1_last_tls_gd'

					This	modifier	is	used	to	load	bits	16-31	of	the	offset	of	the	GOT
					entry	of	the	symbol's	TLS	descriptor,	to	be	used	for
					general-dynamic	TLS	accesses.		It	also	checks	that	the	value	does
					not	overflow.

'hw0_tls_ie'

					This	modifier	is	used	to	load	bits	0-15	of	the	offset	of	the	GOT
					entry	containing	the	offset	of	the	symbol's	address	from	the	TCB,
					to	be	used	for	initial-exec	TLS	accesses.

'hw0_last_tls_ie'

					This	modifier	yields	the	same	value	as	'hw0_tls_ie',	but	it	also

3/25/20 as.info 353

					checks	that	the	value	does	not	overflow.

'hw1_last_tls_ie'

					This	modifier	is	used	to	load	bits	16-31	of	the	offset	of	the	GOT
					entry	containing	the	offset	of	the	symbol's	address	from	the	TCB,
					to	be	used	for	initial-exec	TLS	accesses.		It	also	checks	that	the
					value	does	not	overflow.

'hw0_tls_le'

					This	modifier	is	used	to	load	bits	0-15	of	the	offset	of	the
					symbol's	address	from	the	TCB,	to	be	used	for	local-exec	TLS
					accesses.

'hw0_last_tls_le'

					This	modifier	yields	the	same	value	as	'hw0_tls_le',	but	it	also
					checks	that	the	value	does	not	overflow.

'hw1_last_tls_le'

					This	modifier	is	used	to	load	bits	16-31	of	the	offset	of	the
					symbol's	address	from	the	TCB,	to	be	used	for	local-exec	TLS
					accesses.		It	also	checks	that	the	value	does	not	overflow.

'tls_gd_call'

					This	modifier	is	used	to	tag	an	instrution	as	the	"call"	part	of	a
					calling	sequence	for	a	TLS	GD	reference	of	its	operand.

'tls_gd_add'

					This	modifier	is	used	to	tag	an	instruction	as	the	"add"	part	of	a
					calling	sequence	for	a	TLS	GD	reference	of	its	operand.

'tls_ie_load'

					This	modifier	is	used	to	tag	an	instruction	as	the	"load"	part	of	a
					calling	sequence	for	a	TLS	IE	reference	of	its	operand.

�
File:	as.info,		Node:	TILE-Gx	Directives,		Prev:	TILE-Gx	Syntax,		Up:	TILE-Gx-
Dependent

9.46.3	TILE-Gx	Directives

'.align	EXPRESSION	[,	EXPRESSION]'
					This	is	the	generic	.ALIGN	directive.		The	first	argument	is	the
					requested	alignment	in	bytes.

'.allow_suspicious_bundles'
					Turns	on	error	checking	for	combinations	of	instructions	in	a
					bundle	that	probably	indicate	a	programming	error.		This	is	on	by
					default.

'.no_allow_suspicious_bundles'
					Turns	off	error	checking	for	combinations	of	instructions	in	a

3/25/20 as.info 354

					bundle	that	probably	indicate	a	programming	error.

'.require_canonical_reg_names'
					Require	that	canonical	register	names	be	used,	and	emit	a	warning
					if	the	numeric	names	are	used.		This	is	on	by	default.

'.no_require_canonical_reg_names'
					Permit	the	use	of	numeric	names	for	registers	that	have	canonical
					names.

�
File:	as.info,		Node:	TILEPro-Dependent,		Next:	V850-Dependent,		Prev:	TILE-Gx-
Dependent,		Up:	Machine	Dependencies

9.47	TILEPro	Dependent	Features
===============================

*	Menu:

*	TILEPro	Options:: TILEPro	Options
*	TILEPro	Syntax:: TILEPro	Syntax
*	TILEPro	Directives:: TILEPro	Directives

�
File:	as.info,		Node:	TILEPro	Options,		Next:	TILEPro	Syntax,		Up:	TILEPro-Dependent

9.47.1	Options

'as'	has	no	machine-dependent	command-line	options	for	TILEPro.

�
File:	as.info,		Node:	TILEPro	Syntax,		Next:	TILEPro	Directives,		Prev:	TILEPro
Options,		Up:	TILEPro-Dependent

9.47.2	Syntax

Block	comments	are	delimited	by	'/*'	and	'*/'.		End	of	line	comments	may
be	introduced	by	'#'.

			Instructions	consist	of	a	leading	opcode	or	macro	name	followed	by
whitespace	and	an	optional	comma-separated	list	of	operands:

					OPCODE	[OPERAND,	...]

			Instructions	must	be	separated	by	a	newline	or	semicolon.

			There	are	two	ways	to	write	code:	either	write	naked	instructions,
which	the	assembler	is	free	to	combine	into	VLIW	bundles,	or	specify	the
VLIW	bundles	explicitly.

			Bundles	are	specified	using	curly	braces:

					{	ADD	r3,r4,r5	;	ADD	r7,r8,r9	;	LW	r10,r11	}

			A	bundle	can	span	multiple	lines.		If	you	want	to	put	multiple
instructions	on	a	line,	whether	in	a	bundle	or	not,	you	need	to	separate
them	with	semicolons	as	in	this	example.

3/25/20 as.info 355

			A	bundle	may	contain	one	or	more	instructions,	up	to	the	limit
specified	by	the	ISA	(currently	three).		If	fewer	instructions	are
specified	than	the	hardware	supports	in	a	bundle,	the	assembler	inserts
'fnop'	instructions	automatically.

			The	assembler	will	prefer	to	preserve	the	ordering	of	instructions
within	the	bundle,	putting	the	first	instruction	in	a	lower-numbered
pipeline	than	the	next	one,	etc.		This	fact,	combined	with	the	optional
use	of	explicit	'fnop'	or	'nop'	instructions,	allows	precise	control
over	which	pipeline	executes	each	instruction.

			If	the	instructions	cannot	be	bundled	in	the	listed	order,	the
assembler	will	automatically	try	to	find	a	valid	pipeline	assignment.
If	there	is	no	way	to	bundle	the	instructions	together,	the	assembler
reports	an	error.

			The	assembler	does	not	yet	auto-bundle	(automatically	combine
multiple	instructions	into	one	bundle),	but	it	reserves	the	right	to	do
so	in	the	future.		If	you	want	to	force	an	instruction	to	run	by	itself,
put	it	in	a	bundle	explicitly	with	curly	braces	and	use	'nop'
instructions	(not	'fnop')	to	fill	the	remaining	pipeline	slots	in	that
bundle.

*	Menu:

*	TILEPro	Opcodes::														Opcode	Naming	Conventions.
*	TILEPro	Registers::												Register	Naming.
*	TILEPro	Modifiers::												Symbolic	Operand	Modifiers.

�
File:	as.info,		Node:	TILEPro	Opcodes,		Next:	TILEPro	Registers,		Up:	TILEPro	Syntax

9.47.2.1	Opcode	Names
.....................

For	a	complete	list	of	opcodes	and	descriptions	of	their	semantics,	see
'TILE	Processor	User	Architecture	Manual',	available	upon	request	at
www.tilera.com.

�
File:	as.info,		Node:	TILEPro	Registers,		Next:	TILEPro	Modifiers,		Prev:	TILEPro
Opcodes,		Up:	TILEPro	Syntax

9.47.2.2	Register	Names
.......................

General-purpose	registers	are	represented	by	predefined	symbols	of	the
form	'rN',	where	N	represents	a	number	between	'0'	and	'63'.		However,
the	following	registers	have	canonical	names	that	must	be	used	instead:

'r54'
					sp

'r55'
					lr

'r56'
					sn

3/25/20 as.info 356

'r57'
					idn0

'r58'
					idn1

'r59'
					udn0

'r60'
					udn1

'r61'
					udn2

'r62'
					udn3

'r63'
					zero

			The	assembler	will	emit	a	warning	if	a	numeric	name	is	used	instead
of	the	canonical	name.		The	'.no_require_canonical_reg_names'	assembler
pseudo-op	turns	off	this	warning.		'.require_canonical_reg_names'	turns
it	back	on.

�
File:	as.info,		Node:	TILEPro	Modifiers,		Prev:	TILEPro	Registers,		Up:	TILEPro
Syntax

9.47.2.3	Symbolic	Operand	Modifiers
...................................

The	assembler	supports	several	modifiers	when	using	symbol	addresses	in
TILEPro	instruction	operands.		The	general	syntax	is	the	following:

					modifier(symbol)

			The	following	modifiers	are	supported:

'lo16'

					This	modifier	is	used	to	load	the	low	16	bits	of	the	symbol's
					address,	sign-extended	to	a	32-bit	value	(sign-extension	allows	it
					to	be	range-checked	against	signed	16	bit	immediate	operands
					without	complaint).

'hi16'

					This	modifier	is	used	to	load	the	high	16	bits	of	the	symbol's
					address,	also	sign-extended	to	a	32-bit	value.

'ha16'

					'ha16(N)'	is	identical	to	'hi16(N)',	except	if	'lo16(N)'	is
					negative	it	adds	one	to	the	'hi16(N)'	value.		This	way	'lo16'	and
					'ha16'	can	be	added	to	create	any	32-bit	value	using	'auli'.		For
					example,	here	is	how	you	move	an	arbitrary	32-bit	address	into	r3:

3/25/20 as.info 357

										moveli	r3,	lo16(sym)
										auli	r3,	r3,	ha16(sym)

'got'

					This	modifier	is	used	to	load	the	offset	of	the	GOT	entry
					corresponding	to	the	symbol.

'got_lo16'

					This	modifier	is	used	to	load	the	sign-extended	low	16	bits	of	the
					offset	of	the	GOT	entry	corresponding	to	the	symbol.

'got_hi16'

					This	modifier	is	used	to	load	the	sign-extended	high	16	bits	of	the
					offset	of	the	GOT	entry	corresponding	to	the	symbol.

'got_ha16'

					This	modifier	is	like	'got_hi16',	but	it	adds	one	if	'got_lo16'	of
					the	input	value	is	negative.

'plt'

					This	modifier	is	used	for	function	symbols.		It	causes	a	_procedure
					linkage	table_,	an	array	of	code	stubs,	to	be	created	at	the	time
					the	shared	object	is	created	or	linked	against,	together	with	a
					global	offset	table	entry.		The	value	is	a	pc-relative	offset	to
					the	corresponding	stub	code	in	the	procedure	linkage	table.		This
					arrangement	causes	the	run-time	symbol	resolver	to	be	called	to
					look	up	and	set	the	value	of	the	symbol	the	first	time	the	function
					is	called	(at	latest;	depending	environment	variables).		It	is	only
					safe	to	leave	the	symbol	unresolved	this	way	if	all	references	are
					function	calls.

'tls_gd'

					This	modifier	is	used	to	load	the	offset	of	the	GOT	entry	of	the
					symbol's	TLS	descriptor,	to	be	used	for	general-dynamic	TLS
					accesses.

'tls_gd_lo16'

					This	modifier	is	used	to	load	the	sign-extended	low	16	bits	of	the
					offset	of	the	GOT	entry	of	the	symbol's	TLS	descriptor,	to	be	used
					for	general	dynamic	TLS	accesses.

'tls_gd_hi16'

					This	modifier	is	used	to	load	the	sign-extended	high	16	bits	of	the
					offset	of	the	GOT	entry	of	the	symbol's	TLS	descriptor,	to	be	used
					for	general	dynamic	TLS	accesses.

'tls_gd_ha16'

					This	modifier	is	like	'tls_gd_hi16',	but	it	adds	one	to	the	value
					if	'tls_gd_lo16'	of	the	input	value	is	negative.

3/25/20 as.info 358

'tls_ie'

					This	modifier	is	used	to	load	the	offset	of	the	GOT	entry
					containing	the	offset	of	the	symbol's	address	from	the	TCB,	to	be
					used	for	initial-exec	TLS	accesses.

'tls_ie_lo16'

					This	modifier	is	used	to	load	the	low	16	bits	of	the	offset	of	the
					GOT	entry	containing	the	offset	of	the	symbol's	address	from	the
					TCB,	to	be	used	for	initial-exec	TLS	accesses.

'tls_ie_hi16'

					This	modifier	is	used	to	load	the	high	16	bits	of	the	offset	of	the
					GOT	entry	containing	the	offset	of	the	symbol's	address	from	the
					TCB,	to	be	used	for	initial-exec	TLS	accesses.

'tls_ie_ha16'

					This	modifier	is	like	'tls_ie_hi16',	but	it	adds	one	to	the	value
					if	'tls_ie_lo16'	of	the	input	value	is	negative.

'tls_le'

					This	modifier	is	used	to	load	the	offset	of	the	symbol's	address
					from	the	TCB,	to	be	used	for	local-exec	TLS	accesses.

'tls_le_lo16'

					This	modifier	is	used	to	load	the	low	16	bits	of	the	offset	of	the
					symbol's	address	from	the	TCB,	to	be	used	for	local-exec	TLS
					accesses.

'tls_le_hi16'

					This	modifier	is	used	to	load	the	high	16	bits	of	the	offset	of	the
					symbol's	address	from	the	TCB,	to	be	used	for	local-exec	TLS
					accesses.

'tls_le_ha16'

					This	modifier	is	like	'tls_le_hi16',	but	it	adds	one	to	the	value
					if	'tls_le_lo16'	of	the	input	value	is	negative.

'tls_gd_call'

					This	modifier	is	used	to	tag	an	instrution	as	the	"call"	part	of	a
					calling	sequence	for	a	TLS	GD	reference	of	its	operand.

'tls_gd_add'

					This	modifier	is	used	to	tag	an	instruction	as	the	"add"	part	of	a
					calling	sequence	for	a	TLS	GD	reference	of	its	operand.

'tls_ie_load'

					This	modifier	is	used	to	tag	an	instruction	as	the	"load"	part	of	a

3/25/20 as.info 359

					calling	sequence	for	a	TLS	IE	reference	of	its	operand.

�
File:	as.info,		Node:	TILEPro	Directives,		Prev:	TILEPro	Syntax,		Up:	TILEPro-
Dependent

9.47.3	TILEPro	Directives

'.align	EXPRESSION	[,	EXPRESSION]'
					This	is	the	generic	.ALIGN	directive.		The	first	argument	is	the
					requested	alignment	in	bytes.

'.allow_suspicious_bundles'
					Turns	on	error	checking	for	combinations	of	instructions	in	a
					bundle	that	probably	indicate	a	programming	error.		This	is	on	by
					default.

'.no_allow_suspicious_bundles'
					Turns	off	error	checking	for	combinations	of	instructions	in	a
					bundle	that	probably	indicate	a	programming	error.

'.require_canonical_reg_names'
					Require	that	canonical	register	names	be	used,	and	emit	a	warning
					if	the	numeric	names	are	used.		This	is	on	by	default.

'.no_require_canonical_reg_names'
					Permit	the	use	of	numeric	names	for	registers	that	have	canonical
					names.

�
File:	as.info,		Node:	V850-Dependent,		Next:	Vax-Dependent,		Prev:	TILEPro-Dependent,
Up:	Machine	Dependencies

9.48	v850	Dependent	Features
============================

*	Menu:

*	V850	Options::														Options
*	V850	Syntax::															Syntax
*	V850	Floating	Point::							Floating	Point
*	V850	Directives::											V850	Machine	Directives
*	V850	Opcodes::														Opcodes

�
File:	as.info,		Node:	V850	Options,		Next:	V850	Syntax,		Up:	V850-Dependent

9.48.1	Options

'as'	supports	the	following	additional	command-line	options	for	the	V850
processor	family:

'-wsigned_overflow'
					Causes	warnings	to	be	produced	when	signed	immediate	values
					overflow	the	space	available	for	then	within	their	opcodes.		By
					default	this	option	is	disabled	as	it	is	possible	to	receive
					spurious	warnings	due	to	using	exact	bit	patterns	as	immediate

3/25/20 as.info 360

					constants.

'-wunsigned_overflow'
					Causes	warnings	to	be	produced	when	unsigned	immediate	values
					overflow	the	space	available	for	then	within	their	opcodes.		By
					default	this	option	is	disabled	as	it	is	possible	to	receive
					spurious	warnings	due	to	using	exact	bit	patterns	as	immediate
					constants.

'-mv850'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850	processor.		This	allows	the	linker	to	detect
					attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'-mv850e'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E	processor.		This	allows	the	linker	to	detect
					attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'-mv850e1'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E1	processor.		This	allows	the	linker	to	detect
					attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'-mv850any'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850	processor	but	support	instructions	that	are
					specific	to	the	extended	variants	of	the	process.		This	allows	the
					production	of	binaries	that	contain	target	specific	code,	but	which
					are	also	intended	to	be	used	in	a	generic	fashion.		For	example
					libgcc.a	contains	generic	routines	used	by	the	code	produced	by	GCC
					for	all	versions	of	the	v850	architecture,	together	with	support
					routines	only	used	by	the	V850E	architecture.

'-mv850e2'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E2	processor.		This	allows	the	linker	to	detect
					attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'-mv850e2v3'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E2V3	processor.		This	allows	the	linker	to
					detect	attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'-mv850e2v4'
					This	is	an	alias	for	'-mv850e3v5'.

'-mv850e3v5'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E3V5	processor.		This	allows	the	linker	to
					detect	attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'-mrelax'

3/25/20 as.info 361

					Enables	relaxation.		This	allows	the	.longcall	and	.longjump	pseudo
					ops	to	be	used	in	the	assembler	source	code.		These	ops	label
					sections	of	code	which	are	either	a	long	function	call	or	a	long
					branch.		The	assembler	will	then	flag	these	sections	of	code	and
					the	linker	will	attempt	to	relax	them.

'-mgcc-abi'
					Marks	the	generated	object	file	as	supporting	the	old	GCC	ABI.

'-mrh850-abi'
					Marks	the	generated	object	file	as	supporting	the	RH850	ABI.	This
					is	the	default.

'-m8byte-align'
					Marks	the	generated	object	file	as	supporting	a	maximum	64-bits	of
					alignment	for	variables	defined	in	the	source	code.

'-m4byte-align'
					Marks	the	generated	object	file	as	supporting	a	maximum	32-bits	of
					alignment	for	variables	defined	in	the	source	code.		This	is	the
					default.

'-msoft-float'
					Marks	the	generated	object	file	as	not	using	any	floating	point
					instructions	-	and	hence	can	be	linked	with	other	V850	binaries
					that	do	or	do	not	use	floating	point.		This	is	the	default	for
					binaries	for	architectures	earlier	than	the	'e2v3'.

'-mhard-float'
					Marks	the	generated	object	file	as	one	that	uses	floating	point
					instructions	-	and	hence	can	only	be	linked	with	other	V850
					binaries	that	use	the	same	kind	of	floating	point	instructions,	or
					with	binaries	that	do	not	use	floating	point	at	all.		This	is	the
					default	for	binaries	the	'e2v3'	and	later	architectures.

�
File:	as.info,		Node:	V850	Syntax,		Next:	V850	Floating	Point,		Prev:	V850	Options,
Up:	V850-Dependent

9.48.2	Syntax

*	Menu:

*	V850-Chars::																Special	Characters
*	V850-Regs::																	Register	Names

�
File:	as.info,		Node:	V850-Chars,		Next:	V850-Regs,		Up:	V850	Syntax

9.48.2.1	Special	Characters
...........................

'#'	is	the	line	comment	character.		If	a	'#'	appears	as	the	first
character	of	a	line,	the	whole	line	is	treated	as	a	comment,	but	in	this
case	the	line	can	also	be	a	logical	line	number	directive	(*note
Comments::)	or	a	preprocessor	control	command	(*note	Preprocessing::).

			Two	dashes	('--')	can	also	be	used	to	start	a	line	comment.

3/25/20 as.info 362

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	V850-Regs,		Prev:	V850-Chars,		Up:	V850	Syntax

9.48.2.2	Register	Names
.......................

'as'	supports	the	following	names	for	registers:
'general	register	0'
					r0,	zero
'general	register	1'
					r1
'general	register	2'
					r2,	hp
'general	register	3'
					r3,	sp
'general	register	4'
					r4,	gp
'general	register	5'
					r5,	tp
'general	register	6'
					r6
'general	register	7'
					r7
'general	register	8'
					r8
'general	register	9'
					r9
'general	register	10'
					r10
'general	register	11'
					r11
'general	register	12'
					r12
'general	register	13'
					r13
'general	register	14'
					r14
'general	register	15'
					r15
'general	register	16'
					r16
'general	register	17'
					r17
'general	register	18'
					r18
'general	register	19'
					r19
'general	register	20'
					r20
'general	register	21'
					r21
'general	register	22'
					r22
'general	register	23'
					r23

3/25/20 as.info 363

'general	register	24'
					r24
'general	register	25'
					r25
'general	register	26'
					r26
'general	register	27'
					r27
'general	register	28'
					r28
'general	register	29'
					r29
'general	register	30'
					r30,	ep
'general	register	31'
					r31,	lp
'system	register	0'
					eipc
'system	register	1'
					eipsw
'system	register	2'
					fepc
'system	register	3'
					fepsw
'system	register	4'
					ecr
'system	register	5'
					psw
'system	register	16'
					ctpc
'system	register	17'
					ctpsw
'system	register	18'
					dbpc
'system	register	19'
					dbpsw
'system	register	20'
					ctbp

�
File:	as.info,		Node:	V850	Floating	Point,		Next:	V850	Directives,		Prev:	V850
Syntax,		Up:	V850-Dependent

9.48.3	Floating	Point

The	V850	family	uses	IEEE	floating-point	numbers.

�
File:	as.info,		Node:	V850	Directives,		Next:	V850	Opcodes,		Prev:	V850	Floating
Point,		Up:	V850-Dependent

9.48.4	V850	Machine	Directives

'.offset	<EXPRESSION>'
					Moves	the	offset	into	the	current	section	to	the	specified	amount.

'.section	"name",	<type>'

3/25/20 as.info 364

					This	is	an	extension	to	the	standard	.section	directive.		It	sets
					the	current	section	to	be	<type>	and	creates	an	alias	for	this
					section	called	"name".

'.v850'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850	processor.		This	allows	the	linker	to	detect
					attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'.v850e'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E	processor.		This	allows	the	linker	to	detect
					attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'.v850e1'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E1	processor.		This	allows	the	linker	to	detect
					attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'.v850e2'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E2	processor.		This	allows	the	linker	to	detect
					attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'.v850e2v3'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E2V3	processor.		This	allows	the	linker	to
					detect	attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'.v850e2v4'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E3V5	processor.		This	allows	the	linker	to
					detect	attempts	to	link	such	code	with	code	assembled	for	other
					processors.

'.v850e3v5'
					Specifies	that	the	assembled	code	should	be	marked	as	being
					targeted	at	the	V850E3V5	processor.		This	allows	the	linker	to
					detect	attempts	to	link	such	code	with	code	assembled	for	other
					processors.

�
File:	as.info,		Node:	V850	Opcodes,		Prev:	V850	Directives,		Up:	V850-Dependent

9.48.5	Opcodes

'as'	implements	all	the	standard	V850	opcodes.

			'as'	also	implements	the	following	pseudo	ops:

'hi0()'
					Computes	the	higher	16	bits	of	the	given	expression	and	stores	it
					into	the	immediate	operand	field	of	the	given	instruction.		For

3/25/20 as.info 365

					example:

					'mulhi	hi0(here	-	there),	r5,	r6'

					computes	the	difference	between	the	address	of	labels	'here'	and
					'there',	takes	the	upper	16	bits	of	this	difference,	shifts	it	down
					16	bits	and	then	multiplies	it	by	the	lower	16	bits	in	register	5,
					putting	the	result	into	register	6.

'lo()'
					Computes	the	lower	16	bits	of	the	given	expression	and	stores	it
					into	the	immediate	operand	field	of	the	given	instruction.		For
					example:

					'addi	lo(here	-	there),	r5,	r6'

					computes	the	difference	between	the	address	of	labels	'here'	and
					'there',	takes	the	lower	16	bits	of	this	difference	and	adds	it	to
					register	5,	putting	the	result	into	register	6.

'hi()'
					Computes	the	higher	16	bits	of	the	given	expression	and	then	adds
					the	value	of	the	most	significant	bit	of	the	lower	16	bits	of	the
					expression	and	stores	the	result	into	the	immediate	operand	field
					of	the	given	instruction.		For	example	the	following	code	can	be
					used	to	compute	the	address	of	the	label	'here'	and	store	it	into
					register	6:

					'movhi	hi(here),	r0,	r6'	'movea	lo(here),	r6,	r6'

					The	reason	for	this	special	behaviour	is	that	movea	performs	a	sign
					extension	on	its	immediate	operand.		So	for	example	if	the	address
					of	'here'	was	0xFFFFFFFF	then	without	the	special	behaviour	of	the
					hi()	pseudo-op	the	movhi	instruction	would	put	0xFFFF0000	into	r6,
					then	the	movea	instruction	would	takes	its	immediate	operand,
					0xFFFF,	sign	extend	it	to	32	bits,	0xFFFFFFFF,	and	then	add	it	into
					r6	giving	0xFFFEFFFF	which	is	wrong	(the	fifth	nibble	is	E).	With
					the	hi()	pseudo	op	adding	in	the	top	bit	of	the	lo()	pseudo	op,	the
					movhi	instruction	actually	stores	0	into	r6	(0xFFFF	+	1	=	0x0000),
					so	that	the	movea	instruction	stores	0xFFFFFFFF	into	r6	-	the	right
					value.

'hilo()'
					Computes	the	32	bit	value	of	the	given	expression	and	stores	it
					into	the	immediate	operand	field	of	the	given	instruction	(which
					must	be	a	mov	instruction).		For	example:

					'mov	hilo(here),	r6'

					computes	the	absolute	address	of	label	'here'	and	puts	the	result
					into	register	6.

'sdaoff()'
					Computes	the	offset	of	the	named	variable	from	the	start	of	the
					Small	Data	Area	(whoes	address	is	held	in	register	4,	the	GP
					register)	and	stores	the	result	as	a	16	bit	signed	value	in	the
					immediate	operand	field	of	the	given	instruction.		For	example:

					'ld.w	sdaoff(_a_variable)[gp],r6'

3/25/20 as.info 366

					loads	the	contents	of	the	location	pointed	to	by	the	label
					'_a_variable'	into	register	6,	provided	that	the	label	is	located
					somewhere	within	+/-	32K	of	the	address	held	in	the	GP	register.
					[Note	the	linker	assumes	that	the	GP	register	contains	a	fixed
					address	set	to	the	address	of	the	label	called	'__gp'.		This	can
					either	be	set	up	automatically	by	the	linker,	or	specifically	set
					by	using	the	'--defsym	__gp=<value>'	command	line	option].

'tdaoff()'
					Computes	the	offset	of	the	named	variable	from	the	start	of	the
					Tiny	Data	Area	(whoes	address	is	held	in	register	30,	the	EP
					register)	and	stores	the	result	as	a	4,5,	7	or	8	bit	unsigned	value
					in	the	immediate	operand	field	of	the	given	instruction.		For
					example:

					'sld.w	tdaoff(_a_variable)[ep],r6'

					loads	the	contents	of	the	location	pointed	to	by	the	label
					'_a_variable'	into	register	6,	provided	that	the	label	is	located
					somewhere	within	+256	bytes	of	the	address	held	in	the	EP	register.
					[Note	the	linker	assumes	that	the	EP	register	contains	a	fixed
					address	set	to	the	address	of	the	label	called	'__ep'.		This	can
					either	be	set	up	automatically	by	the	linker,	or	specifically	set
					by	using	the	'--defsym	__ep=<value>'	command	line	option].

'zdaoff()'
					Computes	the	offset	of	the	named	variable	from	address	0	and	stores
					the	result	as	a	16	bit	signed	value	in	the	immediate	operand	field
					of	the	given	instruction.		For	example:

					'movea	zdaoff(_a_variable),zero,r6'

					puts	the	address	of	the	label	'_a_variable'	into	register	6,
					assuming	that	the	label	is	somewhere	within	the	first	32K	of
					memory.		(Strictly	speaking	it	also	possible	to	access	the	last	32K
					of	memory	as	well,	as	the	offsets	are	signed).

'ctoff()'
					Computes	the	offset	of	the	named	variable	from	the	start	of	the
					Call	Table	Area	(whoes	address	is	helg	in	system	register	20,	the
					CTBP	register)	and	stores	the	result	a	6	or	16	bit	unsigned	value
					in	the	immediate	field	of	then	given	instruction	or	piece	of	data.
					For	example:

					'callt	ctoff(table_func1)'

					will	put	the	call	the	function	whoes	address	is	held	in	the	call
					table	at	the	location	labeled	'table_func1'.

'.longcall	name'
					Indicates	that	the	following	sequence	of	instructions	is	a	long
					call	to	function	'name'.		The	linker	will	attempt	to	shorten	this
					call	sequence	if	'name'	is	within	a	22bit	offset	of	the	call.		Only
					valid	if	the	'-mrelax'	command	line	switch	has	been	enabled.

'.longjump	name'
					Indicates	that	the	following	sequence	of	instructions	is	a	long
					jump	to	label	'name'.		The	linker	will	attempt	to	shorten	this	code

3/25/20 as.info 367

					sequence	if	'name'	is	within	a	22bit	offset	of	the	jump.		Only
					valid	if	the	'-mrelax'	command	line	switch	has	been	enabled.

			For	information	on	the	V850	instruction	set,	see	'V850	Family
32-/16-Bit	single-Chip	Microcontroller	Architecture	Manual'	from	NEC.
Ltd.

�
File:	as.info,		Node:	Vax-Dependent,		Next:	Visium-Dependent,		Prev:	V850-Dependent,
Up:	Machine	Dependencies

9.49	VAX	Dependent	Features
===========================

*	Menu:

*	VAX-Opts::																				VAX	Command-Line	Options
*	VAX-float::																			VAX	Floating	Point
*	VAX-directives::														Vax	Machine	Directives
*	VAX-opcodes::																	VAX	Opcodes
*	VAX-branch::																		VAX	Branch	Improvement
*	VAX-operands::																VAX	Operands
*	VAX-no::																						Not	Supported	on	VAX
*	VAX-Syntax::																		VAX	Syntax

�
File:	as.info,		Node:	VAX-Opts,		Next:	VAX-float,		Up:	Vax-Dependent

9.49.1	VAX	Command-Line	Options

The	Vax	version	of	'as'	accepts	any	of	the	following	options,	gives	a
warning	message	that	the	option	was	ignored	and	proceeds.		These	options
are	for	compatibility	with	scripts	designed	for	other	people's
assemblers.

'-D	(Debug)'
'-S	(Symbol	Table)'
'-T	(Token	Trace)'
					These	are	obsolete	options	used	to	debug	old	assemblers.

'-d	(Displacement	size	for	JUMPs)'
					This	option	expects	a	number	following	the	'-d'.		Like	options	that
					expect	filenames,	the	number	may	immediately	follow	the	'-d'	(old
					standard)	or	constitute	the	whole	of	the	command	line	argument	that
					follows	'-d'	(GNU	standard).

'-V	(Virtualize	Interpass	Temporary	File)'
					Some	other	assemblers	use	a	temporary	file.		This	option	commanded
					them	to	keep	the	information	in	active	memory	rather	than	in	a	disk
					file.		'as'	always	does	this,	so	this	option	is	redundant.

'-J	(JUMPify	Longer	Branches)'
					Many	32-bit	computers	permit	a	variety	of	branch	instructions	to	do
					the	same	job.		Some	of	these	instructions	are	short	(and	fast)	but
					have	a	limited	range;	others	are	long	(and	slow)	but	can	branch
					anywhere	in	virtual	memory.		Often	there	are	3	flavors	of	branch:
					short,	medium	and	long.		Some	other	assemblers	would	emit	short	and
					medium	branches,	unless	told	by	this	option	to	emit	short	and	long

3/25/20 as.info 368

					branches.

'-t	(Temporary	File	Directory)'
					Some	other	assemblers	may	use	a	temporary	file,	and	this	option
					takes	a	filename	being	the	directory	to	site	the	temporary	file.
					Since	'as'	does	not	use	a	temporary	disk	file,	this	option	makes	no
					difference.		'-t'	needs	exactly	one	filename.

			The	Vax	version	of	the	assembler	accepts	additional	options	when
compiled	for	VMS:

'-h	N'
					External	symbol	or	section	(used	for	global	variables)	names	are
					not	case	sensitive	on	VAX/VMS	and	always	mapped	to	upper	case.
					This	is	contrary	to	the	C	language	definition	which	explicitly
					distinguishes	upper	and	lower	case.		To	implement	a	standard
					conforming	C	compiler,	names	must	be	changed	(mapped)	to	preserve
					the	case	information.		The	default	mapping	is	to	convert	all	lower
					case	characters	to	uppercase	and	adding	an	underscore	followed	by	a
					6	digit	hex	value,	representing	a	24	digit	binary	value.		The	one
					digits	in	the	binary	value	represent	which	characters	are	uppercase
					in	the	original	symbol	name.

					The	'-h	N'	option	determines	how	we	map	names.		This	takes	several
					values.		No	'-h'	switch	at	all	allows	case	hacking	as	described
					above.		A	value	of	zero	('-h0')	implies	names	should	be	upper	case,
					and	inhibits	the	case	hack.		A	value	of	2	('-h2')	implies	names
					should	be	all	lower	case,	with	no	case	hack.		A	value	of	3	('-h3')
					implies	that	case	should	be	preserved.		The	value	1	is	unused.		The
					'-H'	option	directs	'as'	to	display	every	mapped	symbol	during
					assembly.

					Symbols	whose	names	include	a	dollar	sign	'$'	are	exceptions	to	the
					general	name	mapping.		These	symbols	are	normally	only	used	to
					reference	VMS	library	names.		Such	symbols	are	always	mapped	to
					upper	case.

'-+'
					The	'-+'	option	causes	'as'	to	truncate	any	symbol	name	larger	than
					31	characters.		The	'-+'	option	also	prevents	some	code	following
					the	'_main'	symbol	normally	added	to	make	the	object	file
					compatible	with	Vax-11	"C".

'-1'
					This	option	is	ignored	for	backward	compatibility	with	'as'	version
					1.x.

'-H'
					The	'-H'	option	causes	'as'	to	print	every	symbol	which	was	changed
					by	case	mapping.

�
File:	as.info,		Node:	VAX-float,		Next:	VAX-directives,		Prev:	VAX-Opts,		Up:	Vax-
Dependent

9.49.2	VAX	Floating	Point

Conversion	of	flonums	to	floating	point	is	correct,	and	compatible	with

3/25/20 as.info 369

previous	assemblers.		Rounding	is	towards	zero	if	the	remainder	is
exactly	half	the	least	significant	bit.

			'D',	'F',	'G'	and	'H'	floating	point	formats	are	understood.

			Immediate	floating	literals	(_e.g._		'S`$6.9')	are	rendered
correctly.		Again,	rounding	is	towards	zero	in	the	boundary	case.

			The	'.float'	directive	produces	'f'	format	numbers.		The	'.double'
directive	produces	'd'	format	numbers.

�
File:	as.info,		Node:	VAX-directives,		Next:	VAX-opcodes,		Prev:	VAX-float,		Up:	Vax-
Dependent

9.49.3	Vax	Machine	Directives

The	Vax	version	of	the	assembler	supports	four	directives	for	generating
Vax	floating	point	constants.		They	are	described	in	the	table	below.

'.dfloat'
					This	expects	zero	or	more	flonums,	separated	by	commas,	and
					assembles	Vax	'd'	format	64-bit	floating	point	constants.

'.ffloat'
					This	expects	zero	or	more	flonums,	separated	by	commas,	and
					assembles	Vax	'f'	format	32-bit	floating	point	constants.

'.gfloat'
					This	expects	zero	or	more	flonums,	separated	by	commas,	and
					assembles	Vax	'g'	format	64-bit	floating	point	constants.

'.hfloat'
					This	expects	zero	or	more	flonums,	separated	by	commas,	and
					assembles	Vax	'h'	format	128-bit	floating	point	constants.

�
File:	as.info,		Node:	VAX-opcodes,		Next:	VAX-branch,		Prev:	VAX-directives,		Up:
Vax-Dependent

9.49.4	VAX	Opcodes

All	DEC	mnemonics	are	supported.		Beware	that	'case...'	instructions
have	exactly	3	operands.		The	dispatch	table	that	follows	the	'case...'
instruction	should	be	made	with	'.word'	statements.		This	is	compatible
with	all	unix	assemblers	we	know	of.

�
File:	as.info,		Node:	VAX-branch,		Next:	VAX-operands,		Prev:	VAX-opcodes,		Up:	Vax-
Dependent

9.49.5	VAX	Branch	Improvement

Certain	pseudo	opcodes	are	permitted.		They	are	for	branch	instructions.
They	expand	to	the	shortest	branch	instruction	that	reaches	the	target.
Generally	these	mnemonics	are	made	by	substituting	'j'	for	'b'	at	the

3/25/20 as.info 370

start	of	a	DEC	mnemonic.		This	feature	is	included	both	for
compatibility	and	to	help	compilers.		If	you	do	not	need	this	feature,
avoid	these	opcodes.		Here	are	the	mnemonics,	and	the	code	they	can
expand	into.

'jbsb'
					'Jsb'	is	already	an	instruction	mnemonic,	so	we	chose	'jbsb'.
					(byte	displacement)
										'bsbb	...'
					(word	displacement)
										'bsbw	...'
					(long	displacement)
										'jsb	...'
'jbr'
'jr'
					Unconditional	branch.
					(byte	displacement)
										'brb	...'
					(word	displacement)
										'brw	...'
					(long	displacement)
										'jmp	...'
'jCOND'
					COND	may	be	any	one	of	the	conditional	branches	'neq',	'nequ',
					'eql',	'eqlu',	'gtr',	'geq',	'lss',	'gtru',	'lequ',	'vc',	'vs',
					'gequ',	'cc',	'lssu',	'cs'.		COND	may	also	be	one	of	the	bit	tests
					'bs',	'bc',	'bss',	'bcs',	'bsc',	'bcc',	'bssi',	'bcci',	'lbs',
					'lbc'.		NOTCOND	is	the	opposite	condition	to	COND.
					(byte	displacement)
										'bCOND	...'
					(word	displacement)
										'bNOTCOND	foo	;	brw	...	;	foo:'
					(long	displacement)
										'bNOTCOND	foo	;	jmp	...	;	foo:'
'jacbX'
					X	may	be	one	of	'b	d	f	g	h	l	w'.
					(word	displacement)
										'OPCODE	...'
					(long	displacement)
															OPCODE	...,	foo	;
															brb	bar	;
															foo:	jmp	...	;
															bar:
'jaobYYY'
					YYY	may	be	one	of	'lss	leq'.
'jsobZZZ'
					ZZZ	may	be	one	of	'geq	gtr'.
					(byte	displacement)
										'OPCODE	...'
					(word	displacement)
															OPCODE	...,	foo	;
															brb	bar	;
															foo:	brw	DESTINATION	;
															bar:
					(long	displacement)
															OPCODE	...,	foo	;
															brb	bar	;
															foo:	jmp	DESTINATION	;
															bar:

3/25/20 as.info 371

'aobleq'
'aoblss'
'sobgeq'
'sobgtr'
					(byte	displacement)
										'OPCODE	...'
					(word	displacement)
															OPCODE	...,	foo	;
															brb	bar	;
															foo:	brw	DESTINATION	;
															bar:
					(long	displacement)
															OPCODE	...,	foo	;
															brb	bar	;
															foo:	jmp	DESTINATION	;
															bar:

�
File:	as.info,		Node:	VAX-operands,		Next:	VAX-no,		Prev:	VAX-branch,		Up:	Vax-
Dependent

9.49.6	VAX	Operands

The	immediate	character	is	'$'	for	Unix	compatibility,	not	'#'	as	DEC
writes	it.

			The	indirect	character	is	'*'	for	Unix	compatibility,	not	'@'	as	DEC
writes	it.

			The	displacement	sizing	character	is	'`'	(an	accent	grave)	for	Unix
compatibility,	not	'^'	as	DEC	writes	it.		The	letter	preceding	'`'	may
have	either	case.		'G'	is	not	understood,	but	all	other	letters	('b	i	l
s	w')	are	understood.

			Register	names	understood	are	'r0	r1	r2	...	r15	ap	fp	sp	pc'.		Upper
and	lower	case	letters	are	equivalent.

			For	instance
					tstb	*w`$4(r5)

			Any	expression	is	permitted	in	an	operand.		Operands	are	comma
separated.

�
File:	as.info,		Node:	VAX-no,		Next:	VAX-Syntax,		Prev:	VAX-operands,		Up:	Vax-
Dependent

9.49.7	Not	Supported	on	VAX

Vax	bit	fields	can	not	be	assembled	with	'as'.		Someone	can	add	the
required	code	if	they	really	need	it.

�
File:	as.info,		Node:	VAX-Syntax,		Prev:	VAX-no,		Up:	Vax-Dependent

9.49.8	VAX	Syntax

3/25/20 as.info 372

*	Menu:

*	VAX-Chars::																Special	Characters

�
File:	as.info,		Node:	VAX-Chars,		Up:	VAX-Syntax

9.49.8.1	Special	Characters
...........................

The	presence	of	a	'#'	appearing	anywhere	on	a	line	indicates	the	start
of	a	comment	that	extends	to	the	end	of	that	line.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	can	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	';'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	Visium-Dependent,		Next:	XGATE-Dependent,		Prev:	Vax-Dependent,
Up:	Machine	Dependencies

9.50	Visium	Dependent	Features
==============================

*	Menu:

*	Visium	Options::														Options
*	Visium	Syntax::															Syntax
*	Visium	Opcodes::														Opcodes

�
File:	as.info,		Node:	Visium	Options,		Next:	Visium	Syntax,		Up:	Visium-Dependent

9.50.1	Options

The	Visium	assembler	implements	one	machine-specific	option:

'-mtune=ARCH'
					This	option	specifies	the	target	architecture.		If	an	attempt	is
					made	to	assemble	an	instruction	that	will	not	execute	on	the	target
					architecture,	the	assembler	will	issue	an	error	message.

					The	following	names	are	recognized:	'mcm24'	'mcm'	'gr5'	'gr6'

�
File:	as.info,		Node:	Visium	Syntax,		Next:	Visium	Opcodes,		Prev:	Visium	Options,
Up:	Visium-Dependent

9.50.2	Syntax

*	Menu:

3/25/20 as.info 373

*	Visium	Characters::											Special	Characters
*	Visium	Registers::												Register	Names

�
File:	as.info,		Node:	Visium	Characters,		Next:	Visium	Registers,		Up:	Visium	Syntax

9.50.2.1	Special	Characters
...........................

Line	comments	are	introduced	either	by	the	'!'	character	or	by	the	';'
character	appearing	anywhere	on	a	line.

			A	hash	character	('#')	as	the	first	character	on	a	line	also	marks
the	start	of	a	line	comment,	but	in	this	case	it	could	also	be	a	logical
line	number	directive	(*note	Comments::)	or	a	preprocessor	control
command	(*note	Preprocessing::).

			The	Visium	assembler	does	not	currently	support	a	line	separator
character.

�
File:	as.info,		Node:	Visium	Registers,		Prev:	Visium	Characters,		Up:	Visium	Syntax

9.50.2.2	Register	Names
.......................

Registers	can	be	specified	either	by	using	their	canonical	mnemonic
names	or	by	using	their	alias	if	they	have	one,	for	example	'sp'.

�
File:	as.info,		Node:	Visium	Opcodes,		Prev:	Visium	Syntax,		Up:	Visium-Dependent

9.50.3	Opcodes

All	the	standard	opcodes	of	the	architecture	are	implemented,	along	with
the	following	three	pseudo-instructions:	'cmp',	'cmpc',	'move'.

			In	addition,	the	following	two	illegal	opcodes	are	implemented	and
used	by	the	simulation:

					stop				5-bit	immediate,	SourceA
					trace			5-bit	immediate,	SourceA

�
File:	as.info,		Node:	XGATE-Dependent,		Next:	XSTORMY16-Dependent,		Prev:	Visium-
Dependent,		Up:	Machine	Dependencies

9.51	XGATE	Dependent	Features
=============================

*	Menu:

*	XGATE-Opts::																			XGATE	Options
*	XGATE-Syntax::																	Syntax
*	XGATE-Directives::													Assembler	Directives
*	XGATE-Float::																		Floating	Point
*	XGATE-opcodes::																Opcodes

3/25/20 as.info 374

�
File:	as.info,		Node:	XGATE-Opts,		Next:	XGATE-Syntax,		Up:	XGATE-Dependent

9.51.1	XGATE	Options

The	Freescale	XGATE	version	of	'as'	has	a	few	machine	dependent	options.

'-mshort'
					This	option	controls	the	ABI	and	indicates	to	use	a	16-bit	integer
					ABI.	It	has	no	effect	on	the	assembled	instructions.		This	is	the
					default.

'-mlong'
					This	option	controls	the	ABI	and	indicates	to	use	a	32-bit	integer
					ABI.

'-mshort-double'
					This	option	controls	the	ABI	and	indicates	to	use	a	32-bit	float
					ABI.	This	is	the	default.

'-mlong-double'
					This	option	controls	the	ABI	and	indicates	to	use	a	64-bit	float
					ABI.

'--print-insn-syntax'
					You	can	use	the	'--print-insn-syntax'	option	to	obtain	the	syntax
					description	of	the	instruction	when	an	error	is	detected.

'--print-opcodes'
					The	'--print-opcodes'	option	prints	the	list	of	all	the
					instructions	with	their	syntax.		Once	the	list	is	printed	'as'
					exits.

�
File:	as.info,		Node:	XGATE-Syntax,		Next:	XGATE-Directives,		Prev:	XGATE-Opts,		Up:
XGATE-Dependent

9.51.2	Syntax

In	XGATE	RISC	syntax,	the	instruction	name	comes	first	and	it	may	be
followed	by	up	to	three	operands.		Operands	are	separated	by	commas
(',').		'as'	will	complain	if	too	many	operands	are	specified	for	a
given	instruction.		The	same	will	happen	if	you	specified	too	few
operands.

					nop
					ldl		#23
					CMP		R1,	R2

			The	presence	of	a	';'	character	or	a	'!'	character	anywhere	on	a	line
indicates	the	start	of	a	comment	that	extends	to	the	end	of	that	line.

			A	'*'	or	a	'#'	character	at	the	start	of	a	line	also	introduces	a
line	comment,	but	these	characters	do	not	work	elsewhere	on	the	line.
If	the	first	character	of	the	line	is	a	'#'	then	as	well	as	starting	a
comment,	the	line	could	also	be	logical	line	number	directive	(*note
Comments::)	or	a	preprocessor	control	command	(*note	Preprocessing::).

3/25/20 as.info 375

			The	XGATE	assembler	does	not	currently	support	a	line	separator
character.

			The	following	addressing	modes	are	understood	for	XGATE:
"Inherent"
					''

"Immediate	3	Bit	Wide"
					'#NUMBER'

"Immediate	4	Bit	Wide"
					'#NUMBER'

"Immediate	8	Bit	Wide"
					'#NUMBER'

"Monadic	Addressing"
					'REG'

"Dyadic	Addressing"
					'REG,	REG'

"Triadic	Addressing"
					'REG,	REG,	REG'

"Relative	Addressing	9	Bit	Wide"
					'*SYMBOL'

"Relative	Addressing	10	Bit	Wide"
					'*SYMBOL'

"Index	Register	plus	Immediate	Offset"
					'REG,	(REG,	#NUMBER)'

"Index	Register	plus	Register	Offset"
					'REG,	REG,	REG'

"Index	Register	plus	Register	Offset	with	Post-increment"
					'REG,	REG,	REG+'

"Index	Register	plus	Register	Offset	with	Pre-decrement"
					'REG,	REG,	-REG'

					The	register	can	be	either	'R0',	'R1',	'R2',	'R3',	'R4',	'R5',	'R6'
					or	'R7'.

			Convience	macro	opcodes	to	deal	with	16-bit	values	have	been	added.

"Immediate	16	Bit	Wide"
					'#NUMBER',	or	'*SYMBOL'

					For	example:

										ldw	R1,	#1024
										ldw	R3,	timer
										ldw	R1,	(R1,	#0)
										COM	R1
										stw	R2,	(R1,	#0)

3/25/20 as.info 376

�
File:	as.info,		Node:	XGATE-Directives,		Next:	XGATE-Float,		Prev:	XGATE-Syntax,		Up:
XGATE-Dependent

9.51.3	Assembler	Directives

The	XGATE	version	of	'as'	have	the	following	specific	assembler
directives:

�
File:	as.info,		Node:	XGATE-Float,		Next:	XGATE-opcodes,		Prev:	XGATE-Directives,
Up:	XGATE-Dependent

9.51.4	Floating	Point

Packed	decimal	(P)	format	floating	literals	are	not	supported(yet).

			The	floating	point	formats	generated	by	directives	are	these.

'.float'
					'Single'	precision	floating	point	constants.

'.double'
					'Double'	precision	floating	point	constants.

'.extend'
'.ldouble'
					'Extended'	precision	('long	double')	floating	point	constants.

�
File:	as.info,		Node:	XGATE-opcodes,		Prev:	XGATE-Float,		Up:	XGATE-Dependent

9.51.5	Opcodes

�
File:	as.info,		Node:	XSTORMY16-Dependent,		Next:	Xtensa-Dependent,		Prev:	XGATE-
Dependent,		Up:	Machine	Dependencies

9.52	XStormy16	Dependent	Features
=================================

*	Menu:

*	XStormy16	Syntax::															Syntax
*	XStormy16	Directives::											Machine	Directives
*	XStormy16	Opcodes::														Pseudo-Opcodes

�
File:	as.info,		Node:	XStormy16	Syntax,		Next:	XStormy16	Directives,		Up:	XSTORMY16-
Dependent

9.52.1	Syntax

*	Menu:

3/25/20 as.info 377

*	XStormy16-Chars::																Special	Characters

�
File:	as.info,		Node:	XStormy16-Chars,		Up:	XStormy16	Syntax

9.52.1.1	Special	Characters
...........................

'#'	is	the	line	comment	character.		If	a	'#'	appears	as	the	first
character	of	a	line,	the	whole	line	is	treated	as	a	comment,	but	in	this
case	the	line	can	also	be	a	logical	line	number	directive	(*note
Comments::)	or	a	preprocessor	control	command	(*note	Preprocessing::).

			A	semicolon	(';')	can	be	used	to	start	a	comment	that	extends	from
wherever	the	character	appears	on	the	line	up	to	the	end	of	the	line.

			The	'|'	character	can	be	used	to	separate	statements	on	the	same
line.

�
File:	as.info,		Node:	XStormy16	Directives,		Next:	XStormy16	Opcodes,		Prev:
XStormy16	Syntax,		Up:	XSTORMY16-Dependent

9.52.2	XStormy16	Machine	Directives

'.16bit_pointers'
					Like	the	'--16bit-pointers'	command	line	option	this	directive
					indicates	that	the	assembly	code	makes	use	of	16-bit	pointers.

'.32bit_pointers'
					Like	the	'--32bit-pointers'	command	line	option	this	directive
					indicates	that	the	assembly	code	makes	use	of	32-bit	pointers.

'.no_pointers'
					Like	the	'--no-pointers'	command	line	option	this	directive
					indicates	that	the	assembly	code	does	not	makes	use	pointers.

�
File:	as.info,		Node:	XStormy16	Opcodes,		Prev:	XStormy16	Directives,		Up:	XSTORMY16-
Dependent

9.52.3	XStormy16	Pseudo-Opcodes

'as'	implements	all	the	standard	XStormy16	opcodes.

			'as'	also	implements	the	following	pseudo	ops:

'@lo()'
					Computes	the	lower	16	bits	of	the	given	expression	and	stores	it
					into	the	immediate	operand	field	of	the	given	instruction.		For
					example:

					'add	r6,	@lo(here	-	there)'

					computes	the	difference	between	the	address	of	labels	'here'	and
					'there',	takes	the	lower	16	bits	of	this	difference	and	adds	it	to

3/25/20 as.info 378

					register	6.

'@hi()'
					Computes	the	higher	16	bits	of	the	given	expression	and	stores	it
					into	the	immediate	operand	field	of	the	given	instruction.		For
					example:

					'addc	r7,	@hi(here	-	there)'

					computes	the	difference	between	the	address	of	labels	'here'	and
					'there',	takes	the	upper	16	bits	of	this	difference,	shifts	it	down
					16	bits	and	then	adds	it,	along	with	the	carry	bit,	to	the	value	in
					register	7.

�
File:	as.info,		Node:	Xtensa-Dependent,		Next:	Z80-Dependent,		Prev:	XSTORMY16-
Dependent,		Up:	Machine	Dependencies

9.53	Xtensa	Dependent	Features
==============================

This	chapter	covers	features	of	the	GNU	assembler	that	are	specific	to
the	Xtensa	architecture.		For	details	about	the	Xtensa	instruction	set,
please	consult	the	'Xtensa	Instruction	Set	Architecture	(ISA)	Reference
Manual'.

*	Menu:

*	Xtensa	Options::														Command-line	Options.
*	Xtensa	Syntax::															Assembler	Syntax	for	Xtensa	Processors.
*	Xtensa	Optimizations::								Assembler	Optimizations.
*	Xtensa	Relaxation::											Other	Automatic	Transformations.
*	Xtensa	Directives::											Directives	for	Xtensa	Processors.

�
File:	as.info,		Node:	Xtensa	Options,		Next:	Xtensa	Syntax,		Up:	Xtensa-Dependent

9.53.1	Command	Line	Options

'--text-section-literals	|	--no-text-section-literals'
					Control	the	treatment	of	literal	pools.		The	default	is
					'--no-text-section-literals',	which	places	literals	in	separate
					sections	in	the	output	file.		This	allows	the	literal	pool	to	be
					placed	in	a	data	RAM/ROM.	With	'--text-section-literals',	the
					literals	are	interspersed	in	the	text	section	in	order	to	keep	them
					as	close	as	possible	to	their	references.		This	may	be	necessary
					for	large	assembly	files,	where	the	literals	would	otherwise	be	out
					of	range	of	the	'L32R'	instructions	in	the	text	section.		Literals
					are	grouped	into	pools	following	'.literal_position'	directives	or
					preceding	'ENTRY'	instructions.		These	options	only	affect	literals
					referenced	via	PC-relative	'L32R'	instructions;	literals	for
					absolute	mode	'L32R'	instructions	are	handled	separately.		*Note
					literal:	Literal	Directive.

'--auto-litpools	|	--no-auto-litpools'
					Control	the	treatment	of	literal	pools.		The	default	is
					'--no-auto-litpools',	which	in	the	absence	of
					'--text-section-literals'	places	literals	in	separate	sections	in

3/25/20 as.info 379

					the	output	file.		This	allows	the	literal	pool	to	be	placed	in	a
					data	RAM/ROM.	With	'--auto-litpools',	the	literals	are	interspersed
					in	the	text	section	in	order	to	keep	them	as	close	as	possible	to
					their	references,	explicit	'.literal_position'	directives	are	not
					required.		This	may	be	necessary	for	very	large	functions,	where
					single	literal	pool	at	the	beginning	of	the	function	may	not	be
					reachable	by	'L32R'	instructions	at	the	end.		These	options	only
					affect	literals	referenced	via	PC-relative	'L32R'	instructions;
					literals	for	absolute	mode	'L32R'	instructions	are	handled
					separately.		When	used	together	with	'--text-section-literals',
					'--auto-litpools'	takes	precedence.		*Note	literal:	Literal
					Directive.

'--absolute-literals	|	--no-absolute-literals'
					Indicate	to	the	assembler	whether	'L32R'	instructions	use	absolute
					or	PC-relative	addressing.		If	the	processor	includes	the	absolute
					addressing	option,	the	default	is	to	use	absolute	'L32R'
					relocations.		Otherwise,	only	the	PC-relative	'L32R'	relocations
					can	be	used.

'--target-align	|	--no-target-align'
					Enable	or	disable	automatic	alignment	to	reduce	branch	penalties	at
					some	expense	in	code	size.		*Note	Automatic	Instruction	Alignment:
					Xtensa	Automatic	Alignment.		This	optimization	is	enabled	by
					default.		Note	that	the	assembler	will	always	align	instructions
					like	'LOOP'	that	have	fixed	alignment	requirements.

'--longcalls	|	--no-longcalls'
					Enable	or	disable	transformation	of	call	instructions	to	allow
					calls	across	a	greater	range	of	addresses.		*Note	Function	Call
					Relaxation:	Xtensa	Call	Relaxation.		This	option	should	be	used
					when	call	targets	can	potentially	be	out	of	range.		It	may	degrade
					both	code	size	and	performance,	but	the	linker	can	generally
					optimize	away	the	unnecessary	overhead	when	a	call	ends	up	within
					range.		The	default	is	'--no-longcalls'.

'--transform	|	--no-transform'
					Enable	or	disable	all	assembler	transformations	of	Xtensa
					instructions,	including	both	relaxation	and	optimization.		The
					default	is	'--transform';	'--no-transform'	should	only	be	used	in
					the	rare	cases	when	the	instructions	must	be	exactly	as	specified
					in	the	assembly	source.		Using	'--no-transform'	causes	out	of	range
					instruction	operands	to	be	errors.

'--rename-section	OLDNAME=NEWNAME'
					Rename	the	OLDNAME	section	to	NEWNAME.		This	option	can	be	used
					multiple	times	to	rename	multiple	sections.

'--trampolines	|	--no-trampolines'
					Enable	or	disable	transformation	of	jump	instructions	to	allow
					jumps	across	a	greater	range	of	addresses.		*Note	Jump	Trampolines:
					Xtensa	Jump	Relaxation.		This	option	should	be	used	when	jump
					targets	can	potentially	be	out	of	range.		In	the	absence	of	such
					jumps	this	option	does	not	affect	code	size	or	performance.		The
					default	is	'--trampolines'.

�
File:	as.info,		Node:	Xtensa	Syntax,		Next:	Xtensa	Optimizations,		Prev:	Xtensa
Options,		Up:	Xtensa-Dependent

3/25/20 as.info 380

9.53.2	Assembler	Syntax

Block	comments	are	delimited	by	'/*'	and	'*/'.		End	of	line	comments	may
be	introduced	with	either	'#'	or	'//'.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			Instructions	consist	of	a	leading	opcode	or	macro	name	followed	by
whitespace	and	an	optional	comma-separated	list	of	operands:

					OPCODE	[OPERAND,	...]

			Instructions	must	be	separated	by	a	newline	or	semicolon	(';').

			FLIX	instructions,	which	bundle	multiple	opcodes	together	in	a	single
instruction,	are	specified	by	enclosing	the	bundled	opcodes	inside
braces:

					{
					[FORMAT]
					OPCODE0	[OPERANDS]
					OPCODE1	[OPERANDS]
					OPCODE2	[OPERANDS]
					...
					}

			The	opcodes	in	a	FLIX	instruction	are	listed	in	the	same	order	as	the
corresponding	instruction	slots	in	the	TIE	format	declaration.
Directives	and	labels	are	not	allowed	inside	the	braces	of	a	FLIX
instruction.		A	particular	TIE	format	name	can	optionally	be	specified
immediately	after	the	opening	brace,	but	this	is	usually	unnecessary.
The	assembler	will	automatically	search	for	a	format	that	can	encode	the
specified	opcodes,	so	the	format	name	need	only	be	specified	in	rare
cases	where	there	is	more	than	one	applicable	format	and	where	it
matters	which	of	those	formats	is	used.		A	FLIX	instruction	can	also	be
specified	on	a	single	line	by	separating	the	opcodes	with	semicolons:

					{	[FORMAT;]	OPCODE0	[OPERANDS];	OPCODE1	[OPERANDS];	OPCODE2	[OPERANDS];	...	}

			If	an	opcode	can	only	be	encoded	in	a	FLIX	instruction	but	is	not
specified	as	part	of	a	FLIX	bundle,	the	assembler	will	choose	the
smallest	format	where	the	opcode	can	be	encoded	and	will	fill	unused
instruction	slots	with	no-ops.

*	Menu:

*	Xtensa	Opcodes::														Opcode	Naming	Conventions.
*	Xtensa	Registers::												Register	Naming.

�
File:	as.info,		Node:	Xtensa	Opcodes,		Next:	Xtensa	Registers,		Up:	Xtensa	Syntax

9.53.2.1	Opcode	Names
.....................

3/25/20 as.info 381

See	the	'Xtensa	Instruction	Set	Architecture	(ISA)	Reference	Manual'	for
a	complete	list	of	opcodes	and	descriptions	of	their	semantics.

			If	an	opcode	name	is	prefixed	with	an	underscore	character	('_'),
'as'	will	not	transform	that	instruction	in	any	way.		The	underscore
prefix	disables	both	optimization	(*note	Xtensa	Optimizations:	Xtensa
Optimizations.)	and	relaxation	(*note	Xtensa	Relaxation:	Xtensa
Relaxation.)	for	that	particular	instruction.		Only	use	the	underscore
prefix	when	it	is	essential	to	select	the	exact	opcode	produced	by	the
assembler.		Using	this	feature	unnecessarily	makes	the	code	less
efficient	by	disabling	assembler	optimization	and	less	flexible	by
disabling	relaxation.

			Note	that	this	special	handling	of	underscore	prefixes	only	applies
to	Xtensa	opcodes,	not	to	either	built-in	macros	or	user-defined	macros.
When	an	underscore	prefix	is	used	with	a	macro	(e.g.,	'_MOV'),	it	refers
to	a	different	macro.		The	assembler	generally	provides	built-in	macros
both	with	and	without	the	underscore	prefix,	where	the	underscore
versions	behave	as	if	the	underscore	carries	through	to	the	instructions
in	the	macros.		For	example,	'_MOV'	may	expand	to	'_MOV.N'.

			The	underscore	prefix	only	applies	to	individual	instructions,	not	to
series	of	instructions.		For	example,	if	a	series	of	instructions	have
underscore	prefixes,	the	assembler	will	not	transform	the	individual
instructions,	but	it	may	insert	other	instructions	between	them	(e.g.,
to	align	a	'LOOP'	instruction).		To	prevent	the	assembler	from	modifying
a	series	of	instructions	as	a	whole,	use	the	'no-transform'	directive.
*Note	transform:	Transform	Directive.

�
File:	as.info,		Node:	Xtensa	Registers,		Prev:	Xtensa	Opcodes,		Up:	Xtensa	Syntax

9.53.2.2	Register	Names
.......................

The	assembly	syntax	for	a	register	file	entry	is	the	"short"	name	for	a
TIE	register	file	followed	by	the	index	into	that	register	file.		For
example,	the	general-purpose	'AR'	register	file	has	a	short	name	of	'a',
so	these	registers	are	named	'a0'...'a15'.		As	a	special	feature,	'sp'
is	also	supported	as	a	synonym	for	'a1'.		Additional	registers	may	be
added	by	processor	configuration	options	and	by	designer-defined	TIE
extensions.		An	initial	'$'	character	is	optional	in	all	register	names.

�
File:	as.info,		Node:	Xtensa	Optimizations,		Next:	Xtensa	Relaxation,		Prev:	Xtensa
Syntax,		Up:	Xtensa-Dependent

9.53.3	Xtensa	Optimizations

The	optimizations	currently	supported	by	'as'	are	generation	of	density
instructions	where	appropriate	and	automatic	branch	target	alignment.

*	Menu:

*	Density	Instructions::								Using	Density	Instructions.
*	Xtensa	Automatic	Alignment::		Automatic	Instruction	Alignment.

3/25/20 as.info 382

�
File:	as.info,		Node:	Density	Instructions,		Next:	Xtensa	Automatic	Alignment,		Up:
Xtensa	Optimizations

9.53.3.1	Using	Density	Instructions
...................................

The	Xtensa	instruction	set	has	a	code	density	option	that	provides
16-bit	versions	of	some	of	the	most	commonly	used	opcodes.		Use	of	these
opcodes	can	significantly	reduce	code	size.		When	possible,	the
assembler	automatically	translates	instructions	from	the	core	Xtensa
instruction	set	into	equivalent	instructions	from	the	Xtensa	code
density	option.		This	translation	can	be	disabled	by	using	underscore
prefixes	(*note	Opcode	Names:	Xtensa	Opcodes.),	by	using	the
'--no-transform'	command-line	option	(*note	Command	Line	Options:	Xtensa
Options.),	or	by	using	the	'no-transform'	directive	(*note	transform:
Transform	Directive.).

			It	is	a	good	idea	_not_	to	use	the	density	instructions	directly.
The	assembler	will	automatically	select	dense	instructions	where
possible.		If	you	later	need	to	use	an	Xtensa	processor	without	the	code
density	option,	the	same	assembly	code	will	then	work	without
modification.

�
File:	as.info,		Node:	Xtensa	Automatic	Alignment,		Prev:	Density	Instructions,		Up:
Xtensa	Optimizations

9.53.3.2	Automatic	Instruction	Alignment
..

The	Xtensa	assembler	will	automatically	align	certain	instructions,	both
to	optimize	performance	and	to	satisfy	architectural	requirements.

			As	an	optimization	to	improve	performance,	the	assembler	attempts	to
align	branch	targets	so	they	do	not	cross	instruction	fetch	boundaries.
(Xtensa	processors	can	be	configured	with	either	32-bit	or	64-bit
instruction	fetch	widths.)		An	instruction	immediately	following	a	call
is	treated	as	a	branch	target	in	this	context,	because	it	will	be	the
target	of	a	return	from	the	call.		This	alignment	has	the	potential	to
reduce	branch	penalties	at	some	expense	in	code	size.		This	optimization
is	enabled	by	default.		You	can	disable	it	with	the	'--no-target-align'
command-line	option	(*note	Command	Line	Options:	Xtensa	Options.).

			The	target	alignment	optimization	is	done	without	adding	instructions
that	could	increase	the	execution	time	of	the	program.		If	there	are
density	instructions	in	the	code	preceding	a	target,	the	assembler	can
change	the	target	alignment	by	widening	some	of	those	instructions	to
the	equivalent	24-bit	instructions.		Extra	bytes	of	padding	can	be
inserted	immediately	following	unconditional	jump	and	return
instructions.		This	approach	is	usually	successful	in	aligning	many,	but
not	all,	branch	targets.

			The	'LOOP'	family	of	instructions	must	be	aligned	such	that	the	first
instruction	in	the	loop	body	does	not	cross	an	instruction	fetch
boundary	(e.g.,	with	a	32-bit	fetch	width,	a	'LOOP'	instruction	must	be
on	either	a	1	or	2	mod	4	byte	boundary).		The	assembler	knows	about	this
restriction	and	inserts	the	minimal	number	of	2	or	3	byte	no-op
instructions	to	satisfy	it.		When	no-op	instructions	are	added,	any

3/25/20 as.info 383

label	immediately	preceding	the	original	loop	will	be	moved	in	order	to
refer	to	the	loop	instruction,	not	the	newly	generated	no-op
instruction.		To	preserve	binary	compatibility	across	processors	with
different	fetch	widths,	the	assembler	conservatively	assumes	a	32-bit
fetch	width	when	aligning	'LOOP'	instructions	(except	if	the	first
instruction	in	the	loop	is	a	64-bit	instruction).

			Previous	versions	of	the	assembler	automatically	aligned	'ENTRY'
instructions	to	4-byte	boundaries,	but	that	alignment	is	now	the
programmer's	responsibility.

�
File:	as.info,		Node:	Xtensa	Relaxation,		Next:	Xtensa	Directives,		Prev:	Xtensa
Optimizations,		Up:	Xtensa-Dependent

9.53.4	Xtensa	Relaxation

When	an	instruction	operand	is	outside	the	range	allowed	for	that
particular	instruction	field,	'as'	can	transform	the	code	to	use	a
functionally-equivalent	instruction	or	sequence	of	instructions.		This
process	is	known	as	"relaxation".		This	is	typically	done	for	branch
instructions	because	the	distance	of	the	branch	targets	is	not	known
until	assembly-time.		The	Xtensa	assembler	offers	branch	relaxation	and
also	extends	this	concept	to	function	calls,	'MOVI'	instructions	and
other	instructions	with	immediate	fields.

*	Menu:

*	Xtensa	Branch	Relaxation::								Relaxation	of	Branches.
*	Xtensa	Call	Relaxation::										Relaxation	of	Function	Calls.
*	Xtensa	Jump	Relaxation::										Relaxation	of	Jumps.
*	Xtensa	Immediate	Relaxation::					Relaxation	of	other	Immediate	Fields.

�
File:	as.info,		Node:	Xtensa	Branch	Relaxation,		Next:	Xtensa	Call	Relaxation,		Up:
Xtensa	Relaxation

9.53.4.1	Conditional	Branch	Relaxation
......................................

When	the	target	of	a	branch	is	too	far	away	from	the	branch	itself,
i.e.,	when	the	offset	from	the	branch	to	the	target	is	too	large	to	fit
in	the	immediate	field	of	the	branch	instruction,	it	may	be	necessary	to
replace	the	branch	with	a	branch	around	a	jump.		For	example,

									beqz				a2,	L

			may	result	in:

									bnez.n		a2,	M
									j	L
					M:

			(The	'BNEZ.N'	instruction	would	be	used	in	this	example	only	if	the
density	option	is	available.		Otherwise,	'BNEZ'	would	be	used.)

			This	relaxation	works	well	because	the	unconditional	jump	instruction
has	a	much	larger	offset	range	than	the	various	conditional	branches.

3/25/20 as.info 384

However,	an	error	will	occur	if	a	branch	target	is	beyond	the	range	of	a
jump	instruction.		'as'	cannot	relax	unconditional	jumps.		Similarly,	an
error	will	occur	if	the	original	input	contains	an	unconditional	jump	to
a	target	that	is	out	of	range.

			Branch	relaxation	is	enabled	by	default.		It	can	be	disabled	by	using
underscore	prefixes	(*note	Opcode	Names:	Xtensa	Opcodes.),	the
'--no-transform'	command-line	option	(*note	Command	Line	Options:	Xtensa
Options.),	or	the	'no-transform'	directive	(*note	transform:	Transform
Directive.).

�
File:	as.info,		Node:	Xtensa	Call	Relaxation,		Next:	Xtensa	Jump	Relaxation,		Prev:
Xtensa	Branch	Relaxation,		Up:	Xtensa	Relaxation

9.53.4.2	Function	Call	Relaxation
.................................

Function	calls	may	require	relaxation	because	the	Xtensa	immediate	call
instructions	('CALL0',	'CALL4',	'CALL8'	and	'CALL12')	provide	a
PC-relative	offset	of	only	512	Kbytes	in	either	direction.		For	larger
programs,	it	may	be	necessary	to	use	indirect	calls	('CALLX0',	'CALLX4',
'CALLX8'	and	'CALLX12')	where	the	target	address	is	specified	in	a
register.		The	Xtensa	assembler	can	automatically	relax	immediate	call
instructions	into	indirect	call	instructions.		This	relaxation	is	done
by	loading	the	address	of	the	called	function	into	the	callee's	return
address	register	and	then	using	a	'CALLX'	instruction.		So,	for	example:

									call8	func

			might	be	relaxed	to:

									.literal	.L1,	func
									l32r				a8,	.L1
									callx8		a8

			Because	the	addresses	of	targets	of	function	calls	are	not	generally
known	until	link-time,	the	assembler	must	assume	the	worst	and	relax	all
the	calls	to	functions	in	other	source	files,	not	just	those	that	really
will	be	out	of	range.		The	linker	can	recognize	calls	that	were
unnecessarily	relaxed,	and	it	will	remove	the	overhead	introduced	by	the
assembler	for	those	cases	where	direct	calls	are	sufficient.

			Call	relaxation	is	disabled	by	default	because	it	can	have	a	negative
effect	on	both	code	size	and	performance,	although	the	linker	can
usually	eliminate	the	unnecessary	overhead.		If	a	program	is	too	large
and	some	of	the	calls	are	out	of	range,	function	call	relaxation	can	be
enabled	using	the	'--longcalls'	command-line	option	or	the	'longcalls'
directive	(*note	longcalls:	Longcalls	Directive.).

�
File:	as.info,		Node:	Xtensa	Jump	Relaxation,		Next:	Xtensa	Immediate	Relaxation,
Prev:	Xtensa	Call	Relaxation,		Up:	Xtensa	Relaxation

9.53.4.3	Jump	Relaxation
........................

Jump	instruction	may	require	relaxation	because	the	Xtensa	jump
instruction	('J')	provide	a	PC-relative	offset	of	only	128	Kbytes	in

3/25/20 as.info 385

either	direction.		One	option	is	to	use	jump	long	('J.L')	instruction,
which	depending	on	jump	distance	may	be	assembled	as	jump	('J')	or
indirect	jump	('JX').		However	it	needs	a	free	register.		When	there's
no	spare	register	it	is	possible	to	plant	intermediate	jump	sites
(trampolines)	between	the	jump	instruction	and	its	target.		These	sites
may	be	located	in	areas	unreachable	by	normal	code	execution	flow,	in
that	case	they	only	contain	intermediate	jumps,	or	they	may	be	inserted
in	the	middle	of	code	block,	in	which	case	there's	an	additional	jump
from	the	beginning	of	the	trampoline	to	the	instruction	past	its	end.
So,	for	example:

									j	1f
									...
									retw
									...
									mov	a10,	a2
									call8	func
									...
					1:
									...

			might	be	relaxed	to:

									j	.L0_TR_1
									...
									retw
					.L0_TR_1:
									j	1f
									...
									mov	a10,	a2
									call8	func
									...
					1:
									...

			or	to:

									j	.L0_TR_1
									...
									retw
									...
									mov	a10,	a2
									j	.L0_TR_0
					.L0_TR_1:
									j	1f
					.L0_TR_0:
									call8	func
									...
					1:
									...

			The	Xtensa	assempler	uses	trampolines	with	jump	around	only	when	it
cannot	find	suitable	unreachable	trampoline.		There	may	be	multiple
trampolines	between	the	jump	instruction	and	its	target.

			This	relaxation	does	not	apply	to	jumps	to	undefined	symbols,
assuming	they	will	reach	their	targets	once	resolved.

			Jump	relaxation	is	enabled	by	default	because	it	does	not	affect	code

3/25/20 as.info 386

size	or	performance	while	the	code	itself	is	small.		This	relaxation	may
be	disabled	completely	with	'--no-trampolines'	or	'--no-transform'
command-line	options	(*note	Command	Line	Options:	Xtensa	Options.).

�
File:	as.info,		Node:	Xtensa	Immediate	Relaxation,		Prev:	Xtensa	Jump	Relaxation,
Up:	Xtensa	Relaxation

9.53.4.4	Other	Immediate	Field	Relaxation
...

The	assembler	normally	performs	the	following	other	relaxations.		They
can	be	disabled	by	using	underscore	prefixes	(*note	Opcode	Names:	Xtensa
Opcodes.),	the	'--no-transform'	command-line	option	(*note	Command	Line
Options:	Xtensa	Options.),	or	the	'no-transform'	directive	(*note
transform:	Transform	Directive.).

			The	'MOVI'	machine	instruction	can	only	materialize	values	in	the
range	from	-2048	to	2047.		Values	outside	this	range	are	best
materialized	with	'L32R'	instructions.		Thus:

									movi	a0,	100000

			is	assembled	into	the	following	machine	code:

									.literal	.L1,	100000
									l32r	a0,	.L1

			The	'L8UI'	machine	instruction	can	only	be	used	with	immediate
offsets	in	the	range	from	0	to	255.		The	'L16SI'	and	'L16UI'	machine
instructions	can	only	be	used	with	offsets	from	0	to	510.		The	'L32I'
machine	instruction	can	only	be	used	with	offsets	from	0	to	1020.		A
load	offset	outside	these	ranges	can	be	materialized	with	an	'L32R'
instruction	if	the	destination	register	of	the	load	is	different	than
the	source	address	register.		For	example:

									l32i	a1,	a0,	2040

			is	translated	to:

									.literal	.L1,	2040
									l32r	a1,	.L1
									add	a1,	a0,	a1
									l32i	a1,	a1,	0

If	the	load	destination	and	source	address	register	are	the	same,	an
out-of-range	offset	causes	an	error.

			The	Xtensa	'ADDI'	instruction	only	allows	immediate	operands	in	the
range	from	-128	to	127.		There	are	a	number	of	alternate	instruction
sequences	for	the	'ADDI'	operation.		First,	if	the	immediate	is	0,	the
'ADDI'	will	be	turned	into	a	'MOV.N'	instruction	(or	the	equivalent	'OR'
instruction	if	the	code	density	option	is	not	available).		If	the	'ADDI'
immediate	is	outside	of	the	range	-128	to	127,	but	inside	the	range
-32896	to	32639,	an	'ADDMI'	instruction	or	'ADDMI'/'ADDI'	sequence	will
be	used.		Finally,	if	the	immediate	is	outside	of	this	range	and	a	free
register	is	available,	an	'L32R'/'ADD'	sequence	will	be	used	with	a
literal	allocated	from	the	literal	pool.

3/25/20 as.info 387

			For	example:

									addi				a5,	a6,	0
									addi				a5,	a6,	512
									addi				a5,	a6,	513
									addi				a5,	a6,	50000

			is	assembled	into	the	following:

									.literal	.L1,	50000
									mov.n			a5,	a6
									addmi			a5,	a6,	0x200
									addmi			a5,	a6,	0x200
									addi				a5,	a5,	1
									l32r				a5,	.L1
									add					a5,	a6,	a5

�
File:	as.info,		Node:	Xtensa	Directives,		Prev:	Xtensa	Relaxation,		Up:	Xtensa-
Dependent

9.53.5	Directives

The	Xtensa	assembler	supports	a	region-based	directive	syntax:

									.begin	DIRECTIVE	[OPTIONS]
									...
									.end	DIRECTIVE

			All	the	Xtensa-specific	directives	that	apply	to	a	region	of	code	use
this	syntax.

			The	directive	applies	to	code	between	the	'.begin'	and	the	'.end'.
The	state	of	the	option	after	the	'.end'	reverts	to	what	it	was	before
the	'.begin'.		A	nested	'.begin'/'.end'	region	can	further	change	the
state	of	the	directive	without	having	to	be	aware	of	its	outer	state.
For	example,	consider:

									.begin	no-transform
					L:		add	a0,	a1,	a2
									.begin	transform
					M:		add	a0,	a1,	a2
									.end	transform
					N:		add	a0,	a1,	a2
									.end	no-transform

			The	'ADD'	opcodes	at	'L'	and	'N'	in	the	outer	'no-transform'	region
both	result	in	'ADD'	machine	instructions,	but	the	assembler	selects	an
'ADD.N'	instruction	for	the	'ADD'	at	'M'	in	the	inner	'transform'
region.

			The	advantage	of	this	style	is	that	it	works	well	inside	macros	which
can	preserve	the	context	of	their	callers.

			The	following	directives	are	available:
*	Menu:

*	Schedule	Directive::									Enable	instruction	scheduling.

3/25/20 as.info 388

*	Longcalls	Directive::								Use	Indirect	Calls	for	Greater	Range.
*	Transform	Directive::								Disable	All	Assembler	Transformations.
*	Literal	Directive::										Intermix	Literals	with	Instructions.
*	Literal	Position	Directive::	Specify	Inline	Literal	Pool	Locations.
*	Literal	Prefix	Directive::			Specify	Literal	Section	Name	Prefix.
*	Absolute	Literals	Directive::	Control	PC-Relative	vs.	Absolute	Literals.

�
File:	as.info,		Node:	Schedule	Directive,		Next:	Longcalls	Directive,		Up:	Xtensa
Directives

9.53.5.1	schedule
.................

The	'schedule'	directive	is	recognized	only	for	compatibility	with
Tensilica's	assembler.

									.begin	[no-]schedule
									.end	[no-]schedule

			This	directive	is	ignored	and	has	no	effect	on	'as'.

�
File:	as.info,		Node:	Longcalls	Directive,		Next:	Transform	Directive,		Prev:
Schedule	Directive,		Up:	Xtensa	Directives

9.53.5.2	longcalls
..................

The	'longcalls'	directive	enables	or	disables	function	call	relaxation.
*Note	Function	Call	Relaxation:	Xtensa	Call	Relaxation.

									.begin	[no-]longcalls
									.end	[no-]longcalls

			Call	relaxation	is	disabled	by	default	unless	the	'--longcalls'
command-line	option	is	specified.		The	'longcalls'	directive	overrides
the	default	determined	by	the	command-line	options.

�
File:	as.info,		Node:	Transform	Directive,		Next:	Literal	Directive,		Prev:	Longcalls
Directive,		Up:	Xtensa	Directives

9.53.5.3	transform
..................

This	directive	enables	or	disables	all	assembler	transformation,
including	relaxation	(*note	Xtensa	Relaxation:	Xtensa	Relaxation.)	and
optimization	(*note	Xtensa	Optimizations:	Xtensa	Optimizations.).

									.begin	[no-]transform
									.end	[no-]transform

			Transformations	are	enabled	by	default	unless	the	'--no-transform'
option	is	used.		The	'transform'	directive	overrides	the	default
determined	by	the	command-line	options.		An	underscore	opcode	prefix,
disabling	transformation	of	that	opcode,	always	takes	precedence	over
both	directives	and	command-line	flags.

3/25/20 as.info 389

�
File:	as.info,		Node:	Literal	Directive,		Next:	Literal	Position	Directive,		Prev:
Transform	Directive,		Up:	Xtensa	Directives

9.53.5.4	literal
................

The	'.literal'	directive	is	used	to	define	literal	pool	data,	i.e.,
read-only	32-bit	data	accessed	via	'L32R'	instructions.

									.literal	LABEL,	VALUE[,	VALUE...]

			This	directive	is	similar	to	the	standard	'.word'	directive,	except
that	the	actual	location	of	the	literal	data	is	determined	by	the
assembler	and	linker,	not	by	the	position	of	the	'.literal'	directive.
Using	this	directive	gives	the	assembler	freedom	to	locate	the	literal
data	in	the	most	appropriate	place	and	possibly	to	combine	identical
literals.		For	example,	the	code:

									entry	sp,	40
									.literal	.L1,	sym
									l32r				a4,	.L1

			can	be	used	to	load	a	pointer	to	the	symbol	'sym'	into	register	'a4'.
The	value	of	'sym'	will	not	be	placed	between	the	'ENTRY'	and	'L32R'
instructions;	instead,	the	assembler	puts	the	data	in	a	literal	pool.

			Literal	pools	are	placed	by	default	in	separate	literal	sections;
however,	when	using	the	'--text-section-literals'	option	(*note	Command
Line	Options:	Xtensa	Options.),	the	literal	pools	for	PC-relative	mode
'L32R'	instructions	are	placed	in	the	current	section.(1)		These	text
section	literal	pools	are	created	automatically	before	'ENTRY'
instructions	and	manually	after	'.literal_position'	directives	(*note
literal_position:	Literal	Position	Directive.).		If	there	are	no
preceding	'ENTRY'	instructions,	explicit	'.literal_position'	directives
must	be	used	to	place	the	text	section	literal	pools;	otherwise,	'as'
will	report	an	error.

			When	literals	are	placed	in	separate	sections,	the	literal	section
names	are	derived	from	the	names	of	the	sections	where	the	literals	are
defined.		The	base	literal	section	names	are	'.literal'	for	PC-relative
mode	'L32R'	instructions	and	'.lit4'	for	absolute	mode	'L32R'
instructions	(*note	absolute-literals:	Absolute	Literals	Directive.).
These	base	names	are	used	for	literals	defined	in	the	default	'.text'
section.		For	literals	defined	in	other	sections	or	within	the	scope	of
a	'literal_prefix'	directive	(*note	literal_prefix:	Literal	Prefix
Directive.),	the	following	rules	determine	the	literal	section	name:

		1.	If	the	current	section	is	a	member	of	a	section	group,	the	literal
					section	name	includes	the	group	name	as	a	suffix	to	the	base
					'.literal'	or	'.lit4'	name,	with	a	period	to	separate	the	base	name
					and	group	name.		The	literal	section	is	also	made	a	member	of	the
					group.

		2.	If	the	current	section	name	(or	'literal_prefix'	value)	begins	with
					"'.gnu.linkonce.KIND.'",	the	literal	section	name	is	formed	by
					replacing	"'.KIND'"	with	the	base	'.literal'	or	'.lit4'	name.		For
					example,	for	literals	defined	in	a	section	named
					'.gnu.linkonce.t.func',	the	literal	section	will	be

3/25/20 as.info 390

					'.gnu.linkonce.literal.func'	or	'.gnu.linkonce.lit4.func'.

		3.	If	the	current	section	name	(or	'literal_prefix'	value)	ends	with
					'.text',	the	literal	section	name	is	formed	by	replacing	that
					suffix	with	the	base	'.literal'	or	'.lit4'	name.		For	example,	for
					literals	defined	in	a	section	named	'.iram0.text',	the	literal
					section	will	be	'.iram0.literal'	or	'.iram0.lit4'.

		4.	If	none	of	the	preceding	conditions	apply,	the	literal	section	name
					is	formed	by	adding	the	base	'.literal'	or	'.lit4'	name	as	a	suffix
					to	the	current	section	name	(or	'literal_prefix'	value).

			----------	Footnotes	----------

			(1)	Literals	for	the	'.init'	and	'.fini'	sections	are	always	placed
in	separate	sections,	even	when	'--text-section-literals'	is	enabled.

�
File:	as.info,		Node:	Literal	Position	Directive,		Next:	Literal	Prefix	Directive,
Prev:	Literal	Directive,		Up:	Xtensa	Directives

9.53.5.5	literal_position
.........................

When	using	'--text-section-literals'	to	place	literals	inline	in	the
section	being	assembled,	the	'.literal_position'	directive	can	be	used
to	mark	a	potential	location	for	a	literal	pool.

									.literal_position

			The	'.literal_position'	directive	is	ignored	when	the
'--text-section-literals'	option	is	not	used	or	when	'L32R'	instructions
use	the	absolute	addressing	mode.

			The	assembler	will	automatically	place	text	section	literal	pools
before	'ENTRY'	instructions,	so	the	'.literal_position'	directive	is
only	needed	to	specify	some	other	location	for	a	literal	pool.		You	may
need	to	add	an	explicit	jump	instruction	to	skip	over	an	inline	literal
pool.

			For	example,	an	interrupt	vector	does	not	begin	with	an	'ENTRY'
instruction	so	the	assembler	will	be	unable	to	automatically	find	a	good
place	to	put	a	literal	pool.		Moreover,	the	code	for	the	interrupt
vector	must	be	at	a	specific	starting	address,	so	the	literal	pool
cannot	come	before	the	start	of	the	code.		The	literal	pool	for	the
vector	must	be	explicitly	positioned	in	the	middle	of	the	vector	(before
any	uses	of	the	literals,	due	to	the	negative	offsets	used	by
PC-relative	'L32R'	instructions).		The	'.literal_position'	directive	can
be	used	to	do	this.		In	the	following	code,	the	literal	for	'M'	will
automatically	be	aligned	correctly	and	is	placed	after	the	unconditional
jump.

									.global	M
					code_start:
									j	continue
									.literal_position
									.align	4
					continue:
									movi				a4,	M

3/25/20 as.info 391

�
File:	as.info,		Node:	Literal	Prefix	Directive,		Next:	Absolute	Literals	Directive,
Prev:	Literal	Position	Directive,		Up:	Xtensa	Directives

9.53.5.6	literal_prefix
.......................

The	'literal_prefix'	directive	allows	you	to	override	the	default
literal	section	names,	which	are	derived	from	the	names	of	the	sections
where	the	literals	are	defined.

									.begin	literal_prefix	[NAME]
									.end	literal_prefix

			For	literals	defined	within	the	delimited	region,	the	literal	section
names	are	derived	from	the	NAME	argument	instead	of	the	name	of	the
current	section.		The	rules	used	to	derive	the	literal	section	names	do
not	change.		*Note	literal:	Literal	Directive.		If	the	NAME	argument	is
omitted,	the	literal	sections	revert	to	the	defaults.		This	directive
has	no	effect	when	using	the	'--text-section-literals'	option	(*note
Command	Line	Options:	Xtensa	Options.).

�
File:	as.info,		Node:	Absolute	Literals	Directive,		Prev:	Literal	Prefix	Directive,
Up:	Xtensa	Directives

9.53.5.7	absolute-literals
..........................

The	'absolute-literals'	and	'no-absolute-literals'	directives	control
the	absolute	vs.	PC-relative	mode	for	'L32R'	instructions.		These	are
relevant	only	for	Xtensa	configurations	that	include	the	absolute
addressing	option	for	'L32R'	instructions.

									.begin	[no-]absolute-literals
									.end	[no-]absolute-literals

			These	directives	do	not	change	the	'L32R'	mode--they	only	cause	the
assembler	to	emit	the	appropriate	kind	of	relocation	for	'L32R'
instructions	and	to	place	the	literal	values	in	the	appropriate	section.
To	change	the	'L32R'	mode,	the	program	must	write	the	'LITBASE'	special
register.		It	is	the	programmer's	responsibility	to	keep	track	of	the
mode	and	indicate	to	the	assembler	which	mode	is	used	in	each	region	of
code.

			If	the	Xtensa	configuration	includes	the	absolute	'L32R'	addressing
option,	the	default	is	to	assume	absolute	'L32R'	addressing	unless	the
'--no-absolute-literals'	command-line	option	is	specified.		Otherwise,
the	default	is	to	assume	PC-relative	'L32R'	addressing.		The
'absolute-literals'	directive	can	then	be	used	to	override	the	default
determined	by	the	command-line	options.

�
File:	as.info,		Node:	Z80-Dependent,		Next:	Z8000-Dependent,		Prev:	Xtensa-Dependent,
Up:	Machine	Dependencies

9.54	Z80	Dependent	Features
===========================

3/25/20 as.info 392

*	Menu:

*	Z80	Options::														Options
*	Z80	Syntax::															Syntax
*	Z80	Floating	Point::							Floating	Point
*	Z80	Directives::											Z80	Machine	Directives
*	Z80	Opcodes::														Opcodes

�
File:	as.info,		Node:	Z80	Options,		Next:	Z80	Syntax,		Up:	Z80-Dependent

9.54.1	Options

The	Zilog	Z80	and	Ascii	R800	version	of	'as'	have	a	few	machine
dependent	options.
'-z80'
					Produce	code	for	the	Z80	processor.		There	are	additional	options
					to	request	warnings	and	error	messages	for	undocumented
					instructions.
'-ignore-undocumented-instructions'
'-Wnud'
					Silently	assemble	undocumented	Z80-instructions	that	have	been
					adopted	as	documented	R800-instructions.
'-ignore-unportable-instructions'
'-Wnup'
					Silently	assemble	all	undocumented	Z80-instructions.
'-warn-undocumented-instructions'
'-Wud'
					Issue	warnings	for	undocumented	Z80-instructions	that	work	on	R800,
					do	not	assemble	other	undocumented	instructions	without	warning.
'-warn-unportable-instructions'
'-Wup'
					Issue	warnings	for	other	undocumented	Z80-instructions,	do	not
					treat	any	undocumented	instructions	as	errors.
'-forbid-undocumented-instructions'
'-Fud'
					Treat	all	undocumented	z80-instructions	as	errors.
'-forbid-unportable-instructions'
'-Fup'
					Treat	undocumented	z80-instructions	that	do	not	work	on	R800	as
					errors.

'-r800'
					Produce	code	for	the	R800	processor.		The	assembler	does	not
					support	undocumented	instructions	for	the	R800.		In	line	with
					common	practice,	'as'	uses	Z80	instruction	names	for	the	R800
					processor,	as	far	as	they	exist.

�
File:	as.info,		Node:	Z80	Syntax,		Next:	Z80	Floating	Point,		Prev:	Z80	Options,		Up:
Z80-Dependent

9.54.2	Syntax

The	assembler	syntax	closely	follows	the	'Z80	family	CPU	User	Manual'	by
Zilog.		In	expressions	a	single	'='	may	be	used	as	"is	equal	to"

3/25/20 as.info 393

comparison	operator.

			Suffices	can	be	used	to	indicate	the	radix	of	integer	constants;	'H'
or	'h'	for	hexadecimal,	'D'	or	'd'	for	decimal,	'Q',	'O',	'q'	or	'o'	for
octal,	and	'B'	for	binary.

			The	suffix	'b'	denotes	a	backreference	to	local	label.

*	Menu:

*	Z80-Chars::																Special	Characters
*	Z80-Regs::																	Register	Names
*	Z80-Case::																	Case	Sensitivity

�
File:	as.info,		Node:	Z80-Chars,		Next:	Z80-Regs,		Up:	Z80	Syntax

9.54.2.1	Special	Characters
...........................

The	semicolon	';'	is	the	line	comment	character;

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			The	Z80	assembler	does	not	support	a	line	separator	character.

			The	dollar	sign	'$'	can	be	used	as	a	prefix	for	hexadecimal	numbers
and	as	a	symbol	denoting	the	current	location	counter.

			A	backslash	'\'	is	an	ordinary	character	for	the	Z80	assembler.

			The	single	quote	'''	must	be	followed	by	a	closing	quote.		If	there
is	one	character	in	between,	it	is	a	character	constant,	otherwise	it	is
a	string	constant.

�
File:	as.info,		Node:	Z80-Regs,		Next:	Z80-Case,		Prev:	Z80-Chars,		Up:	Z80	Syntax

9.54.2.2	Register	Names
.......................

The	registers	are	referred	to	with	the	letters	assigned	to	them	by
Zilog.		In	addition	'as'	recognizes	'ixl'	and	'ixh'	as	the	least	and
most	significant	octet	in	'ix',	and	similarly	'iyl'	and	'iyh'	as	parts
of	'iy'.

�
File:	as.info,		Node:	Z80-Case,		Prev:	Z80-Regs,		Up:	Z80	Syntax

9.54.2.3	Case	Sensitivity
.........................

Upper	and	lower	case	are	equivalent	in	register	names,	opcodes,
condition	codes	and	assembler	directives.		The	case	of	letters	is
significant	in	labels	and	symbol	names.		The	case	is	also	important	to
distinguish	the	suffix	'b'	for	a	backward	reference	to	a	local	label

3/25/20 as.info 394

from	the	suffix	'B'	for	a	number	in	binary	notation.

�
File:	as.info,		Node:	Z80	Floating	Point,		Next:	Z80	Directives,		Prev:	Z80	Syntax,
Up:	Z80-Dependent

9.54.3	Floating	Point

Floating-point	numbers	are	not	supported.

�
File:	as.info,		Node:	Z80	Directives,		Next:	Z80	Opcodes,		Prev:	Z80	Floating	Point,
Up:	Z80-Dependent

9.54.4	Z80	Assembler	Directives

'as'	for	the	Z80	supports	some	additional	directives	for	compatibility
with	other	assemblers.

			These	are	the	additional	directives	in	'as'	for	the	Z80:

'db	EXPRESSION|STRING[,EXPRESSION|STRING...]'
'defb	EXPRESSION|STRING[,EXPRESSION|STRING...]'
					For	each	STRING	the	characters	are	copied	to	the	object	file,	for
					each	other	EXPRESSION	the	value	is	stored	in	one	byte.		A	warning
					is	issued	in	case	of	an	overflow.

'dw	EXPRESSION[,EXPRESSION...]'
'defw	EXPRESSION[,EXPRESSION...]'
					For	each	EXPRESSION	the	value	is	stored	in	two	bytes,	ignoring
					overflow.

'd24	EXPRESSION[,EXPRESSION...]'
'def24	EXPRESSION[,EXPRESSION...]'
					For	each	EXPRESSION	the	value	is	stored	in	three	bytes,	ignoring
					overflow.

'd32	EXPRESSION[,EXPRESSION...]'
'def32	EXPRESSION[,EXPRESSION...]'
					For	each	EXPRESSION	the	value	is	stored	in	four	bytes,	ignoring
					overflow.

'ds	COUNT[,	VALUE]'
'defs	COUNT[,	VALUE]'
					Fill	COUNT	bytes	in	the	object	file	with	VALUE,	if	VALUE	is	omitted
					it	defaults	to	zero.

'SYMBOL	equ	EXPRESSION'
'SYMBOL	defl	EXPRESSION'
					These	directives	set	the	value	of	SYMBOL	to	EXPRESSION.		If	'equ'
					is	used,	it	is	an	error	if	SYMBOL	is	already	defined.		Symbols
					defined	with	'equ'	are	not	protected	from	redefinition.

'set'
					This	is	a	normal	instruction	on	Z80,	and	not	an	assembler
					directive.

3/25/20 as.info 395

'psect	NAME'
					A	synonym	for	*Note	Section::,	no	second	argument	should	be	given.

�
File:	as.info,		Node:	Z80	Opcodes,		Prev:	Z80	Directives,		Up:	Z80-Dependent

9.54.5	Opcodes

In	line	with	common	practice,	Z80	mnemonics	are	used	for	both	the	Z80
and	the	R800.

			In	many	instructions	it	is	possible	to	use	one	of	the	half	index
registers	('ixl','ixh','iyl','iyh')	in	stead	of	an	8-bit	general	purpose
register.		This	yields	instructions	that	are	documented	on	the	R800	and
undocumented	on	the	Z80.		Similarly	'in	f,(c)'	is	documented	on	the	R800
and	undocumented	on	the	Z80.

			The	assembler	also	supports	the	following	undocumented
Z80-instructions,	that	have	not	been	adopted	in	the	R800	instruction
set:
'out	(c),0'
					Sends	zero	to	the	port	pointed	to	by	register	c.

'sli	M'
					Equivalent	to	'M	=	(M<<1)+1',	the	operand	M	can	be	any	operand	that
					is	valid	for	'sla'.		One	can	use	'sll'	as	a	synonym	for	'sli'.

'OP	(ix+D),	R'
					This	is	equivalent	to

										ld	R,	(ix+D)
										OPC	R
										ld	(ix+D),	R

					The	operation	'OPC'	may	be	any	of	'res	B,',	'set	B,',	'rl',	'rlc',
					'rr',	'rrc',	'sla',	'sli',	'sra'	and	'srl',	and	the	register	'R'
					may	be	any	of	'a',	'b',	'c',	'd',	'e',	'h'	and	'l'.

'OPC	(iy+D),	R'
					As	above,	but	with	'iy'	instead	of	'ix'.

			The	web	site	at	<http://www.z80.info>	is	a	good	starting	place	to
find	more	information	on	programming	the	Z80.

�
File:	as.info,		Node:	Z8000-Dependent,		Prev:	Z80-Dependent,		Up:	Machine
Dependencies

9.55	Z8000	Dependent	Features
=============================

The	Z8000	as	supports	both	members	of	the	Z8000	family:	the	unsegmented
Z8002,	with	16	bit	addresses,	and	the	segmented	Z8001	with	24	bit
addresses.

			When	the	assembler	is	in	unsegmented	mode	(specified	with	the
'unsegm'	directive),	an	address	takes	up	one	word	(16	bit)	sized
register.		When	the	assembler	is	in	segmented	mode	(specified	with	the

3/25/20 as.info 396

'segm'	directive),	a	24-bit	address	takes	up	a	long	(32	bit)	register.
*Note	Assembler	Directives	for	the	Z8000:	Z8000	Directives,	for	a	list
of	other	Z8000	specific	assembler	directives.

*	Menu:

*	Z8000	Options::															Command-line	options	for	the	Z8000
*	Z8000	Syntax::																Assembler	syntax	for	the	Z8000
*	Z8000	Directives::												Special	directives	for	the	Z8000
*	Z8000	Opcodes::															Opcodes

�
File:	as.info,		Node:	Z8000	Options,		Next:	Z8000	Syntax,		Up:	Z8000-Dependent

9.55.1	Options

'-z8001'
					Generate	segmented	code	by	default.

'-z8002'
					Generate	unsegmented	code	by	default.

�
File:	as.info,		Node:	Z8000	Syntax,		Next:	Z8000	Directives,		Prev:	Z8000	Options,
Up:	Z8000-Dependent

9.55.2	Syntax

*	Menu:

*	Z8000-Chars::																Special	Characters
*	Z8000-Regs::																	Register	Names
*	Z8000-Addressing::											Addressing	Modes

�
File:	as.info,		Node:	Z8000-Chars,		Next:	Z8000-Regs,		Up:	Z8000	Syntax

9.55.2.1	Special	Characters
...........................

'!'	is	the	line	comment	character.

			If	a	'#'	appears	as	the	first	character	of	a	line	then	the	whole	line
is	treated	as	a	comment,	but	in	this	case	the	line	could	also	be	a
logical	line	number	directive	(*note	Comments::)	or	a	preprocessor
control	command	(*note	Preprocessing::).

			You	can	use	';'	instead	of	a	newline	to	separate	statements.

�
File:	as.info,		Node:	Z8000-Regs,		Next:	Z8000-Addressing,		Prev:	Z8000-Chars,		Up:
Z8000	Syntax

9.55.2.2	Register	Names
.......................

The	Z8000	has	sixteen	16	bit	registers,	numbered	0	to	15.		You	can	refer

3/25/20 as.info 397

to	different	sized	groups	of	registers	by	register	number,	with	the
prefix	'r'	for	16	bit	registers,	'rr'	for	32	bit	registers	and	'rq'	for
64	bit	registers.		You	can	also	refer	to	the	contents	of	the	first	eight
(of	the	sixteen	16	bit	registers)	by	bytes.		They	are	named	'rlN'	and
'rhN'.

byte	registers
					rl0	rh0	rl1	rh1	rl2	rh2	rl3	rh3
					rl4	rh4	rl5	rh5	rl6	rh6	rl7	rh7

word	registers
					r0	r1	r2	r3	r4	r5	r6	r7	r8	r9	r10	r11	r12	r13	r14	r15

long	word	registers
					rr0	rr2	rr4	rr6	rr8	rr10	rr12	rr14

quad	word	registers
					rq0	rq4	rq8	rq12

�
File:	as.info,		Node:	Z8000-Addressing,		Prev:	Z8000-Regs,		Up:	Z8000	Syntax

9.55.2.3	Addressing	Modes
.........................

as	understands	the	following	addressing	modes	for	the	Z8000:

'rlN'
'rhN'
'rN'
'rrN'
'rqN'
					Register	direct:	8bit,	16bit,	32bit,	and	64bit	registers.

'@rN'
'@rrN'
					Indirect	register:	@rrN	in	segmented	mode,	@rN	in	unsegmented	mode.

'ADDR'
					Direct:	the	16	bit	or	24	bit	address	(depending	on	whether	the
					assembler	is	in	segmented	or	unsegmented	mode)	of	the	operand	is	in
					the	instruction.

'address(rN)'
					Indexed:	the	16	or	24	bit	address	is	added	to	the	16	bit	register
					to	produce	the	final	address	in	memory	of	the	operand.

'rN(#IMM)'
'rrN(#IMM)'
					Base	Address:	the	16	or	24	bit	register	is	added	to	the	16	bit	sign
					extended	immediate	displacement	to	produce	the	final	address	in
					memory	of	the	operand.

'rN(rM)'
'rrN(rM)'
					Base	Index:	the	16	or	24	bit	register	rN	or	rrN	is	added	to	the
					sign	extended	16	bit	index	register	rM	to	produce	the	final	address
					in	memory	of	the	operand.

3/25/20 as.info 398

'#XX'
					Immediate	data	XX.

�
File:	as.info,		Node:	Z8000	Directives,		Next:	Z8000	Opcodes,		Prev:	Z8000	Syntax,
Up:	Z8000-Dependent

9.55.3	Assembler	Directives	for	the	Z8000

The	Z8000	port	of	as	includes	additional	assembler	directives,	for
compatibility	with	other	Z8000	assemblers.		These	do	not	begin	with	'.'
(unlike	the	ordinary	as	directives).

'segm'
'.z8001'
					Generate	code	for	the	segmented	Z8001.

'unsegm'
'.z8002'
					Generate	code	for	the	unsegmented	Z8002.

'name'
					Synonym	for	'.file'

'global'
					Synonym	for	'.global'

'wval'
					Synonym	for	'.word'

'lval'
					Synonym	for	'.long'

'bval'
					Synonym	for	'.byte'

'sval'
					Assemble	a	string.		'sval'	expects	one	string	literal,	delimited	by
					single	quotes.		It	assembles	each	byte	of	the	string	into
					consecutive	addresses.		You	can	use	the	escape	sequence	'%XX'
					(where	XX	represents	a	two-digit	hexadecimal	number)	to	represent
					the	character	whose	ASCII	value	is	XX.		Use	this	feature	to
					describe	single	quote	and	other	characters	that	may	not	appear	in
					string	literals	as	themselves.		For	example,	the	C	statement
					'char	*a	=	"he	said	\"it's	50%	off\"";'	is	represented	in	Z8000
					assembly	language	(shown	with	the	assembler	output	in	hex	at	the
					left)	as

										68652073				sval				'he	said	%22it%27s	50%25	off%22%00'
										61696420
										22697427
										73203530
										25206F66
										662200

'rsect'
					synonym	for	'.section'

3/25/20 as.info 399

'block'
					synonym	for	'.space'

'even'
					special	case	of	'.align';	aligns	output	to	even	byte	boundary.

�
File:	as.info,		Node:	Z8000	Opcodes,		Prev:	Z8000	Directives,		Up:	Z8000-Dependent

9.55.4	Opcodes

For	detailed	information	on	the	Z8000	machine	instruction	set,	see
'Z8000	Technical	Manual'.

			The	following	table	summarizes	the	opcodes	and	their	arguments:

																	rs			16	bit	source	register
																	rd			16	bit	destination	register
																	rbs			8	bit	source	register
																	rbd			8	bit	destination	register
																	rrs			32	bit	source	register
																	rrd			32	bit	destination	register
																	rqs			64	bit	source	register
																	rqd			64	bit	destination	register
																	addr	16/24	bit	address
																	imm		immediate	data

					adc	rd,rs															clrb	addr															cpsir	@rd,@rs,rr,cc
					adcb	rbd,rbs												clrb	addr(rd)											cpsirb	@rd,@rs,rr,cc
					add	rd,@rs														clrb	rbd																dab	rbd
					add	rd,addr													com	@rd																	dbjnz	rbd,disp7
					add	rd,addr(rs)									com	addr																dec	@rd,imm4m1
					add	rd,imm16												com	addr(rd)												dec	addr(rd),imm4m1
					add	rd,rs															com	rd																		dec	addr,imm4m1
					addb	rbd,@rs												comb	@rd																dec	rd,imm4m1
					addb	rbd,addr											comb	addr															decb	@rd,imm4m1
					addb	rbd,addr(rs)							comb	addr(rd)											decb	addr(rd),imm4m1
					addb	rbd,imm8											comb	rbd																decb	addr,imm4m1
					addb	rbd,rbs												comflg	flags												decb	rbd,imm4m1
					addl	rrd,@rs												cp	@rd,imm16												di	i2
					addl	rrd,addr											cp	addr(rd),imm16							div	rrd,@rs
					addl	rrd,addr(rs)							cp	addr,imm16											div	rrd,addr
					addl	rrd,imm32										cp	rd,@rs															div	rrd,addr(rs)
					addl	rrd,rrs												cp	rd,addr														div	rrd,imm16
					and	rd,@rs														cp	rd,addr(rs)										div	rrd,rs
					and	rd,addr													cp	rd,imm16													divl	rqd,@rs
					and	rd,addr(rs)									cp	rd,rs																divl	rqd,addr
					and	rd,imm16												cpb	@rd,imm8												divl	rqd,addr(rs)
					and	rd,rs															cpb	addr(rd),imm8							divl	rqd,imm32
					andb	rbd,@rs												cpb	addr,imm8											divl	rqd,rrs
					andb	rbd,addr											cpb	rbd,@rs													djnz	rd,disp7
					andb	rbd,addr(rs)							cpb	rbd,addr												ei	i2
					andb	rbd,imm8											cpb	rbd,addr(rs)								ex	rd,@rs
					andb	rbd,rbs												cpb	rbd,imm8												ex	rd,addr
					bit	@rd,imm4												cpb	rbd,rbs													ex	rd,addr(rs)
					bit	addr(rd),imm4							cpd	rd,@rs,rr,cc								ex	rd,rs
					bit	addr,imm4											cpdb	rbd,@rs,rr,cc						exb	rbd,@rs
					bit	rd,imm4													cpdr	rd,@rs,rr,cc							exb	rbd,addr

3/25/20 as.info 400

					bit	rd,rs															cpdrb	rbd,@rs,rr,cc					exb	rbd,addr(rs)
					bitb	@rd,imm4											cpi	rd,@rs,rr,cc								exb	rbd,rbs
					bitb	addr(rd),imm4						cpib	rbd,@rs,rr,cc						ext0e	imm8
					bitb	addr,imm4										cpir	rd,@rs,rr,cc							ext0f	imm8
					bitb	rbd,imm4											cpirb	rbd,@rs,rr,cc					ext8e	imm8
					bitb	rbd,rs													cpl	rrd,@rs													ext8f	imm8
					bpt																					cpl	rrd,addr												exts	rrd
					call	@rd																cpl	rrd,addr(rs)								extsb	rd
					call	addr															cpl	rrd,imm32											extsl	rqd
					call	addr(rd)											cpl	rrd,rrs													halt
					calr	disp12													cpsd	@rd,@rs,rr,cc						in	rd,@rs
					clr	@rd																	cpsdb	@rd,@rs,rr,cc					in	rd,imm16
					clr	addr																cpsdr	@rd,@rs,rr,cc					inb	rbd,@rs
					clr	addr(rd)												cpsdrb	@rd,@rs,rr,cc				inb	rbd,imm16
					clr	rd																		cpsi	@rd,@rs,rr,cc						inc	@rd,imm4m1
					clrb	@rd																cpsib	@rd,@rs,rr,cc					inc	addr(rd),imm4m1
					inc	addr,imm4m1									ldb	rbd,rs(rx)										mult	rrd,addr(rs)
					inc	rd,imm4m1											ldb	rd(imm16),rbs							mult	rrd,imm16
					incb	@rd,imm4m1									ldb	rd(rx),rbs										mult	rrd,rs
					incb	addr(rd),imm4m1				ldctl	ctrl,rs											multl	rqd,@rs
					incb	addr,imm4m1								ldctl	rd,ctrl											multl	rqd,addr
					incb	rbd,imm4m1									ldd	@rs,@rd,rr										multl	rqd,addr(rs)
					ind	@rd,@rs,ra										lddb	@rs,@rd,rr									multl	rqd,imm32
					indb	@rd,@rs,rba								lddr	@rs,@rd,rr									multl	rqd,rrs
					inib	@rd,@rs,ra									lddrb	@rs,@rd,rr								neg	@rd
					inibr	@rd,@rs,ra								ldi	@rd,@rs,rr										neg	addr
					iret																				ldib	@rd,@rs,rr									neg	addr(rd)
					jp	cc,@rd															ldir	@rd,@rs,rr									neg	rd
					jp	cc,addr														ldirb	@rd,@rs,rr								negb	@rd
					jp	cc,addr(rd)										ldk	rd,imm4													negb	addr
					jr	cc,disp8													ldl	@rd,rrs													negb	addr(rd)
					ld	@rd,imm16												ldl	addr(rd),rrs								negb	rbd
					ld	@rd,rs															ldl	addr,rrs												nop
					ld	addr(rd),imm16							ldl	rd(imm16),rrs							or	rd,@rs
					ld	addr(rd),rs										ldl	rd(rx),rrs										or	rd,addr
					ld	addr,imm16											ldl	rrd,@rs													or	rd,addr(rs)
					ld	addr,rs														ldl	rrd,addr												or	rd,imm16
					ld	rd(imm16),rs									ldl	rrd,addr(rs)								or	rd,rs
					ld	rd(rx),rs												ldl	rrd,imm32											orb	rbd,@rs
					ld	rd,@rs															ldl	rrd,rrs													orb	rbd,addr
					ld	rd,addr														ldl	rrd,rs(imm16)							orb	rbd,addr(rs)
					ld	rd,addr(rs)										ldl	rrd,rs(rx)										orb	rbd,imm8
					ld	rd,imm16													ldm	@rd,rs,n												orb	rbd,rbs
					ld	rd,rs																ldm	addr(rd),rs,n							out	@rd,rs
					ld	rd,rs(imm16)									ldm	addr,rs,n											out	imm16,rs
					ld	rd,rs(rx)												ldm	rd,@rs,n												outb	@rd,rbs
					lda	rd,addr													ldm	rd,addr(rs),n							outb	imm16,rbs
					lda	rd,addr(rs)									ldm	rd,addr,n											outd	@rd,@rs,ra
					lda	rd,rs(imm16)								ldps	@rs																outdb	@rd,@rs,rba
					lda	rd,rs(rx)											ldps	addr															outib	@rd,@rs,ra
					ldar	rd,disp16										ldps	addr(rs)											outibr	@rd,@rs,ra
					ldb	@rd,imm8												ldr	disp16,rs											pop	@rd,@rs
					ldb	@rd,rbs													ldr	rd,disp16											pop	addr(rd),@rs
					ldb	addr(rd),imm8							ldrb	disp16,rbs									pop	addr,@rs
					ldb	addr(rd),rbs								ldrb	rbd,disp16									pop	rd,@rs
					ldb	addr,imm8											ldrl	disp16,rrs									popl	@rd,@rs
					ldb	addr,rbs												ldrl	rrd,disp16									popl	addr(rd),@rs
					ldb	rbd,@rs													mbit																				popl	addr,@rs
					ldb	rbd,addr												mreq	rd																	popl	rrd,@rs

3/25/20 as.info 401

					ldb	rbd,addr(rs)								mres																				push	@rd,@rs
					ldb	rbd,imm8												mset																				push	@rd,addr
					ldb	rbd,rbs													mult	rrd,@rs												push	@rd,addr(rs)
					ldb	rbd,rs(imm16)							mult	rrd,addr											push	@rd,imm16
					push	@rd,rs													set	addr,imm4											subl	rrd,imm32
					pushl	@rd,@rs											set	rd,imm4													subl	rrd,rrs
					pushl	@rd,addr										set	rd,rs															tcc	cc,rd
					pushl	@rd,addr(rs)						setb	@rd,imm4											tccb	cc,rbd
					pushl	@rd,rrs											setb	addr(rd),imm4						test	@rd
					res	@rd,imm4												setb	addr,imm4										test	addr
					res	addr(rd),imm4							setb	rbd,imm4											test	addr(rd)
					res	addr,imm4											setb	rbd,rs													test	rd
					res	rd,imm4													setflg	imm4													testb	@rd
					res	rd,rs															sinb	rbd,imm16										testb	addr
					resb	@rd,imm4											sinb	rd,imm16											testb	addr(rd)
					resb	addr(rd),imm4						sind	@rd,@rs,ra									testb	rbd
					resb	addr,imm4										sindb	@rd,@rs,rba							testl	@rd
					resb	rbd,imm4											sinib	@rd,@rs,ra								testl	addr
					resb	rbd,rs													sinibr	@rd,@rs,ra							testl	addr(rd)
					resflg	imm4													sla	rd,imm8													testl	rrd
					ret	cc																		slab	rbd,imm8											trdb	@rd,@rs,rba
					rl	rd,imm1or2											slal	rrd,imm8											trdrb	@rd,@rs,rba
					rlb	rbd,imm1or2									sll	rd,imm8													trib	@rd,@rs,rbr
					rlc	rd,imm1or2										sllb	rbd,imm8											trirb	@rd,@rs,rbr
					rlcb	rbd,imm1or2								slll	rrd,imm8											trtdrb	@ra,@rb,rbr
					rldb	rbb,rba												sout	imm16,rs											trtib	@ra,@rb,rr
					rr	rd,imm1or2											soutb	imm16,rbs									trtirb	@ra,@rb,rbr
					rrb	rbd,imm1or2									soutd	@rd,@rs,ra								trtrb	@ra,@rb,rbr
					rrc	rd,imm1or2										soutdb	@rd,@rs,rba						tset	@rd
					rrcb	rbd,imm1or2								soutib	@rd,@rs,ra							tset	addr
					rrdb	rbb,rba												soutibr	@rd,@rs,ra						tset	addr(rd)
					rsvd36																		sra	rd,imm8													tset	rd
					rsvd38																		srab	rbd,imm8											tsetb	@rd
					rsvd78																		sral	rrd,imm8											tsetb	addr
					rsvd7e																		srl	rd,imm8													tsetb	addr(rd)
					rsvd9d																		srlb	rbd,imm8											tsetb	rbd
					rsvd9f																		srll	rrd,imm8											xor	rd,@rs
					rsvdb9																		sub	rd,@rs														xor	rd,addr
					rsvdbf																		sub	rd,addr													xor	rd,addr(rs)
					sbc	rd,rs															sub	rd,addr(rs)									xor	rd,imm16
					sbcb	rbd,rbs												sub	rd,imm16												xor	rd,rs
					sc	imm8																	sub	rd,rs															xorb	rbd,@rs
					sda	rd,rs															subb	rbd,@rs												xorb	rbd,addr
					sdab	rbd,rs													subb	rbd,addr											xorb	rbd,addr(rs)
					sdal	rrd,rs													subb	rbd,addr(rs)							xorb	rbd,imm8
					sdl	rd,rs															subb	rbd,imm8											xorb	rbd,rbs
					sdlb	rbd,rs													subb	rbd,rbs												xorb	rbd,rbs
					sdll	rrd,rs													subl	rrd,@rs
					set	@rd,imm4												subl	rrd,addr
					set	addr(rd),imm4							subl	rrd,addr(rs)

�
File:	as.info,		Node:	Reporting	Bugs,		Next:	Acknowledgements,		Prev:	Machine
Dependencies,		Up:	Top

10	Reporting	Bugs

Your	bug	reports	play	an	essential	role	in	making	'as'	reliable.

3/25/20 as.info 402

			Reporting	a	bug	may	help	you	by	bringing	a	solution	to	your	problem,
or	it	may	not.		But	in	any	case	the	principal	function	of	a	bug	report
is	to	help	the	entire	community	by	making	the	next	version	of	'as'	work
better.		Bug	reports	are	your	contribution	to	the	maintenance	of	'as'.

			In	order	for	a	bug	report	to	serve	its	purpose,	you	must	include	the
information	that	enables	us	to	fix	the	bug.

*	Menu:

*	Bug	Criteria::																Have	you	found	a	bug?
*	Bug	Reporting::															How	to	report	bugs

�
File:	as.info,		Node:	Bug	Criteria,		Next:	Bug	Reporting,		Up:	Reporting	Bugs

10.1	Have	You	Found	a	Bug?
==========================

If	you	are	not	sure	whether	you	have	found	a	bug,	here	are	some
guidelines:

			*	If	the	assembler	gets	a	fatal	signal,	for	any	input	whatever,	that
					is	a	'as'	bug.		Reliable	assemblers	never	crash.

			*	If	'as'	produces	an	error	message	for	valid	input,	that	is	a	bug.

			*	If	'as'	does	not	produce	an	error	message	for	invalid	input,	that
					is	a	bug.		However,	you	should	note	that	your	idea	of	"invalid
					input"	might	be	our	idea	of	"an	extension"	or	"support	for
					traditional	practice".

			*	If	you	are	an	experienced	user	of	assemblers,	your	suggestions	for
					improvement	of	'as'	are	welcome	in	any	case.

�
File:	as.info,		Node:	Bug	Reporting,		Prev:	Bug	Criteria,		Up:	Reporting	Bugs

10.2	How	to	Report	Bugs
=======================

A	number	of	companies	and	individuals	offer	support	for	GNU	products.
If	you	obtained	'as'	from	a	support	organization,	we	recommend	you
contact	that	organization	first.

			You	can	find	contact	information	for	many	support	companies	and
individuals	in	the	file	'etc/SERVICE'	in	the	GNU	Emacs	distribution.

			In	any	event,	we	also	recommend	that	you	send	bug	reports	for	'as'	to
<http://www.sourceware.org/bugzilla/>.

			The	fundamental	principle	of	reporting	bugs	usefully	is	this:	*report
all	the	facts*.		If	you	are	not	sure	whether	to	state	a	fact	or	leave	it
out,	state	it!

			Often	people	omit	facts	because	they	think	they	know	what	causes	the
problem	and	assume	that	some	details	do	not	matter.		Thus,	you	might
assume	that	the	name	of	a	symbol	you	use	in	an	example	does	not	matter.

3/25/20 as.info 403

Well,	probably	it	does	not,	but	one	cannot	be	sure.		Perhaps	the	bug	is
a	stray	memory	reference	which	happens	to	fetch	from	the	location	where
that	name	is	stored	in	memory;	perhaps,	if	the	name	were	different,	the
contents	of	that	location	would	fool	the	assembler	into	doing	the	right
thing	despite	the	bug.		Play	it	safe	and	give	a	specific,	complete
example.		That	is	the	easiest	thing	for	you	to	do,	and	the	most	helpful.

			Keep	in	mind	that	the	purpose	of	a	bug	report	is	to	enable	us	to	fix
the	bug	if	it	is	new	to	us.		Therefore,	always	write	your	bug	reports	on
the	assumption	that	the	bug	has	not	been	reported	previously.

			Sometimes	people	give	a	few	sketchy	facts	and	ask,	"Does	this	ring	a
bell?"		This	cannot	help	us	fix	a	bug,	so	it	is	basically	useless.		We
respond	by	asking	for	enough	details	to	enable	us	to	investigate.		You
might	as	well	expedite	matters	by	sending	them	to	begin	with.

			To	enable	us	to	fix	the	bug,	you	should	include	all	these	things:

			*	The	version	of	'as'.		'as'	announces	it	if	you	start	it	with	the
					'--version'	argument.

					Without	this,	we	will	not	know	whether	there	is	any	point	in
					looking	for	the	bug	in	the	current	version	of	'as'.

			*	Any	patches	you	may	have	applied	to	the	'as'	source.

			*	The	type	of	machine	you	are	using,	and	the	operating	system	name
					and	version	number.

			*	What	compiler	(and	its	version)	was	used	to	compile	'as'--e.g.
					"'gcc-2.7'".

			*	The	command	arguments	you	gave	the	assembler	to	assemble	your
					example	and	observe	the	bug.		To	guarantee	you	will	not	omit
					something	important,	list	them	all.		A	copy	of	the	Makefile	(or	the
					output	from	make)	is	sufficient.

					If	we	were	to	try	to	guess	the	arguments,	we	would	probably	guess
					wrong	and	then	we	might	not	encounter	the	bug.

			*	A	complete	input	file	that	will	reproduce	the	bug.		If	the	bug	is
					observed	when	the	assembler	is	invoked	via	a	compiler,	send	the
					assembler	source,	not	the	high	level	language	source.		Most
					compilers	will	produce	the	assembler	source	when	run	with	the	'-S'
					option.		If	you	are	using	'gcc',	use	the	options	'-v	--save-temps';
					this	will	save	the	assembler	source	in	a	file	with	an	extension	of
					'.s',	and	also	show	you	exactly	how	'as'	is	being	run.

			*	A	description	of	what	behavior	you	observe	that	you	believe	is
					incorrect.		For	example,	"It	gets	a	fatal	signal."

					Of	course,	if	the	bug	is	that	'as'	gets	a	fatal	signal,	then	we
					will	certainly	notice	it.		But	if	the	bug	is	incorrect	output,	we
					might	not	notice	unless	it	is	glaringly	wrong.		You	might	as	well
					not	give	us	a	chance	to	make	a	mistake.

					Even	if	the	problem	you	experience	is	a	fatal	signal,	you	should
					still	say	so	explicitly.		Suppose	something	strange	is	going	on,
					such	as,	your	copy	of	'as'	is	out	of	sync,	or	you	have	encountered

3/25/20 as.info 404

					a	bug	in	the	C	library	on	your	system.		(This	has	happened!)		Your
					copy	might	crash	and	ours	would	not.		If	you	told	us	to	expect	a
					crash,	then	when	ours	fails	to	crash,	we	would	know	that	the	bug
					was	not	happening	for	us.		If	you	had	not	told	us	to	expect	a
					crash,	then	we	would	not	be	able	to	draw	any	conclusion	from	our
					observations.

			*	If	you	wish	to	suggest	changes	to	the	'as'	source,	send	us	context
					diffs,	as	generated	by	'diff'	with	the	'-u',	'-c',	or	'-p'	option.
					Always	send	diffs	from	the	old	file	to	the	new	file.		If	you	even
					discuss	something	in	the	'as'	source,	refer	to	it	by	context,	not
					by	line	number.

					The	line	numbers	in	our	development	sources	will	not	match	those	in
					your	sources.		Your	line	numbers	would	convey	no	useful	information
					to	us.

			Here	are	some	things	that	are	not	necessary:

			*	A	description	of	the	envelope	of	the	bug.

					Often	people	who	encounter	a	bug	spend	a	lot	of	time	investigating
					which	changes	to	the	input	file	will	make	the	bug	go	away	and	which
					changes	will	not	affect	it.

					This	is	often	time	consuming	and	not	very	useful,	because	the	way
					we	will	find	the	bug	is	by	running	a	single	example	under	the
					debugger	with	breakpoints,	not	by	pure	deduction	from	a	series	of
					examples.		We	recommend	that	you	save	your	time	for	something	else.

					Of	course,	if	you	can	find	a	simpler	example	to	report	_instead_	of
					the	original	one,	that	is	a	convenience	for	us.		Errors	in	the
					output	will	be	easier	to	spot,	running	under	the	debugger	will	take
					less	time,	and	so	on.

					However,	simplification	is	not	vital;	if	you	do	not	want	to	do
					this,	report	the	bug	anyway	and	send	us	the	entire	test	case	you
					used.

			*	A	patch	for	the	bug.

					A	patch	for	the	bug	does	help	us	if	it	is	a	good	one.		But	do	not
					omit	the	necessary	information,	such	as	the	test	case,	on	the
					assumption	that	a	patch	is	all	we	need.		We	might	see	problems	with
					your	patch	and	decide	to	fix	the	problem	another	way,	or	we	might
					not	understand	it	at	all.

					Sometimes	with	a	program	as	complicated	as	'as'	it	is	very	hard	to
					construct	an	example	that	will	make	the	program	follow	a	certain
					path	through	the	code.		If	you	do	not	send	us	the	example,	we	will
					not	be	able	to	construct	one,	so	we	will	not	be	able	to	verify	that
					the	bug	is	fixed.

					And	if	we	cannot	understand	what	bug	you	are	trying	to	fix,	or	why
					your	patch	should	be	an	improvement,	we	will	not	install	it.		A
					test	case	will	help	us	to	understand.

			*	A	guess	about	what	the	bug	is	or	what	it	depends	on.

3/25/20 as.info 405

					Such	guesses	are	usually	wrong.		Even	we	cannot	guess	right	about
					such	things	without	first	using	the	debugger	to	find	the	facts.

�
File:	as.info,		Node:	Acknowledgements,		Next:	GNU	Free	Documentation	License,		Prev:
Reporting	Bugs,		Up:	Top

11	Acknowledgements

If	you	have	contributed	to	GAS	and	your	name	isn't	listed	here,	it	is
not	meant	as	a	slight.		We	just	don't	know	about	it.		Send	mail	to	the
maintainer,	and	we'll	correct	the	situation.		Currently	the	maintainer
is	Nick	Clifton	(email	address	'nickc@redhat.com').

			Dean	Elsner	wrote	the	original	GNU	assembler	for	the	VAX.(1)

			Jay	Fenlason	maintained	GAS	for	a	while,	adding	support	for
GDB-specific	debug	information	and	the	68k	series	machines,	most	of	the
preprocessing	pass,	and	extensive	changes	in	'messages.c',
'input-file.c',	'write.c'.

			K.	Richard	Pixley	maintained	GAS	for	a	while,	adding	various
enhancements	and	many	bug	fixes,	including	merging	support	for	several
processors,	breaking	GAS	up	to	handle	multiple	object	file	format	back
ends	(including	heavy	rewrite,	testing,	an	integration	of	the	coff	and
b.out	back	ends),	adding	configuration	including	heavy	testing	and
verification	of	cross	assemblers	and	file	splits	and	renaming,	converted
GAS	to	strictly	ANSI	C	including	full	prototypes,	added	support	for
m680[34]0	and	cpu32,	did	considerable	work	on	i960	including	a	COFF	port
(including	considerable	amounts	of	reverse	engineering),	a	SPARC	opcode
file	rewrite,	DECstation,	rs6000,	and	hp300hpux	host	ports,	updated
"know"	assertions	and	made	them	work,	much	other	reorganization,
cleanup,	and	lint.

			Ken	Raeburn	wrote	the	high-level	BFD	interface	code	to	replace	most
of	the	code	in	format-specific	I/O	modules.

			The	original	VMS	support	was	contributed	by	David	L.	Kashtan.		Eric
Youngdale	has	done	much	work	with	it	since.

			The	Intel	80386	machine	description	was	written	by	Eliot	Dresselhaus.

			Minh	Tran-Le	at	IntelliCorp	contributed	some	AIX	386	support.

			The	Motorola	88k	machine	description	was	contributed	by	Devon	Bowen
of	Buffalo	University	and	Torbjorn	Granlund	of	the	Swedish	Institute	of
Computer	Science.

			Keith	Knowles	at	the	Open	Software	Foundation	wrote	the	original	MIPS
back	end	('tc-mips.c',	'tc-mips.h'),	and	contributed	Rose	format	support
(which	hasn't	been	merged	in	yet).		Ralph	Campbell	worked	with	the	MIPS
code	to	support	a.out	format.

			Support	for	the	Zilog	Z8k	and	Renesas	H8/300	processors	(tc-z8k,
tc-h8300),	and	IEEE	695	object	file	format	(obj-ieee),	was	written	by
Steve	Chamberlain	of	Cygnus	Support.		Steve	also	modified	the	COFF	back
end	to	use	BFD	for	some	low-level	operations,	for	use	with	the	H8/300
and	AMD	29k	targets.

3/25/20 as.info 406

			John	Gilmore	built	the	AMD	29000	support,	added	'.include'	support,
and	simplified	the	configuration	of	which	versions	accept	which
directives.		He	updated	the	68k	machine	description	so	that	Motorola's
opcodes	always	produced	fixed-size	instructions	(e.g.,	'jsr'),	while
synthetic	instructions	remained	shrinkable	('jbsr').		John	fixed	many
bugs,	including	true	tested	cross-compilation	support,	and	one	bug	in
relaxation	that	took	a	week	and	required	the	proverbial	one-bit	fix.

			Ian	Lance	Taylor	of	Cygnus	Support	merged	the	Motorola	and	MIT	syntax
for	the	68k,	completed	support	for	some	COFF	targets	(68k,	i386	SVR3,
and	SCO	Unix),	added	support	for	MIPS	ECOFF	and	ELF	targets,	wrote	the
initial	RS/6000	and	PowerPC	assembler,	and	made	a	few	other	minor
patches.

			Steve	Chamberlain	made	GAS	able	to	generate	listings.

			Hewlett-Packard	contributed	support	for	the	HP9000/300.

			Jeff	Law	wrote	GAS	and	BFD	support	for	the	native	HPPA	object	format
(SOM)	along	with	a	fairly	extensive	HPPA	testsuite	(for	both	SOM	and	ELF
object	formats).		This	work	was	supported	by	both	the	Center	for
Software	Science	at	the	University	of	Utah	and	Cygnus	Support.

			Support	for	ELF	format	files	has	been	worked	on	by	Mark	Eichin	of
Cygnus	Support	(original,	incomplete	implementation	for	SPARC),	Pete
Hoogenboom	and	Jeff	Law	at	the	University	of	Utah	(HPPA	mainly),	Michael
Meissner	of	the	Open	Software	Foundation	(i386	mainly),	and	Ken	Raeburn
of	Cygnus	Support	(sparc,	and	some	initial	64-bit	support).

			Linas	Vepstas	added	GAS	support	for	the	ESA/390	"IBM	370"
architecture.

			Richard	Henderson	rewrote	the	Alpha	assembler.		Klaus	Kaempf	wrote
GAS	and	BFD	support	for	openVMS/Alpha.

			Timothy	Wall,	Michael	Hayes,	and	Greg	Smart	contributed	to	the
various	tic*	flavors.

			David	Heine,	Sterling	Augustine,	Bob	Wilson	and	John	Ruttenberg	from
Tensilica,	Inc.	added	support	for	Xtensa	processors.

			Several	engineers	at	Cygnus	Support	have	also	provided	many	small	bug
fixes	and	configuration	enhancements.

			Jon	Beniston	added	support	for	the	Lattice	Mico32	architecture.

			Many	others	have	contributed	large	or	small	bugfixes	and
enhancements.		If	you	have	contributed	significant	work	and	are	not
mentioned	on	this	list,	and	want	to	be,	let	us	know.		Some	of	the
history	has	been	lost;	we	are	not	intentionally	leaving	anyone	out.

			----------	Footnotes	----------

			(1)	Any	more	details?

�
File:	as.info,		Node:	GNU	Free	Documentation	License,		Next:	AS	Index,		Prev:
Acknowledgements,		Up:	Top

3/25/20 as.info 407

Appendix	A	GNU	Free	Documentation	License

																					Version	1.3,	3	November	2008

					Copyright	(C)	2000,	2001,	2002,	2007,	2008	Free	Software	Foundation,	Inc.
					<http://fsf.org/>

					Everyone	is	permitted	to	copy	and	distribute	verbatim	copies
					of	this	license	document,	but	changing	it	is	not	allowed.

		0.	PREAMBLE

					The	purpose	of	this	License	is	to	make	a	manual,	textbook,	or	other
					functional	and	useful	document	"free"	in	the	sense	of	freedom:	to
					assure	everyone	the	effective	freedom	to	copy	and	redistribute	it,
					with	or	without	modifying	it,	either	commercially	or
					noncommercially.		Secondarily,	this	License	preserves	for	the
					author	and	publisher	a	way	to	get	credit	for	their	work,	while	not
					being	considered	responsible	for	modifications	made	by	others.

					This	License	is	a	kind	of	"copyleft",	which	means	that	derivative
					works	of	the	document	must	themselves	be	free	in	the	same	sense.
					It	complements	the	GNU	General	Public	License,	which	is	a	copyleft
					license	designed	for	free	software.

					We	have	designed	this	License	in	order	to	use	it	for	manuals	for
					free	software,	because	free	software	needs	free	documentation:	a
					free	program	should	come	with	manuals	providing	the	same	freedoms
					that	the	software	does.		But	this	License	is	not	limited	to
					software	manuals;	it	can	be	used	for	any	textual	work,	regardless
					of	subject	matter	or	whether	it	is	published	as	a	printed	book.		We
					recommend	this	License	principally	for	works	whose	purpose	is
					instruction	or	reference.

		1.	APPLICABILITY	AND	DEFINITIONS

					This	License	applies	to	any	manual	or	other	work,	in	any	medium,
					that	contains	a	notice	placed	by	the	copyright	holder	saying	it	can
					be	distributed	under	the	terms	of	this	License.		Such	a	notice
					grants	a	world-wide,	royalty-free	license,	unlimited	in	duration,
					to	use	that	work	under	the	conditions	stated	herein.		The
					"Document",	below,	refers	to	any	such	manual	or	work.		Any	member
					of	the	public	is	a	licensee,	and	is	addressed	as	"you".		You	accept
					the	license	if	you	copy,	modify	or	distribute	the	work	in	a	way
					requiring	permission	under	copyright	law.

					A	"Modified	Version"	of	the	Document	means	any	work	containing	the
					Document	or	a	portion	of	it,	either	copied	verbatim,	or	with
					modifications	and/or	translated	into	another	language.

					A	"Secondary	Section"	is	a	named	appendix	or	a	front-matter	section
					of	the	Document	that	deals	exclusively	with	the	relationship	of	the
					publishers	or	authors	of	the	Document	to	the	Document's	overall
					subject	(or	to	related	matters)	and	contains	nothing	that	could
					fall	directly	within	that	overall	subject.		(Thus,	if	the	Document
					is	in	part	a	textbook	of	mathematics,	a	Secondary	Section	may	not
					explain	any	mathematics.)		The	relationship	could	be	a	matter	of

3/25/20 as.info 408

					historical	connection	with	the	subject	or	with	related	matters,	or
					of	legal,	commercial,	philosophical,	ethical	or	political	position
					regarding	them.

					The	"Invariant	Sections"	are	certain	Secondary	Sections	whose
					titles	are	designated,	as	being	those	of	Invariant	Sections,	in	the
					notice	that	says	that	the	Document	is	released	under	this	License.
					If	a	section	does	not	fit	the	above	definition	of	Secondary	then	it
					is	not	allowed	to	be	designated	as	Invariant.		The	Document	may
					contain	zero	Invariant	Sections.		If	the	Document	does	not	identify
					any	Invariant	Sections	then	there	are	none.

					The	"Cover	Texts"	are	certain	short	passages	of	text	that	are
					listed,	as	Front-Cover	Texts	or	Back-Cover	Texts,	in	the	notice
					that	says	that	the	Document	is	released	under	this	License.		A
					Front-Cover	Text	may	be	at	most	5	words,	and	a	Back-Cover	Text	may
					be	at	most	25	words.

					A	"Transparent"	copy	of	the	Document	means	a	machine-readable	copy,
					represented	in	a	format	whose	specification	is	available	to	the
					general	public,	that	is	suitable	for	revising	the	document
					straightforwardly	with	generic	text	editors	or	(for	images	composed
					of	pixels)	generic	paint	programs	or	(for	drawings)	some	widely
					available	drawing	editor,	and	that	is	suitable	for	input	to	text
					formatters	or	for	automatic	translation	to	a	variety	of	formats
					suitable	for	input	to	text	formatters.		A	copy	made	in	an	otherwise
					Transparent	file	format	whose	markup,	or	absence	of	markup,	has
					been	arranged	to	thwart	or	discourage	subsequent	modification	by
					readers	is	not	Transparent.		An	image	format	is	not	Transparent	if
					used	for	any	substantial	amount	of	text.		A	copy	that	is	not
					"Transparent"	is	called	"Opaque".

					Examples	of	suitable	formats	for	Transparent	copies	include	plain
					ASCII	without	markup,	Texinfo	input	format,	LaTeX	input	format,
					SGML	or	XML	using	a	publicly	available	DTD,	and	standard-conforming
					simple	HTML,	PostScript	or	PDF	designed	for	human	modification.
					Examples	of	transparent	image	formats	include	PNG,	XCF	and	JPG.
					Opaque	formats	include	proprietary	formats	that	can	be	read	and
					edited	only	by	proprietary	word	processors,	SGML	or	XML	for	which
					the	DTD	and/or	processing	tools	are	not	generally	available,	and
					the	machine-generated	HTML,	PostScript	or	PDF	produced	by	some	word
					processors	for	output	purposes	only.

					The	"Title	Page"	means,	for	a	printed	book,	the	title	page	itself,
					plus	such	following	pages	as	are	needed	to	hold,	legibly,	the
					material	this	License	requires	to	appear	in	the	title	page.		For
					works	in	formats	which	do	not	have	any	title	page	as	such,	"Title
					Page"	means	the	text	near	the	most	prominent	appearance	of	the
					work's	title,	preceding	the	beginning	of	the	body	of	the	text.

					The	"publisher"	means	any	person	or	entity	that	distributes	copies
					of	the	Document	to	the	public.

					A	section	"Entitled	XYZ"	means	a	named	subunit	of	the	Document
					whose	title	either	is	precisely	XYZ	or	contains	XYZ	in	parentheses
					following	text	that	translates	XYZ	in	another	language.		(Here	XYZ
					stands	for	a	specific	section	name	mentioned	below,	such	as
					"Acknowledgements",	"Dedications",	"Endorsements",	or	"History".)
					To	"Preserve	the	Title"	of	such	a	section	when	you	modify	the

3/25/20 as.info 409

					Document	means	that	it	remains	a	section	"Entitled	XYZ"	according
					to	this	definition.

					The	Document	may	include	Warranty	Disclaimers	next	to	the	notice
					which	states	that	this	License	applies	to	the	Document.		These
					Warranty	Disclaimers	are	considered	to	be	included	by	reference	in
					this	License,	but	only	as	regards	disclaiming	warranties:	any	other
					implication	that	these	Warranty	Disclaimers	may	have	is	void	and
					has	no	effect	on	the	meaning	of	this	License.

		2.	VERBATIM	COPYING

					You	may	copy	and	distribute	the	Document	in	any	medium,	either
					commercially	or	noncommercially,	provided	that	this	License,	the
					copyright	notices,	and	the	license	notice	saying	this	License
					applies	to	the	Document	are	reproduced	in	all	copies,	and	that	you
					add	no	other	conditions	whatsoever	to	those	of	this	License.		You
					may	not	use	technical	measures	to	obstruct	or	control	the	reading
					or	further	copying	of	the	copies	you	make	or	distribute.		However,
					you	may	accept	compensation	in	exchange	for	copies.		If	you
					distribute	a	large	enough	number	of	copies	you	must	also	follow	the
					conditions	in	section	3.

					You	may	also	lend	copies,	under	the	same	conditions	stated	above,
					and	you	may	publicly	display	copies.

		3.	COPYING	IN	QUANTITY

					If	you	publish	printed	copies	(or	copies	in	media	that	commonly
					have	printed	covers)	of	the	Document,	numbering	more	than	100,	and
					the	Document's	license	notice	requires	Cover	Texts,	you	must
					enclose	the	copies	in	covers	that	carry,	clearly	and	legibly,	all
					these	Cover	Texts:	Front-Cover	Texts	on	the	front	cover,	and
					Back-Cover	Texts	on	the	back	cover.		Both	covers	must	also	clearly
					and	legibly	identify	you	as	the	publisher	of	these	copies.		The
					front	cover	must	present	the	full	title	with	all	words	of	the	title
					equally	prominent	and	visible.		You	may	add	other	material	on	the
					covers	in	addition.		Copying	with	changes	limited	to	the	covers,	as
					long	as	they	preserve	the	title	of	the	Document	and	satisfy	these
					conditions,	can	be	treated	as	verbatim	copying	in	other	respects.

					If	the	required	texts	for	either	cover	are	too	voluminous	to	fit
					legibly,	you	should	put	the	first	ones	listed	(as	many	as	fit
					reasonably)	on	the	actual	cover,	and	continue	the	rest	onto
					adjacent	pages.

					If	you	publish	or	distribute	Opaque	copies	of	the	Document
					numbering	more	than	100,	you	must	either	include	a	machine-readable
					Transparent	copy	along	with	each	Opaque	copy,	or	state	in	or	with
					each	Opaque	copy	a	computer-network	location	from	which	the	general
					network-using	public	has	access	to	download	using	public-standard
					network	protocols	a	complete	Transparent	copy	of	the	Document,	free
					of	added	material.		If	you	use	the	latter	option,	you	must	take
					reasonably	prudent	steps,	when	you	begin	distribution	of	Opaque
					copies	in	quantity,	to	ensure	that	this	Transparent	copy	will
					remain	thus	accessible	at	the	stated	location	until	at	least	one
					year	after	the	last	time	you	distribute	an	Opaque	copy	(directly	or
					through	your	agents	or	retailers)	of	that	edition	to	the	public.

3/25/20 as.info 410

					It	is	requested,	but	not	required,	that	you	contact	the	authors	of
					the	Document	well	before	redistributing	any	large	number	of	copies,
					to	give	them	a	chance	to	provide	you	with	an	updated	version	of	the
					Document.

		4.	MODIFICATIONS

					You	may	copy	and	distribute	a	Modified	Version	of	the	Document
					under	the	conditions	of	sections	2	and	3	above,	provided	that	you
					release	the	Modified	Version	under	precisely	this	License,	with	the
					Modified	Version	filling	the	role	of	the	Document,	thus	licensing
					distribution	and	modification	of	the	Modified	Version	to	whoever
					possesses	a	copy	of	it.		In	addition,	you	must	do	these	things	in
					the	Modified	Version:

							A.	Use	in	the	Title	Page	(and	on	the	covers,	if	any)	a	title
										distinct	from	that	of	the	Document,	and	from	those	of	previous
										versions	(which	should,	if	there	were	any,	be	listed	in	the
										History	section	of	the	Document).		You	may	use	the	same	title
										as	a	previous	version	if	the	original	publisher	of	that
										version	gives	permission.

							B.	List	on	the	Title	Page,	as	authors,	one	or	more	persons	or
										entities	responsible	for	authorship	of	the	modifications	in
										the	Modified	Version,	together	with	at	least	five	of	the
										principal	authors	of	the	Document	(all	of	its	principal
										authors,	if	it	has	fewer	than	five),	unless	they	release	you
										from	this	requirement.

							C.	State	on	the	Title	page	the	name	of	the	publisher	of	the
										Modified	Version,	as	the	publisher.

							D.	Preserve	all	the	copyright	notices	of	the	Document.

							E.	Add	an	appropriate	copyright	notice	for	your	modifications
										adjacent	to	the	other	copyright	notices.

							F.	Include,	immediately	after	the	copyright	notices,	a	license
										notice	giving	the	public	permission	to	use	the	Modified
										Version	under	the	terms	of	this	License,	in	the	form	shown	in
										the	Addendum	below.

							G.	Preserve	in	that	license	notice	the	full	lists	of	Invariant
										Sections	and	required	Cover	Texts	given	in	the	Document's
										license	notice.

							H.	Include	an	unaltered	copy	of	this	License.

							I.	Preserve	the	section	Entitled	"History",	Preserve	its	Title,
										and	add	to	it	an	item	stating	at	least	the	title,	year,	new
										authors,	and	publisher	of	the	Modified	Version	as	given	on	the
										Title	Page.		If	there	is	no	section	Entitled	"History"	in	the
										Document,	create	one	stating	the	title,	year,	authors,	and
										publisher	of	the	Document	as	given	on	its	Title	Page,	then	add
										an	item	describing	the	Modified	Version	as	stated	in	the
										previous	sentence.

							J.	Preserve	the	network	location,	if	any,	given	in	the	Document
										for	public	access	to	a	Transparent	copy	of	the	Document,	and

3/25/20 as.info 411

										likewise	the	network	locations	given	in	the	Document	for
										previous	versions	it	was	based	on.		These	may	be	placed	in	the
										"History"	section.		You	may	omit	a	network	location	for	a	work
										that	was	published	at	least	four	years	before	the	Document
										itself,	or	if	the	original	publisher	of	the	version	it	refers
										to	gives	permission.

							K.	For	any	section	Entitled	"Acknowledgements"	or	"Dedications",
										Preserve	the	Title	of	the	section,	and	preserve	in	the	section
										all	the	substance	and	tone	of	each	of	the	contributor
										acknowledgements	and/or	dedications	given	therein.

							L.	Preserve	all	the	Invariant	Sections	of	the	Document,	unaltered
										in	their	text	and	in	their	titles.		Section	numbers	or	the
										equivalent	are	not	considered	part	of	the	section	titles.

							M.	Delete	any	section	Entitled	"Endorsements".		Such	a	section
										may	not	be	included	in	the	Modified	Version.

							N.	Do	not	retitle	any	existing	section	to	be	Entitled
										"Endorsements"	or	to	conflict	in	title	with	any	Invariant
										Section.

							O.	Preserve	any	Warranty	Disclaimers.

					If	the	Modified	Version	includes	new	front-matter	sections	or
					appendices	that	qualify	as	Secondary	Sections	and	contain	no
					material	copied	from	the	Document,	you	may	at	your	option	designate
					some	or	all	of	these	sections	as	invariant.		To	do	this,	add	their
					titles	to	the	list	of	Invariant	Sections	in	the	Modified	Version's
					license	notice.		These	titles	must	be	distinct	from	any	other
					section	titles.

					You	may	add	a	section	Entitled	"Endorsements",	provided	it	contains
					nothing	but	endorsements	of	your	Modified	Version	by	various
					parties--for	example,	statements	of	peer	review	or	that	the	text
					has	been	approved	by	an	organization	as	the	authoritative
					definition	of	a	standard.

					You	may	add	a	passage	of	up	to	five	words	as	a	Front-Cover	Text,
					and	a	passage	of	up	to	25	words	as	a	Back-Cover	Text,	to	the	end	of
					the	list	of	Cover	Texts	in	the	Modified	Version.		Only	one	passage
					of	Front-Cover	Text	and	one	of	Back-Cover	Text	may	be	added	by	(or
					through	arrangements	made	by)	any	one	entity.		If	the	Document
					already	includes	a	cover	text	for	the	same	cover,	previously	added
					by	you	or	by	arrangement	made	by	the	same	entity	you	are	acting	on
					behalf	of,	you	may	not	add	another;	but	you	may	replace	the	old
					one,	on	explicit	permission	from	the	previous	publisher	that	added
					the	old	one.

					The	author(s)	and	publisher(s)	of	the	Document	do	not	by	this
					License	give	permission	to	use	their	names	for	publicity	for	or	to
					assert	or	imply	endorsement	of	any	Modified	Version.

		5.	COMBINING	DOCUMENTS

					You	may	combine	the	Document	with	other	documents	released	under
					this	License,	under	the	terms	defined	in	section	4	above	for
					modified	versions,	provided	that	you	include	in	the	combination	all

3/25/20 as.info 412

					of	the	Invariant	Sections	of	all	of	the	original	documents,
					unmodified,	and	list	them	all	as	Invariant	Sections	of	your
					combined	work	in	its	license	notice,	and	that	you	preserve	all
					their	Warranty	Disclaimers.

					The	combined	work	need	only	contain	one	copy	of	this	License,	and
					multiple	identical	Invariant	Sections	may	be	replaced	with	a	single
					copy.		If	there	are	multiple	Invariant	Sections	with	the	same	name
					but	different	contents,	make	the	title	of	each	such	section	unique
					by	adding	at	the	end	of	it,	in	parentheses,	the	name	of	the
					original	author	or	publisher	of	that	section	if	known,	or	else	a
					unique	number.		Make	the	same	adjustment	to	the	section	titles	in
					the	list	of	Invariant	Sections	in	the	license	notice	of	the
					combined	work.

					In	the	combination,	you	must	combine	any	sections	Entitled
					"History"	in	the	various	original	documents,	forming	one	section
					Entitled	"History";	likewise	combine	any	sections	Entitled
					"Acknowledgements",	and	any	sections	Entitled	"Dedications".		You
					must	delete	all	sections	Entitled	"Endorsements."

		6.	COLLECTIONS	OF	DOCUMENTS

					You	may	make	a	collection	consisting	of	the	Document	and	other
					documents	released	under	this	License,	and	replace	the	individual
					copies	of	this	License	in	the	various	documents	with	a	single	copy
					that	is	included	in	the	collection,	provided	that	you	follow	the
					rules	of	this	License	for	verbatim	copying	of	each	of	the	documents
					in	all	other	respects.

					You	may	extract	a	single	document	from	such	a	collection,	and
					distribute	it	individually	under	this	License,	provided	you	insert
					a	copy	of	this	License	into	the	extracted	document,	and	follow	this
					License	in	all	other	respects	regarding	verbatim	copying	of	that
					document.

		7.	AGGREGATION	WITH	INDEPENDENT	WORKS

					A	compilation	of	the	Document	or	its	derivatives	with	other
					separate	and	independent	documents	or	works,	in	or	on	a	volume	of	a
					storage	or	distribution	medium,	is	called	an	"aggregate"	if	the
					copyright	resulting	from	the	compilation	is	not	used	to	limit	the
					legal	rights	of	the	compilation's	users	beyond	what	the	individual
					works	permit.		When	the	Document	is	included	in	an	aggregate,	this
					License	does	not	apply	to	the	other	works	in	the	aggregate	which
					are	not	themselves	derivative	works	of	the	Document.

					If	the	Cover	Text	requirement	of	section	3	is	applicable	to	these
					copies	of	the	Document,	then	if	the	Document	is	less	than	one	half
					of	the	entire	aggregate,	the	Document's	Cover	Texts	may	be	placed
					on	covers	that	bracket	the	Document	within	the	aggregate,	or	the
					electronic	equivalent	of	covers	if	the	Document	is	in	electronic
					form.		Otherwise	they	must	appear	on	printed	covers	that	bracket
					the	whole	aggregate.

		8.	TRANSLATION

					Translation	is	considered	a	kind	of	modification,	so	you	may
					distribute	translations	of	the	Document	under	the	terms	of	section

3/25/20 as.info 413

					4.		Replacing	Invariant	Sections	with	translations	requires	special
					permission	from	their	copyright	holders,	but	you	may	include
					translations	of	some	or	all	Invariant	Sections	in	addition	to	the
					original	versions	of	these	Invariant	Sections.		You	may	include	a
					translation	of	this	License,	and	all	the	license	notices	in	the
					Document,	and	any	Warranty	Disclaimers,	provided	that	you	also
					include	the	original	English	version	of	this	License	and	the
					original	versions	of	those	notices	and	disclaimers.		In	case	of	a
					disagreement	between	the	translation	and	the	original	version	of
					this	License	or	a	notice	or	disclaimer,	the	original	version	will
					prevail.

					If	a	section	in	the	Document	is	Entitled	"Acknowledgements",
					"Dedications",	or	"History",	the	requirement	(section	4)	to
					Preserve	its	Title	(section	1)	will	typically	require	changing	the
					actual	title.

		9.	TERMINATION

					You	may	not	copy,	modify,	sublicense,	or	distribute	the	Document
					except	as	expressly	provided	under	this	License.		Any	attempt
					otherwise	to	copy,	modify,	sublicense,	or	distribute	it	is	void,
					and	will	automatically	terminate	your	rights	under	this	License.

					However,	if	you	cease	all	violation	of	this	License,	then	your
					license	from	a	particular	copyright	holder	is	reinstated	(a)
					provisionally,	unless	and	until	the	copyright	holder	explicitly	and
					finally	terminates	your	license,	and	(b)	permanently,	if	the
					copyright	holder	fails	to	notify	you	of	the	violation	by	some
					reasonable	means	prior	to	60	days	after	the	cessation.

					Moreover,	your	license	from	a	particular	copyright	holder	is
					reinstated	permanently	if	the	copyright	holder	notifies	you	of	the
					violation	by	some	reasonable	means,	this	is	the	first	time	you	have
					received	notice	of	violation	of	this	License	(for	any	work)	from
					that	copyright	holder,	and	you	cure	the	violation	prior	to	30	days
					after	your	receipt	of	the	notice.

					Termination	of	your	rights	under	this	section	does	not	terminate
					the	licenses	of	parties	who	have	received	copies	or	rights	from	you
					under	this	License.		If	your	rights	have	been	terminated	and	not
					permanently	reinstated,	receipt	of	a	copy	of	some	or	all	of	the
					same	material	does	not	give	you	any	rights	to	use	it.

		10.	FUTURE	REVISIONS	OF	THIS	LICENSE

					The	Free	Software	Foundation	may	publish	new,	revised	versions	of
					the	GNU	Free	Documentation	License	from	time	to	time.		Such	new
					versions	will	be	similar	in	spirit	to	the	present	version,	but	may
					differ	in	detail	to	address	new	problems	or	concerns.		See
					<http://www.gnu.org/copyleft/>.

					Each	version	of	the	License	is	given	a	distinguishing	version
					number.		If	the	Document	specifies	that	a	particular	numbered
					version	of	this	License	"or	any	later	version"	applies	to	it,	you
					have	the	option	of	following	the	terms	and	conditions	either	of
					that	specified	version	or	of	any	later	version	that	has	been
					published	(not	as	a	draft)	by	the	Free	Software	Foundation.		If	the
					Document	does	not	specify	a	version	number	of	this	License,	you	may

3/25/20 as.info 414

					choose	any	version	ever	published	(not	as	a	draft)	by	the	Free
					Software	Foundation.		If	the	Document	specifies	that	a	proxy	can
					decide	which	future	versions	of	this	License	can	be	used,	that
					proxy's	public	statement	of	acceptance	of	a	version	permanently
					authorizes	you	to	choose	that	version	for	the	Document.

		11.	RELICENSING

					"Massive	Multiauthor	Collaboration	Site"	(or	"MMC	Site")	means	any
					World	Wide	Web	server	that	publishes	copyrightable	works	and	also
					provides	prominent	facilities	for	anybody	to	edit	those	works.		A
					public	wiki	that	anybody	can	edit	is	an	example	of	such	a	server.
					A	"Massive	Multiauthor	Collaboration"	(or	"MMC")	contained	in	the
					site	means	any	set	of	copyrightable	works	thus	published	on	the	MMC
					site.

					"CC-BY-SA"	means	the	Creative	Commons	Attribution-Share	Alike	3.0
					license	published	by	Creative	Commons	Corporation,	a	not-for-profit
					corporation	with	a	principal	place	of	business	in	San	Francisco,
					California,	as	well	as	future	copyleft	versions	of	that	license
					published	by	that	same	organization.

					"Incorporate"	means	to	publish	or	republish	a	Document,	in	whole	or
					in	part,	as	part	of	another	Document.

					An	MMC	is	"eligible	for	relicensing"	if	it	is	licensed	under	this
					License,	and	if	all	works	that	were	first	published	under	this
					License	somewhere	other	than	this	MMC,	and	subsequently
					incorporated	in	whole	or	in	part	into	the	MMC,	(1)	had	no	cover
					texts	or	invariant	sections,	and	(2)	were	thus	incorporated	prior
					to	November	1,	2008.

					The	operator	of	an	MMC	Site	may	republish	an	MMC	contained	in	the
					site	under	CC-BY-SA	on	the	same	site	at	any	time	before	August	1,
					2009,	provided	the	MMC	is	eligible	for	relicensing.

ADDENDUM:	How	to	use	this	License	for	your	documents
==

To	use	this	License	in	a	document	you	have	written,	include	a	copy	of
the	License	in	the	document	and	put	the	following	copyright	and	license
notices	just	after	the	title	page:

							Copyright	(C)		YEAR		YOUR	NAME.
							Permission	is	granted	to	copy,	distribute	and/or	modify	this	document
							under	the	terms	of	the	GNU	Free	Documentation	License,	Version	1.3
							or	any	later	version	published	by	the	Free	Software	Foundation;
							with	no	Invariant	Sections,	no	Front-Cover	Texts,	and	no	Back-Cover
							Texts.		A	copy	of	the	license	is	included	in	the	section	entitled	``GNU
							Free	Documentation	License''.

			If	you	have	Invariant	Sections,	Front-Cover	Texts	and	Back-Cover
Texts,	replace	the	"with...Texts."		line	with	this:

									with	the	Invariant	Sections	being	LIST	THEIR	TITLES,	with
									the	Front-Cover	Texts	being	LIST,	and	with	the	Back-Cover	Texts
									being	LIST.

			If	you	have	Invariant	Sections	without	Cover	Texts,	or	some	other

3/25/20 as.info 415

combination	of	the	three,	merge	those	two	alternatives	to	suit	the
situation.

			If	your	document	contains	nontrivial	examples	of	program	code,	we
recommend	releasing	these	examples	in	parallel	under	your	choice	of	free
software	license,	such	as	the	GNU	General	Public	License,	to	permit
their	use	in	free	software.

�
File:	as.info,		Node:	AS	Index,		Prev:	GNU	Free	Documentation	License,		Up:	Top

AS	Index

`�[index`�]
*	Menu:

*	\"	(doublequote	character):												Strings.												(line			43)
*	\b	(backspace	character):														Strings.												(line			15)
*	\DDD	(octal	character	code):											Strings.												(line			30)
*	\f	(formfeed	character):															Strings.												(line			18)
*	\n	(newline	character):																Strings.												(line			21)
*	\r	(carriage	return	character):								Strings.												(line			24)
*	\t	(tab):																														Strings.												(line			27)
*	\XD..�.	(hex	character	code):											Strings.												(line			36)
*	\\	(\	character):																						Strings.												(line			40)
*	#:																																					Comments.											(line			33)
*	#APP:																																		Preprocessing.						(line			26)
*	#NO_APP:																															Preprocessing.						(line			26)
*	$	in	symbol	names:																					D10V-Chars.									(line			46)
*	$	in	symbol	names	<1>:																	D30V-Chars.									(line			70)
*	$	in	symbol	names	<2>:																	Meta-Chars.									(line			10)
*	$	in	symbol	names	<3>:																	SH-Chars.											(line			15)
*	$	in	symbol	names	<4>:																	SH64-Chars.									(line			15)
*	$a:																																				ARM	Mapping	Symbols.
																																																													(line				9)
*	$acos	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			10)
*	$asin	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			13)
*	$atan	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			16)
*	$atan2	math	builtin,	TIC54X:											TIC54X-Builtins.				(line			19)
*	$ceil	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			22)
*	$cos	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			28)
*	$cosh	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			25)
*	$cvf	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			31)
*	$cvi	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			34)
*	$d:																																				AArch64	Mapping	Symbols.
																																																													(line			12)
*	$d	<1>:																																ARM	Mapping	Symbols.
																																																													(line			15)
*	$exp	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			37)
*	$fabs	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			40)
*	$firstch	subsym	builtin,	TIC54X:							TIC54X-Macros.						(line			26)
*	$floor	math	builtin,	TIC54X:											TIC54X-Builtins.				(line			43)
*	$fmod	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			47)
*	$int	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			50)
*	$iscons	subsym	builtin,	TIC54X:								TIC54X-Macros.						(line			43)
*	$isdefed	subsym	builtin,	TIC54X:							TIC54X-Macros.						(line			34)
*	$ismember	subsym	builtin,	TIC54X:						TIC54X-Macros.						(line			38)
*	$isname	subsym	builtin,	TIC54X:								TIC54X-Macros.						(line			47)

3/25/20 as.info 416

*	$isreg	subsym	builtin,	TIC54X:									TIC54X-Macros.						(line			50)
*	$lastch	subsym	builtin,	TIC54X:								TIC54X-Macros.						(line			30)
*	$ldexp	math	builtin,	TIC54X:											TIC54X-Builtins.				(line			53)
*	$log	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			59)
*	$log10	math	builtin,	TIC54X:											TIC54X-Builtins.				(line			56)
*	$max	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			62)
*	$min	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			65)
*	$pow	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			68)
*	$round	math	builtin,	TIC54X:											TIC54X-Builtins.				(line			71)
*	$sgn	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			74)
*	$sin	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			77)
*	$sinh	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			80)
*	$sqrt	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			83)
*	$structacc	subsym	builtin,	TIC54X:					TIC54X-Macros.						(line			57)
*	$structsz	subsym	builtin,	TIC54X:						TIC54X-Macros.						(line			54)
*	$symcmp	subsym	builtin,	TIC54X:								TIC54X-Macros.						(line			23)
*	$symlen	subsym	builtin,	TIC54X:								TIC54X-Macros.						(line			20)
*	$t:																																				ARM	Mapping	Symbols.
																																																													(line			12)
*	$tan	math	builtin,	TIC54X:													TIC54X-Builtins.				(line			86)
*	$tanh	math	builtin,	TIC54X:												TIC54X-Builtins.				(line			89)
*	$trunc	math	builtin,	TIC54X:											TIC54X-Builtins.				(line			92)
*	$x:																																				AArch64	Mapping	Symbols.
																																																													(line				9)
*	%gp:																																			RX-Modifiers.							(line				6)
*	%gpreg:																																RX-Modifiers.							(line			22)
*	%pidreg:																															RX-Modifiers.							(line			25)
*	-+	option,	VAX/VMS:																				VAX-Opts.											(line			71)
*	--:																																				Command	Line.							(line			10)
*	--32	option,	i386:																					i386-Options.							(line				8)
*	--32	option,	x86-64:																			i386-Options.							(line				8)
*	--64	option,	i386:																					i386-Options.							(line				8)
*	--64	option,	x86-64:																			i386-Options.							(line				8)
*	--absolute-literals:																			Xtensa	Options.					(line			39)
*	--allow-reg-prefix:																				SH	Options.									(line				9)
*	--alternate:																											alternate.										(line				6)
*	--auto-litpools:																							Xtensa	Options.					(line			22)
*	--base-size-default-16:																M68K-Opts.										(line			66)
*	--base-size-default-32:																M68K-Opts.										(line			66)
*	--big:																																	SH	Options.									(line				9)
*	--bitwise-or	option,	M680x0:											M68K-Opts.										(line			59)
*	--compress-debug-sections=	option:					Overview.											(line		346)
*	--disp-size-default-16:																M68K-Opts.										(line			75)
*	--disp-size-default-32:																M68K-Opts.										(line			75)
*	--divide	option,	i386:																	i386-Options.							(line			24)
*	--dsp:																																	SH	Options.									(line				9)
*	--emulation=crisaout	command	line	option,	CRIS:	CRIS-Opts.	(line				9)
*	--emulation=criself	command	line	option,	CRIS:	CRIS-Opts.		(line				9)
*	--enforce-aligned-data:																Sparc-Aligned-Data.	(line			11)
*	--fatal-warnings:																						W.																		(line			16)
*	--fdpic:																															SH	Options.									(line			31)
*	--fix-v4bx	command	line	option,	ARM:			ARM	Options.								(line		191)
*	--fixed-special-register-names	command	line	option,	MMIX:	MMIX-Opts.
																																																													(line				8)
*	--force-long-branches:																	M68HC11-Opts.							(line			81)
*	--generate-example:																				M68HC11-Opts.							(line			98)
*	--globalize-symbols	command	line	option,	MMIX:	MMIX-Opts.		(line			12)
*	--gnu-syntax	command	line	option,	MMIX:	MMIX-Opts.									(line			16)
*	--linker-allocated-gregs	command	line	option,	MMIX:	MMIX-Opts.

3/25/20 as.info 417

																																																													(line			67)
*	--listing-cont-lines:																		listing.												(line			34)
*	--listing-lhs-width:																			listing.												(line			16)
*	--listing-lhs-width2:																		listing.												(line			21)
*	--listing-rhs-width:																			listing.												(line			28)
*	--little:																														SH	Options.									(line				9)
*	--longcalls:																											Xtensa	Options.					(line			53)
*	--march=ARCHITECTURE	command	line	option,	CRIS:	CRIS-Opts.	(line			34)
*	--MD:																																		MD.																	(line				6)
*	--mul-bug-abort	command	line	option,	CRIS:	CRIS-Opts.						(line			63)
*	--no-absolute-literals:																Xtensa	Options.					(line			39)
*	--no-auto-litpools:																				Xtensa	Options.					(line			22)
*	--no-expand	command	line	option,	MMIX:	MMIX-Opts.										(line			31)
*	--no-longcalls:																								Xtensa	Options.					(line			53)
*	--no-merge-gregs	command	line	option,	MMIX:	MMIX-Opts.					(line			36)
*	--no-mul-bug-abort	command	line	option,	CRIS:	CRIS-Opts.			(line			63)
*	--no-pad-sections:																					no-pad-sections.				(line				6)
*	--no-predefined-syms	command	line	option,	MMIX:	MMIX-Opts.	(line			22)
*	--no-pushj-stubs	command	line	option,	MMIX:	MMIX-Opts.					(line			54)
*	--no-stubs	command	line	option,	MMIX:		MMIX-Opts.										(line			54)
*	--no-target-align:																					Xtensa	Options.					(line			46)
*	--no-text-section-literals:												Xtensa	Options.					(line				7)
*	--no-trampolines:																						Xtensa	Options.					(line			74)
*	--no-transform:																								Xtensa	Options.					(line			62)
*	--no-underscore	command	line	option,	CRIS:	CRIS-Opts.						(line			15)
*	--no-warn:																													W.																		(line			11)
*	--pcrel:																															M68K-Opts.										(line			87)
*	--pic	command	line	option,	CRIS:							CRIS-Opts.										(line			27)
*	--print-insn-syntax:																			M68HC11-Opts.							(line			87)
*	--print-insn-syntax	<1>:															XGATE-Opts.									(line			25)
*	--print-opcodes:																							M68HC11-Opts.							(line			91)
*	--print-opcodes	<1>:																			XGATE-Opts.									(line			29)
*	--register-prefix-optional	option,	M680x0:	M68K-Opts.						(line			46)
*	--relax:																															SH	Options.									(line				9)
*	--relax	command	line	option,	MMIX:					MMIX-Opts.										(line			19)
*	--rename-section:																						Xtensa	Options.					(line			70)
*	--renesas:																													SH	Options.									(line				9)
*	--sectname-subst:																						Section.												(line			71)
*	--short-branches:																						M68HC11-Opts.							(line			67)
*	--small:																															SH	Options.									(line				9)
*	--statistics:																										statistics.									(line				6)
*	--strict-direct-mode:																		M68HC11-Opts.							(line			57)
*	--target-align:																								Xtensa	Options.					(line			46)
*	--text-section-literals:															Xtensa	Options.					(line				7)
*	--traditional-format:																		traditional-format.	(line				6)
*	--trampolines:																									Xtensa	Options.					(line			74)
*	--transform:																											Xtensa	Options.					(line			62)
*	--underscore	command	line	option,	CRIS:	CRIS-Opts.									(line			15)
*	--warn:																																W.																		(line			19)
*	--x32	option,	i386:																				i386-Options.							(line				8)
*	--x32	option,	x86-64:																		i386-Options.							(line				8)
*	--xgate-ramoffset:																					M68HC11-Opts.							(line			36)
*	-1	option,	VAX/VMS:																				VAX-Opts.											(line			77)
*	-32addr	command	line	option,	Alpha:				Alpha	Options.						(line			57)
*	-a:																																				a.																		(line				6)
*	-A	options,	i960:																						Options-i960.							(line				6)
*	-ac:																																			a.																		(line				6)
*	-ad:																																			a.																		(line				6)
*	-ag:																																			a.																		(line				6)

3/25/20 as.info 418

*	-ah:																																			a.																		(line				6)
*	-al:																																			a.																		(line				6)
*	-Aleon:																																Sparc-Opts.									(line			25)
*	-an:																																			a.																		(line				6)
*	-as:																																			a.																		(line				6)
*	-Asparc:																															Sparc-Opts.									(line			25)
*	-Asparcfmaf:																											Sparc-Opts.									(line			25)
*	-Asparcima:																												Sparc-Opts.									(line			25)
*	-Asparclet:																												Sparc-Opts.									(line			25)
*	-Asparclite:																											Sparc-Opts.									(line			25)
*	-Asparcvis:																												Sparc-Opts.									(line			25)
*	-Asparcvis2:																											Sparc-Opts.									(line			25)
*	-Asparcvis3:																											Sparc-Opts.									(line			25)
*	-Asparcvis3r:																										Sparc-Opts.									(line			25)
*	-Av6:																																		Sparc-Opts.									(line			25)
*	-Av7:																																		Sparc-Opts.									(line			25)
*	-Av8:																																		Sparc-Opts.									(line			25)
*	-Av9:																																		Sparc-Opts.									(line			25)
*	-Av9a:																																	Sparc-Opts.									(line			25)
*	-Av9b:																																	Sparc-Opts.									(line			25)
*	-Av9c:																																	Sparc-Opts.									(line			25)
*	-Av9d:																																	Sparc-Opts.									(line			25)
*	-Av9e:																																	Sparc-Opts.									(line			25)
*	-Av9m:																																	Sparc-Opts.									(line			25)
*	-Av9v:																																	Sparc-Opts.									(line			25)
*	-b	option,	i960:																							Options-i960.							(line			22)
*	-big	option,	M32R:																					M32R-Opts.										(line			35)
*	-D:																																				D.																		(line				6)
*	-D,	ignored	on	VAX:																				VAX-Opts.											(line			11)
*	-d,	VAX	option:																								VAX-Opts.											(line			16)
*	-eabi=	command	line	option,	ARM:							ARM	Options.								(line		167)
*	-EB	command	line	option,	AArch64:						AArch64	Options.				(line				6)
*	-EB	command	line	option,	ARC:										ARC	Options.								(line			84)
*	-EB	command	line	option,	ARM:										ARM	Options.								(line		172)
*	-EB	option	(MIPS):																					MIPS	Options.							(line			13)
*	-EB	option,	M32R:																						M32R-Opts.										(line			39)
*	-EB	option,	TILE-Gx:																			TILE-Gx	Options.				(line			11)
*	-EL	command	line	option,	AArch64:						AArch64	Options.				(line			10)
*	-EL	command	line	option,	ARC:										ARC	Options.								(line			88)
*	-EL	command	line	option,	ARM:										ARM	Options.								(line		183)
*	-EL	option	(MIPS):																					MIPS	Options.							(line			13)
*	-EL	option,	M32R:																						M32R-Opts.										(line			32)
*	-EL	option,	TILE-Gx:																			TILE-Gx	Options.				(line			11)
*	-f:																																				f.																		(line				6)
*	-F	command	line	option,	Alpha:									Alpha	Options.						(line			57)
*	-fno-pic	option,	RISC-V:															RISC-V-Opts.								(line			11)
*	-fpic	option,	RISC-V:																		RISC-V-Opts.								(line				8)
*	-g	command	line	option,	Alpha:									Alpha	Options.						(line			47)
*	-G	command	line	option,	Alpha:									Alpha	Options.						(line			53)
*	-G	option	(MIPS):																						MIPS	Options.							(line				8)
*	-h	option,	VAX/VMS:																				VAX-Opts.											(line			45)
*	-H	option,	VAX/VMS:																				VAX-Opts.											(line			81)
*	-I	PATH:																															I.																		(line				6)
*	-ignore-parallel-conflicts	option,	M32RX:	M32R-Opts.							(line			87)
*	-Ip	option,	M32RX:																					M32R-Opts.										(line			97)
*	-J,	ignored	on	VAX:																				VAX-Opts.											(line			27)
*	-K:																																				K.																		(line				6)
*	-k	command	line	option,	ARM:											ARM	Options.								(line		187)
*	-KPIC	option,	M32R:																				M32R-Opts.										(line			42)

3/25/20 as.info 419

*	-KPIC	option,	MIPS:																				MIPS	Options.							(line			21)
*	-L:																																				L.																		(line				6)
*	-l	option,	M680x0:																					M68K-Opts.										(line			34)
*	-little	option,	M32R:																		M32R-Opts.										(line			27)
*	-M:																																				M.																		(line				6)
*	-m11/03:																															PDP-11-Options.					(line		140)
*	-m11/04:																															PDP-11-Options.					(line		143)
*	-m11/05:																															PDP-11-Options.					(line		146)
*	-m11/10:																															PDP-11-Options.					(line		146)
*	-m11/15:																															PDP-11-Options.					(line		149)
*	-m11/20:																															PDP-11-Options.					(line		149)
*	-m11/21:																															PDP-11-Options.					(line		152)
*	-m11/23:																															PDP-11-Options.					(line		155)
*	-m11/24:																															PDP-11-Options.					(line		155)
*	-m11/34:																															PDP-11-Options.					(line		158)
*	-m11/34a:																														PDP-11-Options.					(line		161)
*	-m11/35:																															PDP-11-Options.					(line		164)
*	-m11/40:																															PDP-11-Options.					(line		164)
*	-m11/44:																															PDP-11-Options.					(line		167)
*	-m11/45:																															PDP-11-Options.					(line		170)
*	-m11/50:																															PDP-11-Options.					(line		170)
*	-m11/53:																															PDP-11-Options.					(line		173)
*	-m11/55:																															PDP-11-Options.					(line		170)
*	-m11/60:																															PDP-11-Options.					(line		176)
*	-m11/70:																															PDP-11-Options.					(line		170)
*	-m11/73:																															PDP-11-Options.					(line		173)
*	-m11/83:																															PDP-11-Options.					(line		173)
*	-m11/84:																															PDP-11-Options.					(line		173)
*	-m11/93:																															PDP-11-Options.					(line		173)
*	-m11/94:																															PDP-11-Options.					(line		173)
*	-m16c	option,	M16C:																				M32C-Opts.										(line			12)
*	-m31	option,	s390:																					s390	Options.							(line				8)
*	-m32	option,	TILE-Gx:																		TILE-Gx	Options.				(line				8)
*	-m32bit-doubles:																							RX-Opts.												(line				9)
*	-m32c	option,	M32C:																				M32C-Opts.										(line				9)
*	-m32r	option,	M32R:																				M32R-Opts.										(line			21)
*	-m32rx	option,	M32R2:																		M32R-Opts.										(line			17)
*	-m32rx	option,	M32RX:																		M32R-Opts.										(line				9)
*	-m4byte-align	command	line	option,	V850:	V850	Options.					(line			90)
*	-m64	option,	s390:																					s390	Options.							(line				8)
*	-m64	option,	TILE-Gx:																		TILE-Gx	Options.				(line				8)
*	-m64bit-doubles:																							RX-Opts.												(line			15)
*	-m68000	and	related	options:											M68K-Opts.										(line			99)
*	-m68hc11:																														M68HC11-Opts.							(line				9)
*	-m68hc12:																														M68HC11-Opts.							(line			14)
*	-m68hcs12:																													M68HC11-Opts.							(line			21)
*	-m8byte-align	command	line	option,	V850:	V850	Options.					(line			86)
*	-mabi=	command	line	option,	AArch64:			AArch64	Options.				(line			14)
*	-mabi=ABI	option,	RISC-V:														RISC-V-Opts.								(line			18)
*	-madd-bnd-prefix	option,	i386:									i386-Options.							(line		134)
*	-madd-bnd-prefix	option,	x86-64:							i386-Options.							(line		134)
*	-mall:																																	PDP-11-Options.					(line			26)
*	-mall-enabled	command	line	option,	LM32:	LM32	Options.					(line			30)
*	-mall-extensions:																						PDP-11-Options.					(line			26)
*	-mall-opcodes	command	line	option,	AVR:	AVR	Options.							(line		108)
*	-mamd64	option,	x86-64:																i386-Options.							(line		190)
*	-mapcs-26	command	line	option,	ARM:				ARM	Options.								(line		139)
*	-mapcs-32	command	line	option,	ARM:				ARM	Options.								(line		139)
*	-mapcs-float	command	line	option,	ARM:	ARM	Options.								(line		153)

3/25/20 as.info 420

*	-mapcs-reentrant	command	line	option,	ARM:	ARM	Options.				(line		158)
*	-march=	command	line	option,	AArch64:		AArch64	Options.				(line			39)
*	-march=	command	line	option,	ARM:						ARM	Options.								(line			73)
*	-march=	command	line	option,	M680x0:			M68K-Opts.										(line				8)
*	-march=	command	line	option,	TIC6X:				TIC6X	Options.						(line				6)
*	-march=	option,	i386:																		i386-Options.							(line			31)
*	-march=	option,	s390:																		s390	Options.							(line			25)
*	-march=	option,	x86-64:																i386-Options.							(line			31)
*	-march=ISA	option,	RISC-V:													RISC-V-Opts.								(line			14)
*	-matpcs	command	line	option,	ARM:						ARM	Options.								(line		145)
*	-mavxscalar=	option,	i386:													i386-Options.							(line			92)
*	-mavxscalar=	option,	x86-64:											i386-Options.							(line			92)
*	-mbarrel-shift-enabled	command	line	option,	LM32:	LM32	Options.
																																																													(line			12)
*	-mbig-endian:																										RX-Opts.												(line			20)
*	-mbig-obj	option,	x86-64:														i386-Options.							(line		148)
*	-mbreak-enabled	command	line	option,	LM32:	LM32	Options.			(line			27)
*	-mccs	command	line	option,	ARM:								ARM	Options.								(line		200)
*	-mcis:																																	PDP-11-Options.					(line			32)
*	-mcode-density	command	line	option,	ARC:	ARC	Options.						(line			93)
*	-mconstant-gp	command	line	option,	IA-64:	IA-64	Options.			(line				6)
*	-mCPU	command	line	option,	Alpha:						Alpha	Options.						(line				6)
*	-mcpu	option,	cpu:																					TIC54X-Opts.								(line			15)
*	-mcpu=:																																RX-Opts.												(line			75)
*	-mcpu=	command	line	option,	AArch64:			AArch64	Options.				(line			19)
*	-mcpu=	command	line	option,	ARM:							ARM	Options.								(line				6)
*	-mcpu=	command	line	option,	Blackfin:		Blackfin	Options.			(line				6)
*	-mcpu=	command	line	option,	M680x0:				M68K-Opts.										(line			14)
*	-mcpu=CPU	command	line	option,	ARC:				ARC	Options.								(line			10)
*	-mcsm:																																	PDP-11-Options.					(line			43)
*	-mdcache-enabled	command	line	option,	LM32:	LM32	Options.		(line			24)
*	-mdebug	command	line	option,	Alpha:				Alpha	Options.						(line			25)
*	-mdivide-enabled	command	line	option,	LM32:	LM32	Options.		(line				9)
*	-mdpfp	command	line	option,	ARC:							ARC	Options.								(line		108)
*	-mdsbt	command	line	option,	TIC6X:					TIC6X	Options.						(line			13)
*	-me	option,	stderr	redirect:											TIC54X-Opts.								(line			20)
*	-meis:																																	PDP-11-Options.					(line			46)
*	-mepiphany	command	line	option,	Epiphany:	Epiphany	Options.
																																																													(line				9)
*	-mepiphany16	command	line	option,	Epiphany:	Epiphany	Options.
																																																													(line			13)
*	-merrors-to-file	option,	stderr	redirect:	TIC54X-Opts.					(line			20)
*	-mesa	option,	s390:																				s390	Options.							(line			17)
*	-mevexlig=	option,	i386:															i386-Options.							(line		100)
*	-mevexlig=	option,	x86-64:													i386-Options.							(line		100)
*	-mevexrcig=	option,	i386:														i386-Options.							(line		180)
*	-mevexrcig=	option,	x86-64:												i386-Options.							(line		180)
*	-mevexwig=	option,	i386:															i386-Options.							(line		110)
*	-mevexwig=	option,	x86-64:													i386-Options.							(line		110)
*	-mf	option,	far-mode:																		TIC54X-Opts.								(line				8)
*	-mf11:																																	PDP-11-Options.					(line		122)
*	-mfar-mode	option,	far-mode:											TIC54X-Opts.								(line				8)
*	-mfdpic	command	line	option,	Blackfin:	Blackfin	Options.			(line			19)
*	-mfence-as-lock-add=	option,	i386:					i386-Options.							(line		161)
*	-mfence-as-lock-add=	option,	x86-64:			i386-Options.							(line		161)
*	-mfis:																																	PDP-11-Options.					(line			51)
*	-mfloat-abi=	command	line	option,	ARM:	ARM	Options.								(line		162)
*	-mfp-11:																															PDP-11-Options.					(line			56)
*	-mfpp:																																	PDP-11-Options.					(line			56)

3/25/20 as.info 421

*	-mfpu:																																	PDP-11-Options.					(line			56)
*	-mfpu=	command	line	option,	ARM:							ARM	Options.								(line			90)
*	-mfpuda	command	line	option,	ARC:						ARC	Options.								(line		111)
*	-mgcc-abi:																													RX-Opts.												(line			63)
*	-mgcc-abi	command	line	option,	V850:			V850	Options.							(line			79)
*	-mhard-float	command	line	option,	V850:	V850	Options.						(line		101)
*	-micache-enabled	command	line	option,	LM32:	LM32	Options.		(line			21)
*	-mimplicit-it	command	line	option,	ARM:	ARM	Options.							(line		123)
*	-mint-register:																								RX-Opts.												(line			57)
*	-mintel64	option,	x86-64:														i386-Options.							(line		190)
*	-mip2022	option,	IP2K:																	IP2K-Opts.										(line			14)
*	-mip2022ext	option,	IP2022:												IP2K-Opts.										(line				9)
*	-mj11:																																	PDP-11-Options.					(line		126)
*	-mka11:																																PDP-11-Options.					(line			92)
*	-mkb11:																																PDP-11-Options.					(line			95)
*	-mkd11a:																															PDP-11-Options.					(line			98)
*	-mkd11b:																															PDP-11-Options.					(line		101)
*	-mkd11d:																															PDP-11-Options.					(line		104)
*	-mkd11e:																															PDP-11-Options.					(line		107)
*	-mkd11f:																															PDP-11-Options.					(line		110)
*	-mkd11h:																															PDP-11-Options.					(line		110)
*	-mkd11k:																															PDP-11-Options.					(line		114)
*	-mkd11q:																															PDP-11-Options.					(line		110)
*	-mkd11z:																															PDP-11-Options.					(line		118)
*	-mkev11:																															PDP-11-Options.					(line			51)
*	-mkev11	<1>:																											PDP-11-Options.					(line			51)
*	-mlimited-eis:																									PDP-11-Options.					(line			64)
*	-mlink-relax	command	line	option,	AVR:	AVR	Options.								(line		120)
*	-mlittle-endian:																							RX-Opts.												(line			26)
*	-mlong:																																M68HC11-Opts.							(line			45)
*	-mlong	<1>:																												XGATE-Opts.									(line			13)
*	-mlong-double:																									M68HC11-Opts.							(line			53)
*	-mlong-double	<1>:																					XGATE-Opts.									(line			21)
*	-mm9s12x:																														M68HC11-Opts.							(line			27)
*	-mm9s12xg:																													M68HC11-Opts.							(line			32)
*	-mmcu=	command	line	option,	AVR:							AVR	Options.								(line				6)
*	-mmfpt:																																PDP-11-Options.					(line			70)
*	-mmicrocode:																											PDP-11-Options.					(line			83)
*	-mmnemonic=	option,	i386:														i386-Options.							(line		117)
*	-mmnemonic=	option,	x86-64:												i386-Options.							(line		117)
*	-mmultiply-enabled	command	line	option,	LM32:	LM32	Options.
																																																													(line				6)
*	-mmutiproc:																												PDP-11-Options.					(line			73)
*	-mmxps:																																PDP-11-Options.					(line			77)
*	-mnaked-reg	option,	i386:														i386-Options.							(line		129)
*	-mnaked-reg	option,	x86-64:												i386-Options.							(line		129)
*	-mnan=	command	line	option,	MIPS:						MIPS	Options.							(line		379)
*	-mno-allow-string-insns:															RX-Opts.												(line			82)
*	-mno-cis:																														PDP-11-Options.					(line			32)
*	-mno-csm:																														PDP-11-Options.					(line			43)
*	-mno-dsbt	command	line	option,	TIC6X:		TIC6X	Options.						(line			13)
*	-mno-eis:																														PDP-11-Options.					(line			46)
*	-mno-extensions:																							PDP-11-Options.					(line			29)
*	-mno-fdpic	command	line	option,	Blackfin:	Blackfin	Options.
																																																													(line			22)
*	-mno-fis:																														PDP-11-Options.					(line			51)
*	-mno-fp-11:																												PDP-11-Options.					(line			56)
*	-mno-fpp:																														PDP-11-Options.					(line			56)
*	-mno-fpu:																														PDP-11-Options.					(line			56)

3/25/20 as.info 422

*	-mno-kev11:																												PDP-11-Options.					(line			51)
*	-mno-limited-eis:																						PDP-11-Options.					(line			64)
*	-mno-link-relax	command	line	option,	AVR:	AVR	Options.					(line		124)
*	-mno-mfpt:																													PDP-11-Options.					(line			70)
*	-mno-microcode:																								PDP-11-Options.					(line			83)
*	-mno-mutiproc:																									PDP-11-Options.					(line			73)
*	-mno-mxps:																													PDP-11-Options.					(line			77)
*	-mno-pic:																														PDP-11-Options.					(line			11)
*	-mno-pic	command	line	option,	TIC6X:			TIC6X	Options.						(line			36)
*	-mno-regnames	option,	s390:												s390	Options.							(line			50)
*	-mno-skip-bug	command	line	option,	AVR:	AVR	Options.							(line		111)
*	-mno-spl:																														PDP-11-Options.					(line			80)
*	-mno-sym32:																												MIPS	Options.							(line		288)
*	-mno-verbose-error	command	line	option,	AArch64:	AArch64	Options.
																																																													(line			59)
*	-mno-wrap	command	line	option,	AVR:				AVR	Options.								(line		114)
*	-mnopic	command	line	option,	Blackfin:	Blackfin	Options.			(line			22)
*	-mnps400	command	line	option,	ARC:					ARC	Options.								(line		102)
*	-momit-lock-prefix=	option,	i386:						i386-Options.							(line		152)
*	-momit-lock-prefix=	option,	x86-64:				i386-Options.							(line		152)
*	-mpic:																																	PDP-11-Options.					(line			11)
*	-mpic	command	line	option,	TIC6X:						TIC6X	Options.						(line			36)
*	-mpid:																																	RX-Opts.												(line			50)
*	-mpid=	command	line	option,	TIC6X:					TIC6X	Options.						(line			23)
*	-mregnames	option,	s390:															s390	Options.							(line			47)
*	-mrelax	command	line	option,	ARC:						ARC	Options.								(line			97)
*	-mrelax	command	line	option,	V850:					V850	Options.							(line			72)
*	-mrelax-relocations=	option,	i386:					i386-Options.							(line		170)
*	-mrelax-relocations=	option,	x86-64:			i386-Options.							(line		170)
*	-mrh850-abi	command	line	option,	V850:	V850	Options.							(line			82)
*	-mrmw	command	line	option,	AVR:								AVR	Options.								(line		117)
*	-mrx-abi:																														RX-Opts.												(line			69)
*	-mshared	option,	i386:																	i386-Options.							(line		139)
*	-mshared	option,	x86-64:															i386-Options.							(line		139)
*	-mshort:																															M68HC11-Opts.							(line			40)
*	-mshort	<1>:																											XGATE-Opts.									(line				8)
*	-mshort-double:																								M68HC11-Opts.							(line			49)
*	-mshort-double	<1>:																				XGATE-Opts.									(line			17)
*	-msign-extend-enabled	command	line	option,	LM32:	LM32	Options.
																																																													(line			15)
*	-msmall-data-limit:																				RX-Opts.												(line			42)
*	-msoft-float	command	line	option,	V850:	V850	Options.						(line			95)
*	-mspfp	command	line	option,	ARC:							ARC	Options.								(line		105)
*	-mspl:																																	PDP-11-Options.					(line			80)
*	-msse-check=	option,	i386:													i386-Options.							(line			82)
*	-msse-check=	option,	x86-64:											i386-Options.							(line			82)
*	-msse2avx	option,	i386:																i386-Options.							(line			78)
*	-msse2avx	option,	x86-64:														i386-Options.							(line			78)
*	-msym32:																															MIPS	Options.							(line		288)
*	-msyntax=	option,	i386:																i386-Options.							(line		123)
*	-msyntax=	option,	x86-64:														i386-Options.							(line		123)
*	-mt11:																																	PDP-11-Options.					(line		130)
*	-mthumb	command	line	option,	ARM:						ARM	Options.								(line		114)
*	-mthumb-interwork	command	line	option,	ARM:	ARM	Options.			(line		119)
*	-mtune=	option,	i386:																		i386-Options.							(line			70)
*	-mtune=	option,	x86-64:																i386-Options.							(line			70)
*	-mtune=ARCH	command	line	option,	Visium:	Visium	Options.			(line				8)
*	-muse-conventional-section-names:						RX-Opts.												(line			33)
*	-muse-renesas-section-names:											RX-Opts.												(line			37)

3/25/20 as.info 423

*	-muser-enabled	command	line	option,	LM32:	LM32	Options.				(line			18)
*	-mv850	command	line	option,	V850:						V850	Options.							(line			23)
*	-mv850any	command	line	option,	V850:			V850	Options.							(line			41)
*	-mv850e	command	line	option,	V850:					V850	Options.							(line			29)
*	-mv850e1	command	line	option,	V850:				V850	Options.							(line			35)
*	-mv850e2	command	line	option,	V850:				V850	Options.							(line			51)
*	-mv850e2v3	command	line	option,	V850:		V850	Options.							(line			57)
*	-mv850e2v4	command	line	option,	V850:		V850	Options.							(line			63)
*	-mv850e3v5	command	line	option,	V850:		V850	Options.							(line			66)
*	-mverbose-error	command	line	option,	AArch64:	AArch64	Options.
																																																													(line			55)
*	-mvxworks-pic	option,	MIPS:												MIPS	Options.							(line			26)
*	-mwarn-areg-zero	option,	s390:									s390	Options.							(line			53)
*	-mwarn-deprecated	command	line	option,	ARM:	ARM	Options.			(line		195)
*	-mwarn-syms	command	line	option,	ARM:		ARM	Options.								(line		203)
*	-mzarch	option,	s390:																		s390	Options.							(line			17)
*	-m[no-]68851	command	line	option,	M680x0:	M68K-Opts.							(line			21)
*	-m[no-]68881	command	line	option,	M680x0:	M68K-Opts.							(line			21)
*	-m[no-]div	command	line	option,	M680x0:	M68K-Opts.									(line			21)
*	-m[no-]emac	command	line	option,	M680x0:	M68K-Opts.								(line			21)
*	-m[no-]float	command	line	option,	M680x0:	M68K-Opts.							(line			21)
*	-m[no-]mac	command	line	option,	M680x0:	M68K-Opts.									(line			21)
*	-m[no-]usp	command	line	option,	M680x0:	M68K-Opts.									(line			21)
*	-N	command	line	option,	CRIS:										CRIS-Opts.										(line			59)
*	-nIp	option,	M32RX:																				M32R-Opts.										(line		101)
*	-no-bitinst,	M32R2:																				M32R-Opts.										(line			54)
*	-no-ignore-parallel-conflicts	option,	M32RX:	M32R-Opts.				(line			93)
*	-no-mdebug	command	line	option,	Alpha:	Alpha	Options.						(line			25)
*	-no-parallel	option,	M32RX:												M32R-Opts.										(line			51)
*	-no-relax	option,	i960:																Options-i960.							(line			66)
*	-no-warn-explicit-parallel-conflicts	option,	M32RX:	M32R-Opts.
																																																													(line			79)
*	-no-warn-unmatched-high	option,	M32R:		M32R-Opts.										(line		111)
*	-nocpp	ignored	(MIPS):																	MIPS	Options.							(line		291)
*	-noreplace	command	line	option,	Alpha:	Alpha	Options.						(line			40)
*	-o:																																				o.																		(line				6)
*	-O	option,	M32RX:																						M32R-Opts.										(line			59)
*	-parallel	option,	M32RX:															M32R-Opts.										(line			46)
*	-R:																																				R.																		(line				6)
*	-r800	command	line	option,	Z80:								Z80	Options.								(line			35)
*	-relax	command	line	option,	Alpha:					Alpha	Options.						(line			32)
*	-replace	command	line	option,	Alpha:			Alpha	Options.						(line			40)
*	-S,	ignored	on	VAX:																				VAX-Opts.											(line			11)
*	-T,	ignored	on	VAX:																				VAX-Opts.											(line			11)
*	-t,	ignored	on	VAX:																				VAX-Opts.											(line			36)
*	-v:																																				v.																		(line				6)
*	-V,	redundant	on	VAX:																		VAX-Opts.											(line			22)
*	-version:																														v.																		(line				6)
*	-W:																																				W.																		(line			11)
*	-warn-explicit-parallel-conflicts	option,	M32RX:	M32R-Opts.
																																																													(line			65)
*	-warn-unmatched-high	option,	M32R:					M32R-Opts.										(line		105)
*	-Wnp	option,	M32RX:																				M32R-Opts.										(line			83)
*	-Wnuh	option,	M32RX:																			M32R-Opts.										(line		117)
*	-Wp	option,	M32RX:																					M32R-Opts.										(line			75)
*	-wsigned_overflow	command	line	option,	V850:	V850	Options.	(line				9)
*	-Wuh	option,	M32RX:																				M32R-Opts.										(line		114)
*	-wunsigned_overflow	command	line	option,	V850:	V850	Options.
																																																													(line			16)

3/25/20 as.info 424

*	-x	command	line	option,	MMIX:										MMIX-Opts.										(line			44)
*	-z80	command	line	option,	Z80:									Z80	Options.								(line				8)
*	-z8001	command	line	option,	Z8000:					Z8000	Options.						(line				6)
*	-z8002	command	line	option,	Z8000:					Z8000	Options.						(line				9)
*	.	(symbol):																												Dot.																(line				6)
*	.2byte	directive,	ARM:																	ARM	Directives.					(line				6)
*	.4byte	directive,	ARM:																	ARM	Directives.					(line				6)
*	.8byte	directive,	ARM:																	ARM	Directives.					(line				6)
*	.align	directive,	ARM:																	ARM	Directives.					(line			11)
*	.align	directive,	TILE-Gx:													TILE-Gx	Directives.	(line				6)
*	.align	directive,	TILEPro:													TILEPro	Directives.	(line				6)
*	.allow_suspicious_bundles	directive,	TILE-Gx:	TILE-Gx	Directives.
																																																													(line			10)
*	.allow_suspicious_bundles	directive,	TILEPro:	TILEPro	Directives.
																																																													(line			10)
*	.arch	directive,	AArch64:														AArch64	Directives.	(line				6)
*	.arch	directive,	ARM:																		ARM	Directives.					(line			18)
*	.arch	directive,	TIC6X:																TIC6X	Directives.			(line			10)
*	.arch_extension	directive,	AArch64:				AArch64	Directives.	(line			13)
*	.arch_extension	directive,	ARM:								ARM	Directives.					(line			25)
*	.arm	directive,	ARM:																			ARM	Directives.					(line			33)
*	.big	directive,	M32RX:																	M32R-Directives.				(line			88)
*	.bss	directive,	AArch64:															AArch64	Directives.	(line			21)
*	.bss	directive,	ARM:																			ARM	Directives.					(line			36)
*	.c6xabi_attribute	directive,	TIC6X:				TIC6X	Directives.			(line			20)
*	.cantunwind	directive,	ARM:												ARM	Directives.					(line			39)
*	.cantunwind	directive,	TIC6X:										TIC6X	Directives.			(line			13)
*	.code	directive,	ARM:																		ARM	Directives.					(line			43)
*	.cpu	directive,	AArch64:															AArch64	Directives.	(line			24)
*	.cpu	directive,	ARM:																			ARM	Directives.					(line			47)
*	.dn	and	.qn	directives,	ARM:											ARM	Directives.					(line			54)
*	.dword	directive,	AArch64:													AArch64	Directives.	(line			28)
*	.eabi_attribute	directive,	ARM:								ARM	Directives.					(line			78)
*	.ehtype	directive,	TIC6X:														TIC6X	Directives.			(line			31)
*	.endp	directive,	TIC6X:																TIC6X	Directives.			(line			34)
*	.even	directive,	AArch64:														AArch64	Directives.	(line			31)
*	.even	directive,	ARM:																		ARM	Directives.					(line		106)
*	.extend	directive,	ARM:																ARM	Directives.					(line		109)
*	.fnend	directive,	ARM:																	ARM	Directives.					(line		115)
*	.fnstart	directive,	ARM:															ARM	Directives.					(line		123)
*	.force_thumb	directive,	ARM:											ARM	Directives.					(line		126)
*	.fpu	directive,	ARM:																			ARM	Directives.					(line		130)
*	.global:																															MIPS	insn.										(line			12)
*	.gnu_attribute	4,	N	directive,	MIPS:			MIPS	FP	ABI	History.
																																																													(line				6)
*	.gnu_attribute	Tag_GNU_MIPS_ABI_FP,	N	directive,	MIPS:	MIPS	FP	ABI	History.
																																																													(line				6)
*	.handlerdata	directive,	ARM:											ARM	Directives.					(line		134)
*	.handlerdata	directive,	TIC6X:									TIC6X	Directives.			(line			39)
*	.insn:																																	MIPS	insn.										(line				6)
*	.insn	directive,	s390:																	s390	Directives.				(line			11)
*	.inst	directive,	AArch64:														AArch64	Directives.	(line			35)
*	.inst	directive,	ARM:																		ARM	Directives.					(line		143)
*	.ldouble	directive,	ARM:															ARM	Directives.					(line		109)
*	.little	directive,	M32RX:														M32R-Directives.				(line			82)
*	.long	directive,	s390:																	s390	Directives.				(line			16)
*	.ltorg	directive,	AArch64:													AArch64	Directives.	(line			39)
*	.ltorg	directive,	ARM:																	ARM	Directives.					(line		153)
*	.ltorg	directive,	s390:																s390	Directives.				(line			79)

3/25/20 as.info 425

*	.m32r	directive,	M32R:																	M32R-Directives.				(line			66)
*	.m32r2	directive,	M32R2:															M32R-Directives.				(line			77)
*	.m32rx	directive,	M32RX:															M32R-Directives.				(line			72)
*	.machine	directive,	s390:														s390	Directives.				(line			84)
*	.machinemode	directive,	s390:										s390	Directives.				(line		101)
*	.module:																															MIPS	assembly	options.
																																																													(line				6)
*	.module	fp=NN	directive,	MIPS:									MIPS	FP	ABI	Selection.
																																																													(line				6)
*	.movsp	directive,	ARM:																	ARM	Directives.					(line		167)
*	.nan	directive,	MIPS:																		MIPS	NaN	Encodings.	(line				6)
*	.nocmp	directive,	TIC6X:															TIC6X	Directives.			(line			47)
*	.no_pointers	directive,	XStormy16:					XStormy16	Directives.
																																																													(line			14)
*	.o:																																				Object.													(line				6)
*	.object_arch	directive,	ARM:											ARM	Directives.					(line		172)
*	.packed	directive,	ARM:																ARM	Directives.					(line		178)
*	.pad	directive,	ARM:																			ARM	Directives.					(line		183)
*	.param	on	HPPA:																								HPPA	Directives.				(line			19)
*	.personality	directive,	ARM:											ARM	Directives.					(line		188)
*	.personality	directive,	TIC6X:									TIC6X	Directives.			(line			55)
*	.personalityindex	directive,	ARM:						ARM	Directives.					(line		191)
*	.personalityindex	directive,	TIC6X:				TIC6X	Directives.			(line			51)
*	.pool	directive,	AArch64:														AArch64	Directives.	(line			53)
*	.pool	directive,	ARM:																		ARM	Directives.					(line		195)
*	.quad	directive,	s390:																	s390	Directives.				(line			16)
*	.req	directive,	AArch64:															AArch64	Directives.	(line			56)
*	.req	directive,	ARM:																			ARM	Directives.					(line		198)
*	.require_canonical_reg_names	directive,	TILE-Gx:	TILE-Gx	Directives.
																																																													(line			19)
*	.require_canonical_reg_names	directive,	TILEPro:	TILEPro	Directives.
																																																													(line			19)
*	.save	directive,	ARM:																		ARM	Directives.					(line		203)
*	.scomm	directive,	TIC6X:															TIC6X	Directives.			(line			58)
*	.secrel32	directive,	ARM:														ARM	Directives.					(line		241)
*	.set	arch=CPU:																									MIPS	ISA.											(line			18)
*	.set	at:																															MIPS	Macros.								(line			41)
*	.set	at=REG:																											MIPS	Macros.								(line			35)
*	.set	autoextend:																							MIPS	autoextend.				(line				6)
*	.set	doublefloat:																						MIPS	Floating-Point.
																																																													(line			12)
*	.set	dsp:																														MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			21)
*	.set	dspr2:																												MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			26)
*	.set	dspr3:																												MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			31)
*	.set	hardfloat:																								MIPS	Floating-Point.
																																																													(line				6)
*	.set	insn32:																											MIPS	assembly	options.
																																																													(line			18)
*	.set	macro:																												MIPS	Macros.								(line			30)
*	.set	mcu:																														MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			42)
*	.set	mdmx:																													MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			16)
*	.set	mips3d:																											MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line				6)
*	.set	mipsN:																												MIPS	ISA.											(line				6)

3/25/20 as.info 426

*	.set	msa:																														MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			47)
*	.set	mt:																															MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			37)
*	.set	noat:																													MIPS	Macros.								(line			41)
*	.set	noautoextend:																					MIPS	autoextend.				(line				6)
*	.set	nodsp:																												MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			21)
*	.set	nodspr2:																										MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			26)
*	.set	nodspr3:																										MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			31)
*	.set	noinsn32:																									MIPS	assembly	options.
																																																													(line			18)
*	.set	nomacro:																										MIPS	Macros.								(line			30)
*	.set	nomcu:																												MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			42)
*	.set	nomdmx:																											MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			16)
*	.set	nomips3d:																									MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line				6)
*	.set	nomsa:																												MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			47)
*	.set	nomt:																													MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			37)
*	.set	nosmartmips:																						MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			11)
*	.set	nosym32:																										MIPS	Symbol	Sizes.		(line				6)
*	.set	novirt:																											MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			52)
*	.set	noxpa:																												MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			57)
*	.set	pop:																														MIPS	Option	Stack.		(line				6)
*	.set	push:																													MIPS	Option	Stack.		(line				6)
*	.set	singlefloat:																						MIPS	Floating-Point.
																																																													(line			12)
*	.set	smartmips:																								MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			11)
*	.set	softfloat:																								MIPS	Floating-Point.
																																																													(line				6)
*	.set	sym32:																												MIPS	Symbol	Sizes.		(line				6)
*	.set	virt:																													MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			52)
*	.set	xpa:																														MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			57)
*	.setfp	directive,	ARM:																	ARM	Directives.					(line		227)
*	.short	directive,	s390:																s390	Directives.				(line			16)
*	.syntax	directive,	ARM:																ARM	Directives.					(line		246)
*	.thumb	directive,	ARM:																	ARM	Directives.					(line		250)
*	.thumb_func	directive,	ARM:												ARM	Directives.					(line		253)
*	.thumb_set	directive,	ARM:													ARM	Directives.					(line		264)
*	.tlsdescadd	directive,	AArch64:								AArch64	Directives.	(line			61)
*	.tlsdesccall	directive,	AArch64:							AArch64	Directives.	(line			64)
*	.tlsdescldr	directive,	AArch64:								AArch64	Directives.	(line			67)
*	.tlsdescseq	directive,	ARM:												ARM	Directives.					(line		271)
*	.unreq	directive,	AArch64:													AArch64	Directives.	(line			70)
*	.unreq	directive,	ARM:																	ARM	Directives.					(line		276)
*	.unwind_raw	directive,	ARM:												ARM	Directives.					(line		287)
*	.v850	directive,	V850:																	V850	Directives.				(line			14)

3/25/20 as.info 427

*	.v850e	directive,	V850:																V850	Directives.				(line			20)
*	.v850e1	directive,	V850:															V850	Directives.				(line			26)
*	.v850e2	directive,	V850:															V850	Directives.				(line			32)
*	.v850e2v3	directive,	V850:													V850	Directives.				(line			38)
*	.v850e2v4	directive,	V850:													V850	Directives.				(line			44)
*	.v850e3v5	directive,	V850:													V850	Directives.				(line			50)
*	.vsave	directive,	ARM:																	ARM	Directives.					(line		294)
*	.xword	directive,	AArch64:													AArch64	Directives.	(line			81)
*	.z8001:																																Z8000	Directives.			(line			11)
*	.z8002:																																Z8000	Directives.			(line			15)
*	16-bit	code,	i386:																					i386-16bit.									(line				6)
*	16bit_pointers	directive,	XStormy16:			XStormy16	Directives.
																																																													(line				6)
*	16byte	directive,	Nios	II:													Nios	II	Directives.	(line			28)
*	2byte	directive,	Nios	II:														Nios	II	Directives.	(line			19)
*	32bit_pointers	directive,	XStormy16:			XStormy16	Directives.
																																																													(line			10)
*	3DNow!,	i386:																										i386-SIMD.										(line				6)
*	3DNow!,	x86-64:																								i386-SIMD.										(line				6)
*	430	support:																											MSP430-Dependent.			(line				6)
*	4byte	directive,	Nios	II:														Nios	II	Directives.	(line			22)
*	8byte	directive,	Nios	II:														Nios	II	Directives.	(line			25)
*	:	(label):																													Statements.									(line			31)
*	@gotoff(SYMBOL),	ARC	modifier:									ARC	Modifiers.						(line			20)
*	@gotpc(SYMBOL),	ARC	modifier:										ARC	Modifiers.						(line			16)
*	@hi	pseudo-op,	XStormy16:														XStormy16	Opcodes.		(line			21)
*	@lo	pseudo-op,	XStormy16:														XStormy16	Opcodes.		(line			10)
*	@pcl(SYMBOL),	ARC	modifier:												ARC	Modifiers.						(line			12)
*	@plt(SYMBOL),	ARC	modifier:												ARC	Modifiers.						(line			23)
*	@sda(SYMBOL),	ARC	modifier:												ARC	Modifiers.						(line			28)
*	@word	modifier,	D10V:																		D10V-Word.										(line				6)
*	_	opcode	prefix:																							Xtensa	Opcodes.					(line				9)
*	__DYNAMIC__,	ARC	pre-defined	symbol:			ARC	Symbols.								(line			14)
*	__GLOBAL_OFFSET_TABLE__,	ARC	pre-defined	symbol:	ARC	Symbols.
																																																													(line			11)
*	a.out:																																	Object.													(line				6)
*	a.out	symbol	attributes:															a.out	Symbols.						(line				6)
*	AArch64	floating	point	(IEEE):									AArch64	Floating	Point.
																																																													(line				6)
*	AArch64	immediate	character:											AArch64-Chars.						(line			13)
*	AArch64	line	comment	character:								AArch64-Chars.						(line				6)
*	AArch64	line	separator:																AArch64-Chars.						(line			10)
*	AArch64	machine	directives:												AArch64	Directives.	(line				6)
*	AArch64	opcodes:																							AArch64	Opcodes.				(line				6)
*	AArch64	options	(none):																AArch64	Options.				(line				6)
*	AArch64	register	names:																AArch64-Regs.							(line				6)
*	AArch64	relocations:																			AArch64-Relocations.
																																																													(line				6)
*	AArch64	support:																							AArch64-Dependent.		(line				6)
*	ABI	options,	SH64:																					SH64	Options.							(line			25)
*	abort	directive:																							Abort.														(line				6)
*	ABORT	directive:																							ABORT	(COFF).							(line				6)
*	absolute	section:																						Ld	Sections.								(line			29)
*	absolute-literals	directive:											Absolute	Literals	Directive.
																																																													(line				6)
*	ADDI	instructions,	relaxation:									Xtensa	Immediate	Relaxation.
																																																													(line			43)
*	addition,	permitted	arguments:									Infix	Ops.										(line			45)
*	addresses:																													Expressions.								(line				6)

3/25/20 as.info 428

*	addresses,	format	of:																		Secs	Background.				(line			65)
*	addressing	modes,	D10V:																D10V-Addressing.				(line				6)
*	addressing	modes,	D30V:																D30V-Addressing.				(line				6)
*	addressing	modes,	H8/300:														H8/300-Addressing.		(line				6)
*	addressing	modes,	M680x0:														M68K-Syntax.								(line			21)
*	addressing	modes,	M68HC11:													M68HC11-Syntax.					(line			29)
*	addressing	modes,	SH:																		SH-Addressing.						(line				6)
*	addressing	modes,	SH64:																SH64-Addressing.				(line				6)
*	addressing	modes,	XGATE:															XGATE-Syntax.							(line			28)
*	addressing	modes,	Z8000:															Z8000-Addressing.			(line				6)
*	ADR	reg,<label>	pseudo	op,	ARM:								ARM	Opcodes.								(line			25)
*	ADRL	reg,<label>	pseudo	op,	ARM:							ARM	Opcodes.								(line			35)
*	ADRP,	ADD,	LDR/STR	group	relocations,	AArch64:	AArch64-Relocations.
																																																													(line			14)
*	advancing	location	counter:												Org.																(line				6)
*	align	directive:																							Align.														(line				6)
*	align	directive,	Nios	II:														Nios	II	Directives.	(line				6)
*	align	directive,	SPARC:																Sparc-Directives.			(line				9)
*	align	directive,	TIC54X:															TIC54X-Directives.		(line				6)
*	aligned	instruction	bundle:												Bundle	directives.		(line				9)
*	alignment	for	NEON	instructions:							ARM-Neon-Alignment.	(line				6)
*	alignment	of	branch	targets:											Xtensa	Automatic	Alignment.
																																																													(line				6)
*	alignment	of	LOOP	instructions:								Xtensa	Automatic	Alignment.
																																																													(line				6)
*	Alpha	floating	point	(IEEE):											Alpha	Floating	Point.
																																																													(line				6)
*	Alpha	line	comment	character:										Alpha-Chars.								(line				6)
*	Alpha	line	separator:																		Alpha-Chars.								(line			11)
*	Alpha	notes:																											Alpha	Notes.								(line				6)
*	Alpha	options:																									Alpha	Options.						(line				6)
*	Alpha	registers:																							Alpha-Regs.									(line				6)
*	Alpha	relocations:																					Alpha-Relocs.							(line				6)
*	Alpha	support:																									Alpha-Dependent.				(line				6)
*	Alpha	Syntax:																										Alpha	Options.						(line			60)
*	Alpha-only	directives:																	Alpha	Directives.			(line				9)
*	Altera	Nios	II	support:																NiosII-Dependent.			(line				6)
*	altered	difference	tables:													Word.															(line			12)
*	alternate	syntax	for	the	680x0:								M68K-Moto-Syntax.			(line				6)
*	ARC	Branch	Target	Address:													ARC-Regs.											(line			60)
*	ARC	BTA	saved	on	exception	entry:						ARC-Regs.											(line			79)
*	ARC	Build	configuration	for:	BTA	Registers:	ARC-Regs.						(line			89)
*	ARC	Build	configuration	for:	Core	Registers:	ARC-Regs.					(line			97)
*	ARC	Build	configuration	for:	Interrupts:	ARC-Regs.									(line			93)
*	ARC	Build	Configuration	Registers	Version:	ARC-Regs.							(line			85)
*	ARC	C	preprocessor	macro	separator:				ARC-Chars.										(line			31)
*	ARC	core	general	registers:												ARC-Regs.											(line			10)
*	ARC	DCCM	RAM	Configuration	Register:			ARC-Regs.											(line		101)
*	ARC	Exception	Cause	Register:										ARC-Regs.											(line			63)
*	ARC	Exception	Return	Address:										ARC-Regs.											(line			76)
*	ARC	extension	core	registers:										ARC-Regs.											(line			38)
*	ARC	frame	pointer:																					ARC-Regs.											(line			17)
*	ARC	global	pointer:																				ARC-Regs.											(line			14)
*	ARC	interrupt	link	register:											ARC-Regs.											(line			27)
*	ARC	Interrupt	Vector	Base	address:					ARC-Regs.											(line			66)
*	ARC	level	1	interrupt	link	register:			ARC-Regs.											(line			23)
*	ARC	level	2	interrupt	link	register:			ARC-Regs.											(line			31)
*	ARC	line	comment	character:												ARC-Chars.										(line			11)
*	ARC	line	separator:																				ARC-Chars.										(line			27)

3/25/20 as.info 429

*	ARC	link	register:																					ARC-Regs.											(line			35)
*	ARC	loop	counter:																						ARC-Regs.											(line			41)
*	ARC	machine	directives:																ARC	Directives.					(line				6)
*	ARC	opcodes:																											ARC	Opcodes.								(line				6)
*	ARC	options:																											ARC	Options.								(line				6)
*	ARC	Processor	Identification	register:	ARC-Regs.											(line			51)
*	ARC	Program	Counter:																			ARC-Regs.											(line			54)
*	ARC	register	name	prefix	character:				ARC-Chars.										(line				7)
*	ARC	register	names:																				ARC-Regs.											(line				6)
*	ARC	Saved	User	Stack	Pointer:										ARC-Regs.											(line			73)
*	ARC	stack	pointer:																					ARC-Regs.											(line			20)
*	ARC	Status	register:																			ARC-Regs.											(line			57)
*	ARC	STATUS32	saved	on	exception:							ARC-Regs.											(line			82)
*	ARC	Stored	STATUS32	register	on	entry	to	level	P0	interrupts:	ARC-Regs.
																																																													(line			69)
*	ARC	support:																											ARC-Dependent.						(line				6)
*	ARC	symbol	prefix	character:											ARC-Chars.										(line			20)
*	ARC	word	aligned	program	counter:						ARC-Regs.											(line			44)
*	arch	directive,	i386:																		i386-Arch.										(line				6)
*	arch	directive,	M680x0:																M68K-Directives.				(line			22)
*	arch	directive,	MSP	430:															MSP430	Directives.		(line			18)
*	arch	directive,	x86-64:																i386-Arch.										(line				6)
*	architecture	options,	i960:												Options-i960.							(line				6)
*	architecture	options,	IP2022:										IP2K-Opts.										(line				9)
*	architecture	options,	IP2K:												IP2K-Opts.										(line			14)
*	architecture	options,	M16C:												M32C-Opts.										(line			12)
*	architecture	options,	M32C:												M32C-Opts.										(line				9)
*	architecture	options,	M32R:												M32R-Opts.										(line			21)
*	architecture	options,	M32R2:											M32R-Opts.										(line			17)
*	architecture	options,	M32RX:											M32R-Opts.										(line				9)
*	architecture	options,	M680x0:										M68K-Opts.										(line			99)
*	Architecture	variant	option,	CRIS:					CRIS-Opts.										(line			34)
*	architectures,	Meta:																			Meta	Options.							(line				6)
*	architectures,	PowerPC:																PowerPC-Opts.							(line				6)
*	architectures,	SCORE:																		SCORE-Opts.									(line				6)
*	architectures,	SPARC:																		Sparc-Opts.									(line				6)
*	arguments	for	addition:																Infix	Ops.										(line			45)
*	arguments	for	subtraction:													Infix	Ops.										(line			50)
*	arguments	in	expressions:														Arguments.										(line				6)
*	arithmetic	functions:																		Operators.										(line				6)
*	arithmetic	operands:																			Arguments.										(line				6)
*	ARM	data	relocations:																		ARM-Relocations.				(line				6)
*	ARM	floating	point	(IEEE):													ARM	Floating	Point.	(line				6)
*	ARM	identifiers:																							ARM-Chars.										(line			19)
*	ARM	immediate	character:															ARM-Chars.										(line			17)
*	ARM	line	comment	character:												ARM-Chars.										(line				6)
*	ARM	line	separator:																				ARM-Chars.										(line			14)
*	ARM	machine	directives:																ARM	Directives.					(line				6)
*	ARM	opcodes:																											ARM	Opcodes.								(line				6)
*	ARM	options	(none):																				ARM	Options.								(line				6)
*	ARM	register	names:																				ARM-Regs.											(line				6)
*	ARM	support:																											ARM-Dependent.						(line				6)
*	ascii	directive:																							Ascii.														(line				6)
*	asciz	directive:																							Asciz.														(line				6)
*	asg	directive,	TIC54X:																	TIC54X-Directives.		(line			18)
*	assembler	bugs,	reporting:													Bug	Reporting.						(line				6)
*	assembler	crash:																							Bug	Criteria.							(line				9)
*	assembler	directive	.3byte,	RX:								RX-Directives.						(line				9)
*	assembler	directive	.arch,	CRIS:							CRIS-Pseudos.							(line			50)

3/25/20 as.info 430

*	assembler	directive	.dword,	CRIS:						CRIS-Pseudos.							(line			12)
*	assembler	directive	.far,	M68HC11:					M68HC11-Directives.	(line			20)
*	assembler	directive	.fetchalign,	RX:			RX-Directives.						(line			13)
*	assembler	directive	.interrupt,	M68HC11:	M68HC11-Directives.
																																																													(line			26)
*	assembler	directive	.mode,	M68HC11:				M68HC11-Directives.	(line			16)
*	assembler	directive	.relax,	M68HC11:			M68HC11-Directives.	(line			10)
*	assembler	directive	.syntax,	CRIS:					CRIS-Pseudos.							(line			18)
*	assembler	directive	.xrefb,	M68HC11:			M68HC11-Directives.	(line			31)
*	assembler	directive	BSPEC,	MMIX:							MMIX-Pseudos.							(line		137)
*	assembler	directive	BYTE,	MMIX:								MMIX-Pseudos.							(line		101)
*	assembler	directive	ESPEC,	MMIX:							MMIX-Pseudos.							(line		137)
*	assembler	directive	GREG,	MMIX:								MMIX-Pseudos.							(line			53)
*	assembler	directive	IS,	MMIX:										MMIX-Pseudos.							(line			44)
*	assembler	directive	LOC,	MMIX:									MMIX-Pseudos.							(line				7)
*	assembler	directive	LOCAL,	MMIX:							MMIX-Pseudos.							(line			29)
*	assembler	directive	OCTA,	MMIX:								MMIX-Pseudos.							(line		113)
*	assembler	directive	PREFIX,	MMIX:						MMIX-Pseudos.							(line		125)
*	assembler	directive	TETRA,	MMIX:							MMIX-Pseudos.							(line		113)
*	assembler	directive	WYDE,	MMIX:								MMIX-Pseudos.							(line		113)
*	assembler	directives,	CRIS:												CRIS-Pseudos.							(line				6)
*	assembler	directives,	M68HC11:									M68HC11-Directives.	(line				6)
*	assembler	directives,	M68HC12:									M68HC11-Directives.	(line				6)
*	assembler	directives,	MMIX:												MMIX-Pseudos.							(line				6)
*	assembler	directives,	RL78:												RL78-Directives.				(line				6)
*	assembler	directives,	RX:														RX-Directives.						(line				6)
*	assembler	directives,	XGATE:											XGATE-Directives.			(line				6)
*	assembler	internal	logic	error:								As	Sections.								(line			13)
*	assembler	version:																					v.																		(line				6)
*	assembler,	and	linker:																	Secs	Background.				(line			10)
*	assembly	listings,	enabling:											a.																		(line				6)
*	assigning	values	to	symbols:											Setting	Symbols.				(line				6)
*	assigning	values	to	symbols	<1>:							Equ.																(line				6)
*	at	register,	MIPS:																					MIPS	Macros.								(line			35)
*	atmp	directive,	i860:																		Directives-i860.				(line			16)
*	attributes,	symbol:																				Symbol	Attributes.		(line				6)
*	att_syntax	pseudo	op,	i386:												i386-Variations.				(line				6)
*	att_syntax	pseudo	op,	x86-64:										i386-Variations.				(line				6)
*	auxiliary	attributes,	COFF	symbols:				COFF	Symbols.							(line			19)
*	auxiliary	symbol	information,	COFF:				Dim.																(line				6)
*	AVR	line	comment	character:												AVR-Chars.										(line				6)
*	AVR	line	separator:																				AVR-Chars.										(line			14)
*	AVR	modifiers:																									AVR-Modifiers.						(line				6)
*	AVR	opcode	summary:																				AVR	Opcodes.								(line				6)
*	AVR	options	(none):																				AVR	Options.								(line				6)
*	AVR	register	names:																				AVR-Regs.											(line				6)
*	AVR	support:																											AVR-Dependent.						(line				6)
*	A_DIR	environment	variable,	TIC54X:				TIC54X-Env.									(line				6)
*	backslash	(\\):																								Strings.												(line			40)
*	backspace	(\b):																								Strings.												(line			15)
*	balign	directive:																						Balign.													(line				6)
*	balignl	directive:																					Balign.													(line			27)
*	balignw	directive:																					Balign.													(line			27)
*	bes	directive,	TIC54X:																	TIC54X-Directives.		(line		194)
*	big	endian	output,	MIPS:															Overview.											(line		806)
*	big	endian	output,	PJ:																	Overview.											(line		713)
*	big-endian	output,	MIPS:															MIPS	Options.							(line			13)
*	big-endian	output,	TIC6X:														TIC6X	Options.						(line			46)
*	bignums:																															Bignums.												(line				6)

3/25/20 as.info 431

*	binary	constants,	TIC54X:														TIC54X-Constants.			(line				8)
*	binary	files,	including:															Incbin.													(line				6)
*	binary	integers:																							Integers.											(line				6)
*	bit	names,	IA-64:																						IA-64-Bits.									(line				6)
*	bitfields,	not	supported	on	VAX:							VAX-no.													(line				6)
*	Blackfin	directives:																			Blackfin	Directives.
																																																													(line				6)
*	Blackfin	options	(none):															Blackfin	Options.			(line				6)
*	Blackfin	support:																						Blackfin-Dependent.	(line				6)
*	Blackfin	syntax:																							Blackfin	Syntax.				(line				6)
*	block:																																	Z8000	Directives.			(line			55)
*	BMI,	i386:																													i386-BMI.											(line				6)
*	BMI,	x86-64:																											i386-BMI.											(line				6)
*	branch	improvement,	M680x0:												M68K-Branch.								(line				6)
*	branch	improvement,	M68HC11:											M68HC11-Branch.					(line				6)
*	branch	improvement,	VAX:															VAX-branch.									(line				6)
*	branch	instructions,	relaxation:							Xtensa	Branch	Relaxation.
																																																													(line				6)
*	branch	recording,	i960:																Options-i960.							(line			22)
*	branch	statistics	table,	i960:									Options-i960.							(line			40)
*	Branch	Target	Address,	ARC:												ARC-Regs.											(line			60)
*	branch	target	alignment:															Xtensa	Automatic	Alignment.
																																																													(line				6)
*	break	directive,	TIC54X:															TIC54X-Directives.		(line		141)
*	BSD	syntax:																												PDP-11-Syntax.						(line				6)
*	bss	directive,	i960:																			Directives-i960.				(line				6)
*	bss	directive,	TIC54X:																	TIC54X-Directives.		(line			27)
*	bss	section:																											Ld	Sections.								(line			20)
*	bss	section	<1>:																							bss.																(line				6)
*	BTA	saved	on	exception	entry,	ARC:					ARC-Regs.											(line			79)
*	bug	criteria:																										Bug	Criteria.							(line				6)
*	bug	reports:																											Bug	Reporting.						(line				6)
*	bugs	in	assembler:																					Reporting	Bugs.					(line				6)
*	Build	configuration	for:	BTA	Registers,	ARC:	ARC-Regs.					(line			89)
*	Build	configuration	for:	Core	Registers,	ARC:	ARC-Regs.				(line			97)
*	Build	configuration	for:	Interrupts,	ARC:	ARC-Regs.								(line			93)
*	Build	Configuration	Registers	Version,	ARC:	ARC-Regs.						(line			85)
*	Built-in	symbols,	CRIS:																CRIS-Symbols.							(line				6)
*	builtin	math	functions,	TIC54X:								TIC54X-Builtins.				(line				6)
*	builtin	subsym	functions,	TIC54X:						TIC54X-Macros.						(line			16)
*	bundle:																																Bundle	directives.		(line				9)
*	bundle-locked:																									Bundle	directives.		(line			39)
*	bundle_align_mode	directive:											Bundle	directives.		(line				9)
*	bundle_lock	directive:																	Bundle	directives.		(line			31)
*	bundle_unlock	directive:															Bundle	directives.		(line			31)
*	bus	lock	prefixes,	i386:															i386-Prefixes.						(line			36)
*	bval:																																		Z8000	Directives.			(line			30)
*	byte	directive:																								Byte.															(line				6)
*	byte	directive,	TIC54X:																TIC54X-Directives.		(line			34)
*	C	preprocessor	macro	separator,	ARC:			ARC-Chars.										(line			31)
*	C54XDSP_DIR	environment	variable,	TIC54X:	TIC54X-Env.						(line				6)
*	call	directive,	Nios	II:															Nios	II	Relocations.
																																																													(line			38)
*	call	instructions,	i386:															i386-Mnemonics.					(line			58)
*	call	instructions,	relaxation:									Xtensa	Call	Relaxation.
																																																													(line				6)
*	call	instructions,	x86-64:													i386-Mnemonics.					(line			58)
*	callj,	i960	pseudo-opcode:													callj-i960.									(line				6)
*	call_hiadj	directive,	Nios	II:									Nios	II	Relocations.

3/25/20 as.info 432

																																																													(line			38)
*	call_lo	directive,	Nios	II:												Nios	II	Relocations.
																																																													(line			38)
*	carriage	return	(backslash-r):									Strings.												(line			24)
*	case	sensitivity,	Z80:																	Z80-Case.											(line				6)
*	cfi_endproc	directive:																	CFI	directives.					(line			40)
*	cfi_fde_data	directive:																CFI	directives.					(line			66)
*	cfi_personality	directive:													CFI	directives.					(line			47)
*	cfi_personality_id	directive:										CFI	directives.					(line			59)
*	cfi_sections	directive:																CFI	directives.					(line				9)
*	cfi_startproc	directive:															CFI	directives.					(line			30)
*	char	directive,	TIC54X:																TIC54X-Directives.		(line			34)
*	character	constant,	Z80:															Z80-Chars.										(line			20)
*	character	constants:																			Characters.									(line				6)
*	character	escape	codes:																Strings.												(line			15)
*	character	escapes,	Z80:																Z80-Chars.										(line			18)
*	character,	single:																					Chars.														(line				6)
*	characters	used	in	symbols:												Symbol	Intro.							(line				6)
*	clink	directive,	TIC54X:															TIC54X-Directives.		(line			43)
*	code16	directive,	i386:																i386-16bit.									(line				6)
*	code16gcc	directive,	i386:													i386-16bit.									(line				6)
*	code32	directive,	i386:																i386-16bit.									(line				6)
*	code64	directive,	i386:																i386-16bit.									(line				6)
*	code64	directive,	x86-64:														i386-16bit.									(line				6)
*	COFF	auxiliary	symbol	information:					Dim.																(line				6)
*	COFF	structure	debugging:														Tag.																(line				6)
*	COFF	symbol	attributes:																COFF	Symbols.							(line				6)
*	COFF	symbol	descriptor:																Desc.															(line				6)
*	COFF	symbol	storage	class:													Scl.																(line				6)
*	COFF	symbol	type:																						Type.															(line			11)
*	COFF	symbols,	debugging:															Def.																(line				6)
*	COFF	value	attribute:																		Val.																(line				6)
*	COMDAT:																																Linkonce.											(line				6)
*	comm	directive:																								Comm.															(line				6)
*	command	line	conventions:														Command	Line.							(line				6)
*	command	line	options,	V850:												V850	Options.							(line				9)
*	command-line	options	ignored,	VAX:					VAX-Opts.											(line				6)
*	comment	character,	XStormy16:										XStormy16-Chars.				(line			11)
*	comments:																														Comments.											(line				6)
*	comments,	M680x0:																						M68K-Chars.									(line				6)
*	comments,	removed	by	preprocessor:					Preprocessing.						(line			11)
*	common	directive,	SPARC:															Sparc-Directives.			(line			12)
*	common	sections:																							Linkonce.											(line				6)
*	common	variable	storage:															bss.																(line				6)
*	compare	and	jump	expansions,	i960:					Compare-and-branch-i960.
																																																													(line			13)
*	compare/branch	instructions,	i960:					Compare-and-branch-i960.
																																																													(line				6)
*	comparison	expressions:																Infix	Ops.										(line			56)
*	conditional	assembly:																		If.																	(line				6)
*	constant,	single	character:												Chars.														(line				6)
*	constants:																													Constants.										(line				6)
*	constants,	bignum:																					Bignums.												(line				6)
*	constants,	character:																		Characters.									(line				6)
*	constants,	converted	by	preprocessor:		Preprocessing.						(line			14)
*	constants,	floating	point:													Flonums.												(line				6)
*	constants,	integer:																				Integers.											(line				6)
*	constants,	number:																					Numbers.												(line				6)
*	constants,	Sparc:																						Sparc-Constants.				(line				6)

3/25/20 as.info 433

*	constants,	string:																					Strings.												(line				6)
*	constants,	TIC54X:																					TIC54X-Constants.			(line				6)
*	conversion	instructions,	i386:									i386-Mnemonics.					(line			39)
*	conversion	instructions,	x86-64:							i386-Mnemonics.					(line			39)
*	coprocessor	wait,	i386:																i386-Prefixes.						(line			40)
*	copy	directive,	TIC54X:																TIC54X-Directives.		(line			52)
*	core	general	registers,	ARC:											ARC-Regs.											(line			10)
*	cpu	directive,	ARC:																				ARC	Directives.					(line			27)
*	cpu	directive,	M680x0:																	M68K-Directives.				(line			30)
*	cpu	directive,	MSP	430:																MSP430	Directives.		(line			22)
*	CR16	line	comment	character:											CR16-Chars.									(line				6)
*	CR16	line	separator:																			CR16-Chars.									(line			12)
*	CR16	Operand	Qualifiers:															CR16	Operand	Qualifiers.
																																																													(line				6)
*	CR16	support:																										CR16-Dependent.					(line				6)
*	crash	of	assembler:																				Bug	Criteria.							(line				9)
*	CRIS	--emulation=crisaout	command	line	option:	CRIS-Opts.		(line				9)
*	CRIS	--emulation=criself	command	line	option:	CRIS-Opts.			(line				9)
*	CRIS	--march=ARCHITECTURE	command	line	option:	CRIS-Opts.		(line			34)
*	CRIS	--mul-bug-abort	command	line	option:	CRIS-Opts.							(line			63)
*	CRIS	--no-mul-bug-abort	command	line	option:	CRIS-Opts.				(line			63)
*	CRIS	--no-underscore	command	line	option:	CRIS-Opts.							(line			15)
*	CRIS	--pic	command	line	option:								CRIS-Opts.										(line			27)
*	CRIS	--underscore	command	line	option:	CRIS-Opts.										(line			15)
*	CRIS	-N	command	line	option:											CRIS-Opts.										(line			59)
*	CRIS	architecture	variant	option:						CRIS-Opts.										(line			34)
*	CRIS	assembler	directive	.arch:								CRIS-Pseudos.							(line			50)
*	CRIS	assembler	directive	.dword:							CRIS-Pseudos.							(line			12)
*	CRIS	assembler	directive	.syntax:						CRIS-Pseudos.							(line			18)
*	CRIS	assembler	directives:													CRIS-Pseudos.							(line				6)
*	CRIS	built-in	symbols:																	CRIS-Symbols.							(line				6)
*	CRIS	instruction	expansion:												CRIS-Expand.								(line				6)
*	CRIS	line	comment	characters:										CRIS-Chars.									(line				6)
*	CRIS	options:																										CRIS-Opts.										(line				6)
*	CRIS	position-independent	code:								CRIS-Opts.										(line			27)
*	CRIS	pseudo-op	.arch:																		CRIS-Pseudos.							(line			50)
*	CRIS	pseudo-op	.dword:																	CRIS-Pseudos.							(line			12)
*	CRIS	pseudo-op	.syntax:																CRIS-Pseudos.							(line			18)
*	CRIS	pseudo-ops:																							CRIS-Pseudos.							(line				6)
*	CRIS	register	names:																			CRIS-Regs.										(line				6)
*	CRIS	support:																										CRIS-Dependent.					(line				6)
*	CRIS	symbols	in	position-independent	code:	CRIS-Pic.							(line				6)
*	ctbp	register,	V850:																			V850-Regs.										(line			90)
*	ctoff	pseudo-op,	V850:																	V850	Opcodes.							(line		110)
*	ctpc	register,	V850:																			V850-Regs.										(line			82)
*	ctpsw	register,	V850:																		V850-Regs.										(line			84)
*	current	address:																							Dot.																(line				6)
*	current	address,	advancing:												Org.																(line				6)
*	c_mode	directive,	TIC54X:														TIC54X-Directives.		(line			49)
*	D10V	@word	modifier:																			D10V-Word.										(line				6)
*	D10V	addressing	modes:																	D10V-Addressing.				(line				6)
*	D10V	floating	point:																			D10V-Float.									(line				6)
*	D10V	line	comment	character:											D10V-Chars.									(line				6)
*	D10V	opcode	summary:																			D10V-Opcodes.							(line				6)
*	D10V	optimization:																					Overview.											(line		579)
*	D10V	options:																										D10V-Opts.										(line				6)
*	D10V	registers:																								D10V-Regs.										(line				6)
*	D10V	size	modifiers:																			D10V-Size.										(line				6)
*	D10V	sub-instruction	ordering:									D10V-Chars.									(line			14)

3/25/20 as.info 434

*	D10V	sub-instructions:																	D10V-Subs.										(line				6)
*	D10V	support:																										D10V-Dependent.					(line				6)
*	D10V	syntax:																											D10V-Syntax.								(line				6)
*	D30V	addressing	modes:																	D30V-Addressing.				(line				6)
*	D30V	floating	point:																			D30V-Float.									(line				6)
*	D30V	Guarded	Execution:																D30V-Guarded.							(line				6)
*	D30V	line	comment	character:											D30V-Chars.									(line				6)
*	D30V	nops:																													Overview.											(line		587)
*	D30V	nops	after	32-bit	multiply:							Overview.											(line		590)
*	D30V	opcode	summary:																			D30V-Opcodes.							(line				6)
*	D30V	optimization:																					Overview.											(line		584)
*	D30V	options:																										D30V-Opts.										(line				6)
*	D30V	registers:																								D30V-Regs.										(line				6)
*	D30V	size	modifiers:																			D30V-Size.										(line				6)
*	D30V	sub-instruction	ordering:									D30V-Chars.									(line			14)
*	D30V	sub-instructions:																	D30V-Subs.										(line				6)
*	D30V	support:																										D30V-Dependent.					(line				6)
*	D30V	syntax:																											D30V-Syntax.								(line				6)
*	data	alignment	on	SPARC:															Sparc-Aligned-Data.	(line				6)
*	data	and	text	sections,	joining:							R.																		(line				6)
*	data	directive:																								Data.															(line				6)
*	data	directive,	TIC54X:																TIC54X-Directives.		(line			59)
*	data	relocations,	ARM:																	ARM-Relocations.				(line				6)
*	data	section:																										Ld	Sections.								(line				9)
*	data1	directive,	M680x0:															M68K-Directives.				(line				9)
*	data2	directive,	M680x0:															M68K-Directives.				(line			12)
*	datalabel,	SH64:																							SH64-Addressing.				(line			16)
*	dbpc	register,	V850:																			V850-Regs.										(line			86)
*	dbpsw	register,	V850:																		V850-Regs.										(line			88)
*	DCCM	RAM	Configuration	Register,	ARC:		ARC-Regs.											(line		101)
*	debuggers,	and	symbol	order:											Symbols.												(line			10)
*	debugging	COFF	symbols:																Def.																(line				6)
*	DEC	syntax:																												PDP-11-Syntax.						(line				6)
*	decimal	integers:																						Integers.											(line			12)
*	def	directive:																									Def.																(line				6)
*	def	directive,	TIC54X:																	TIC54X-Directives.		(line		101)
*	density	instructions:																		Density	Instructions.
																																																													(line				6)
*	dependency	tracking:																			MD.																	(line				6)
*	deprecated	directives:																	Deprecated.									(line				6)
*	desc	directive:																								Desc.															(line				6)
*	descriptor,	of	a.out	symbol:											Symbol	Desc.								(line				6)
*	dfloat	directive,	VAX:																	VAX-directives.					(line				9)
*	difference	tables	altered:													Word.															(line			12)
*	difference	tables,	warning:												K.																		(line				6)
*	differences,	mmixal:																			MMIX-mmixal.								(line				6)
*	dim	directive:																									Dim.																(line				6)
*	directives	and	instructions:											Statements.									(line			20)
*	directives	for	PowerPC:																PowerPC-Pseudo.					(line				6)
*	directives	for	SCORE:																		SCORE-Pseudo.							(line				6)
*	directives,	Blackfin:																		Blackfin	Directives.
																																																													(line				6)
*	directives,	M32R:																						M32R-Directives.				(line				6)
*	directives,	M680x0:																				M68K-Directives.				(line				6)
*	directives,	machine	independent:							Pseudo	Ops.									(line				6)
*	directives,	Xtensa:																				Xtensa	Directives.		(line				6)
*	directives,	Z8000:																					Z8000	Directives.			(line				6)
*	Disable	floating-point	instructions:			MIPS	Floating-Point.
																																																													(line				6)

3/25/20 as.info 435

*	Disable	single-precision	floating-point	operations:	MIPS	Floating-Point.
																																																													(line			12)
*	displacement	sizing	character,	VAX:				VAX-operands.							(line			12)
*	dollar	local	symbols:																		Symbol	Names.							(line		113)
*	dot	(symbol):																										Dot.																(line				6)
*	double	directive:																						Double.													(line				6)
*	double	directive,	i386:																i386-Float.									(line			14)
*	double	directive,	M680x0:														M68K-Float.									(line			14)
*	double	directive,	M68HC11:													M68HC11-Float.						(line			14)
*	double	directive,	RX:																		RX-Float.											(line			11)
*	double	directive,	TIC54X:														TIC54X-Directives.		(line			62)
*	double	directive,	VAX:																	VAX-float.										(line			15)
*	double	directive,	x86-64:														i386-Float.									(line			14)
*	double	directive,	XGATE:															XGATE-Float.								(line			13)
*	doublequote	(\"):																						Strings.												(line			43)
*	drlist	directive,	TIC54X:														TIC54X-Directives.		(line			71)
*	drnolist	directive,	TIC54X:												TIC54X-Directives.		(line			71)
*	dual	directive,	i860:																		Directives-i860.				(line				6)
*	dword	directive,	Nios	II:														Nios	II	Directives.	(line			16)
*	EB	command	line	option,	Nios	II:							Nios	II	Options.				(line			22)
*	ecr	register,	V850:																				V850-Regs.										(line			78)
*	eight-byte	integer:																				Quad.															(line				9)
*	eipc	register,	V850:																			V850-Regs.										(line			70)
*	eipsw	register,	V850:																		V850-Regs.										(line			72)
*	eject	directive:																							Eject.														(line				6)
*	EL	command	line	option,	Nios	II:							Nios	II	Options.				(line			25)
*	ELF	symbol	type:																							Type.															(line			22)
*	else	directive:																								Else.															(line				6)
*	elseif	directive:																						Elseif.													(line				6)
*	empty	expressions:																					Empty	Exprs.								(line				6)
*	emsg	directive,	TIC54X:																TIC54X-Directives.		(line			75)
*	emulation:																													Overview.											(line	1007)
*	encoding	options,	i386:																i386-Mnemonics.					(line			34)
*	encoding	options,	x86-64:														i386-Mnemonics.					(line			34)
*	end	directive:																									End.																(line				6)
*	enddual	directive,	i860:															Directives-i860.				(line			11)
*	endef	directive:																							Endef.														(line				6)
*	endfunc	directive:																					Endfunc.												(line				6)
*	endianness,	MIPS:																						Overview.											(line		806)
*	endianness,	PJ:																								Overview.											(line		713)
*	endif	directive:																							Endif.														(line				6)
*	endloop	directive,	TIC54X:													TIC54X-Directives.		(line		141)
*	endm	directive:																								Macro.														(line		137)
*	endm	directive,	TIC54X:																TIC54X-Directives.		(line		151)
*	endstruct	directive,	TIC54X:											TIC54X-Directives.		(line		214)
*	endunion	directive,	TIC54X:												TIC54X-Directives.		(line		248)
*	environment	settings,	TIC54X:										TIC54X-Env.									(line				6)
*	EOF,	newline	must	precede:													Statements.									(line			14)
*	ep	register,	V850:																					V850-Regs.										(line			66)
*	Epiphany	line	comment	character:							Epiphany-Chars.					(line				6)
*	Epiphany	line	separator:															Epiphany-Chars.					(line			14)
*	Epiphany	options:																						Epiphany	Options.			(line				6)
*	Epiphany	support:																						Epiphany-Dependent.	(line				6)
*	equ	directive:																									Equ.																(line				6)
*	equ	directive,	TIC54X:																	TIC54X-Directives.		(line		189)
*	equiv	directive:																							Equiv.														(line				6)
*	eqv	directive:																									Eqv.																(line				6)
*	err	directive:																									Err.																(line				6)
*	error	directive:																							Error.														(line				6)

3/25/20 as.info 436

*	error	messages:																								Errors.													(line				6)
*	error	on	valid	input:																		Bug	Criteria.							(line			12)
*	errors,	caused	by	warnings:												W.																		(line			16)
*	errors,	continuing	after:														Z.																		(line				6)
*	ESA/390	floating	point	(IEEE):									ESA/390	Floating	Point.
																																																													(line				6)
*	ESA/390	support:																							ESA/390-Dependent.		(line				6)
*	ESA/390	Syntax:																								ESA/390	Options.				(line				7)
*	ESA/390-only	directives:															ESA/390	Directives.	(line			12)
*	escape	codes,	character:															Strings.												(line			15)
*	eval	directive,	TIC54X:																TIC54X-Directives.		(line			22)
*	even:																																		Z8000	Directives.			(line			58)
*	even	directive,	M680x0:																M68K-Directives.				(line			15)
*	even	directive,	TIC54X:																TIC54X-Directives.		(line				6)
*	Exception	Cause	Register,	ARC:									ARC-Regs.											(line			63)
*	Exception	Return	Address,	ARC:									ARC-Regs.											(line			76)
*	exitm	directive:																							Macro.														(line		140)
*	expr	(internal	section):															As	Sections.								(line			17)
*	expression	arguments:																		Arguments.										(line				6)
*	expressions:																											Expressions.								(line				6)
*	expressions,	comparison:															Infix	Ops.										(line			56)
*	expressions,	empty:																				Empty	Exprs.								(line				6)
*	expressions,	integer:																		Integer	Exprs.						(line				6)
*	extAuxRegister	directive,	ARC:									ARC	Directives.					(line		105)
*	extCondCode	directive,	ARC:												ARC	Directives.					(line		126)
*	extCoreRegister	directive,	ARC:								ARC	Directives.					(line		137)
*	extend	directive	M680x0:															M68K-Float.									(line			17)
*	extend	directive	M68HC11:														M68HC11-Float.						(line			17)
*	extend	directive	XGATE:																XGATE-Float.								(line			16)
*	extended	directive,	i960:														Directives-i960.				(line			13)
*	extension	core	registers,	ARC:									ARC-Regs.											(line			38)
*	extern	directive:																						Extern.													(line				6)
*	extInstruction	directive,	ARC:									ARC	Directives.					(line		164)
*	fail	directive:																								Fail.															(line				6)
*	far_mode	directive,	TIC54X:												TIC54X-Directives.		(line			80)
*	faster	processing	(-f):																f.																		(line				6)
*	fatal	signal:																										Bug	Criteria.							(line				9)
*	fclist	directive,	TIC54X:														TIC54X-Directives.		(line			85)
*	fcnolist	directive,	TIC54X:												TIC54X-Directives.		(line			85)
*	fepc	register,	V850:																			V850-Regs.										(line			74)
*	fepsw	register,	V850:																		V850-Regs.										(line			76)
*	ffloat	directive,	VAX:																	VAX-directives.					(line			13)
*	field	directive,	TIC54X:															TIC54X-Directives.		(line			89)
*	file	directive:																								File.															(line				6)
*	file	directive,	MSP	430:															MSP430	Directives.		(line				6)
*	file	name,	logical:																				File.															(line			13)
*	file	names	and	line	numbers,	in	warnings/errors:	Errors.			(line			16)
*	files,	including:																						Include.												(line				6)
*	files,	input:																										Input	Files.								(line				6)
*	fill	directive:																								Fill.															(line				6)
*	filling	memory:																								Skip.															(line				6)
*	filling	memory	<1>:																				Space.														(line				6)
*	filling	memory	with	zero	bytes:								Zero.															(line				6)
*	FLIX	syntax:																											Xtensa	Syntax.						(line				6)
*	float	directive:																							Float.														(line				6)
*	float	directive,	i386:																	i386-Float.									(line			14)
*	float	directive,	M680x0:															M68K-Float.									(line			11)
*	float	directive,	M68HC11:														M68HC11-Float.						(line			11)
*	float	directive,	RX:																			RX-Float.											(line				8)

3/25/20 as.info 437

*	float	directive,	TIC54X:															TIC54X-Directives.		(line			62)
*	float	directive,	VAX:																		VAX-float.										(line			15)
*	float	directive,	x86-64:															i386-Float.									(line			14)
*	float	directive,	XGATE:																XGATE-Float.								(line			10)
*	floating	point	numbers:																Flonums.												(line				6)
*	floating	point	numbers	(double):							Double.													(line				6)
*	floating	point	numbers	(single):							Float.														(line				6)
*	floating	point	numbers	(single)	<1>:			Single.													(line				6)
*	floating	point,	AArch64	(IEEE):								AArch64	Floating	Point.
																																																													(line				6)
*	floating	point,	Alpha	(IEEE):										Alpha	Floating	Point.
																																																													(line				6)
*	floating	point,	ARM	(IEEE):												ARM	Floating	Point.	(line				6)
*	floating	point,	D10V:																		D10V-Float.									(line				6)
*	floating	point,	D30V:																		D30V-Float.									(line				6)
*	floating	point,	ESA/390	(IEEE):								ESA/390	Floating	Point.
																																																													(line				6)
*	floating	point,	H8/300	(IEEE):									H8/300	Floating	Point.
																																																													(line				6)
*	floating	point,	HPPA	(IEEE):											HPPA	Floating	Point.
																																																													(line				6)
*	floating	point,	i386:																		i386-Float.									(line				6)
*	floating	point,	i960	(IEEE):											Floating	Point-i960.
																																																													(line				6)
*	floating	point,	M680x0:																M68K-Float.									(line				6)
*	floating	point,	M68HC11:															M68HC11-Float.						(line				6)
*	floating	point,	MSP	430	(IEEE):								MSP430	Floating	Point.
																																																													(line				6)
*	floating	point,	RX:																				RX-Float.											(line				6)
*	floating	point,	s390:																		s390	Floating	Point.
																																																													(line				6)
*	floating	point,	SH	(IEEE):													SH	Floating	Point.		(line				6)
*	floating	point,	SPARC	(IEEE):										Sparc-Float.								(line				6)
*	floating	point,	V850	(IEEE):											V850	Floating	Point.
																																																													(line				6)
*	floating	point,	VAX:																			VAX-float.										(line				6)
*	floating	point,	x86-64:																i386-Float.									(line				6)
*	floating	point,	XGATE:																	XGATE-Float.								(line				6)
*	floating	point,	Z80:																			Z80	Floating	Point.	(line				6)
*	flonums:																															Flonums.												(line				6)
*	format	of	error	messages:														Errors.													(line			38)
*	format	of	warning	messages:												Errors.													(line			12)
*	formfeed	(\f):																									Strings.												(line			18)
*	frame	pointer,	ARC:																				ARC-Regs.											(line			17)
*	func	directive:																								Func.															(line				6)
*	functions,	in	expressions:													Operators.										(line				6)
*	gbr960,	i960	postprocessor:												Options-i960.							(line			40)
*	gfloat	directive,	VAX:																	VAX-directives.					(line			17)
*	global:																																Z8000	Directives.			(line			21)
*	global	directive:																						Global.													(line				6)
*	global	directive,	TIC54X:														TIC54X-Directives.		(line		101)
*	global	pointer,	ARC:																			ARC-Regs.											(line			14)
*	got	directive,	Nios	II:																Nios	II	Relocations.
																																																													(line			38)
*	gotoff	directive,	Nios	II:													Nios	II	Relocations.
																																																													(line			38)
*	gotoff_hiadj	directive,	Nios	II:							Nios	II	Relocations.
																																																													(line			38)
*	gotoff_lo	directive,	Nios	II:										Nios	II	Relocations.

3/25/20 as.info 438

																																																													(line			38)
*	got_hiadj	directive,	Nios	II:										Nios	II	Relocations.
																																																													(line			38)
*	got_lo	directive,	Nios	II:													Nios	II	Relocations.
																																																													(line			38)
*	gp	register,	MIPS:																					MIPS	Small	Data.				(line				6)
*	gp	register,	V850:																					V850-Regs.										(line			14)
*	gprel	directive,	Nios	II:														Nios	II	Relocations.
																																																													(line			26)
*	grouping	data:																									Sub-Sections.							(line				6)
*	H8/300	addressing	modes:															H8/300-Addressing.		(line				6)
*	H8/300	floating	point	(IEEE):										H8/300	Floating	Point.
																																																													(line				6)
*	H8/300	line	comment	character:									H8/300-Chars.							(line				6)
*	H8/300	line	separator:																	H8/300-Chars.							(line				8)
*	H8/300	machine	directives	(none):						H8/300	Directives.		(line				6)
*	H8/300	opcode	summary:																	H8/300	Opcodes.					(line				6)
*	H8/300	options:																								H8/300	Options.					(line				6)
*	H8/300	registers:																						H8/300-Regs.								(line				6)
*	H8/300	size	suffixes:																		H8/300	Opcodes.					(line		160)
*	H8/300	support:																								H8/300-Dependent.			(line				6)
*	H8/300H,	assembling	for:															H8/300	Directives.		(line				8)
*	half	directive,	Nios	II:															Nios	II	Directives.	(line			10)
*	half	directive,	SPARC:																	Sparc-Directives.			(line			17)
*	half	directive,	TIC54X:																TIC54X-Directives.		(line		109)
*	hex	character	code	(\XD..�.):											Strings.												(line			36)
*	hexadecimal	integers:																		Integers.											(line			15)
*	hexadecimal	prefix,	Z80:															Z80-Chars.										(line			15)
*	hfloat	directive,	VAX:																	VAX-directives.					(line			21)
*	hi	directive,	Nios	II:																	Nios	II	Relocations.
																																																													(line			20)
*	hi	pseudo-op,	V850:																				V850	Opcodes.							(line			33)
*	hi0	pseudo-op,	V850:																			V850	Opcodes.							(line			10)
*	hiadj	directive,	Nios	II:														Nios	II	Relocations.
																																																													(line				6)
*	hidden	directive:																						Hidden.													(line				6)
*	high	directive,	M32R:																		M32R-Directives.				(line			18)
*	hilo	pseudo-op,	V850:																		V850	Opcodes.							(line			55)
*	HPPA	directives	not	supported:									HPPA	Directives.				(line			11)
*	HPPA	floating	point	(IEEE):												HPPA	Floating	Point.
																																																													(line				6)
*	HPPA	Syntax:																											HPPA	Options.							(line				7)
*	HPPA-only	directives:																		HPPA	Directives.				(line			24)
*	hword	directive:																							hword.														(line				6)
*	i370	support:																										ESA/390-Dependent.		(line				6)
*	i386	16-bit	code:																						i386-16bit.									(line				6)
*	i386	arch	directive:																			i386-Arch.										(line				6)
*	i386	att_syntax	pseudo	op:													i386-Variations.				(line				6)
*	i386	conversion	instructions:										i386-Mnemonics.					(line			39)
*	i386	floating	point:																			i386-Float.									(line				6)
*	i386	immediate	operands:															i386-Variations.				(line			15)
*	i386	instruction	naming:															i386-Mnemonics.					(line				9)
*	i386	instruction	prefixes:													i386-Prefixes.						(line				6)
*	i386	intel_syntax	pseudo	op:											i386-Variations.				(line				6)
*	i386	jump	optimization:																i386-Jumps.									(line				6)
*	i386	jump,	call,	return:															i386-Variations.				(line			40)
*	i386	jump/call	operands:															i386-Variations.				(line			15)
*	i386	line	comment	character:											i386-Chars.									(line				6)
*	i386	line	separator:																			i386-Chars.									(line			18)

3/25/20 as.info 439

*	i386	memory	references:																i386-Memory.								(line				6)
*	i386	mnemonic	compatibility:											i386-Mnemonics.					(line			64)
*	i386	mul,	imul	instructions:											i386-Notes.									(line				6)
*	i386	options:																										i386-Options.							(line				6)
*	i386	register	operands:																i386-Variations.				(line			15)
*	i386	registers:																								i386-Regs.										(line				6)
*	i386	sections:																									i386-Variations.				(line			46)
*	i386	size	suffixes:																				i386-Variations.				(line			28)
*	i386	source,	destination	operands:					i386-Variations.				(line			21)
*	i386	support:																										i386-Dependent.					(line				6)
*	i386	syntax	compatibility:													i386-Variations.				(line				6)
*	i80386	support:																								i386-Dependent.					(line				6)
*	i860	line	comment	character:											i860-Chars.									(line				6)
*	i860	line	separator:																			i860-Chars.									(line			14)
*	i860	machine	directives:															Directives-i860.				(line				6)
*	i860	opcodes:																										Opcodes	for	i860.			(line				6)
*	i860	support:																										i860-Dependent.					(line				6)
*	i960	architecture	options:													Options-i960.							(line				6)
*	i960	branch	recording:																	Options-i960.							(line			22)
*	i960	callj	pseudo-opcode:														callj-i960.									(line				6)
*	i960	compare	and	jump	expansions:						Compare-and-branch-i960.
																																																													(line			13)
*	i960	compare/branch	instructions:						Compare-and-branch-i960.
																																																													(line				6)
*	i960	floating	point	(IEEE):												Floating	Point-i960.
																																																													(line				6)
*	i960	line	comment	character:											i960-Chars.									(line				6)
*	i960	line	separator:																			i960-Chars.									(line			14)
*	i960	machine	directives:															Directives-i960.				(line				6)
*	i960	opcodes:																										Opcodes	for	i960.			(line				6)
*	i960	options:																										Options-i960.							(line				6)
*	i960	support:																										i960-Dependent.					(line				6)
*	IA-64	line	comment	character:										IA-64-Chars.								(line				6)
*	IA-64	line	separator:																		IA-64-Chars.								(line				8)
*	IA-64	options:																									IA-64	Options.						(line				6)
*	IA-64	Processor-status-Register	bit	names:	IA-64-Bits.					(line				6)
*	IA-64	registers:																							IA-64-Regs.									(line				6)
*	IA-64	relocations:																					IA-64-Relocs.							(line				6)
*	IA-64	support:																									IA-64-Dependent.				(line				6)
*	IA-64	Syntax:																										IA-64	Options.						(line			85)
*	ident	directive:																							Ident.														(line				6)
*	identifiers,	ARM:																						ARM-Chars.										(line			19)
*	identifiers,	MSP	430:																		MSP430-Chars.							(line			17)
*	if	directive:																										If.																	(line				6)
*	ifb	directive:																									If.																	(line			21)
*	ifc	directive:																									If.																	(line			25)
*	ifdef	directive:																							If.																	(line			16)
*	ifeq	directive:																								If.																	(line			33)
*	ifeqs	directive:																							If.																	(line			36)
*	ifge	directive:																								If.																	(line			40)
*	ifgt	directive:																								If.																	(line			44)
*	ifle	directive:																								If.																	(line			48)
*	iflt	directive:																								If.																	(line			52)
*	ifnb	directive:																								If.																	(line			56)
*	ifnc	directive:																								If.																	(line			61)
*	ifndef	directive:																						If.																	(line			65)
*	ifne	directive:																								If.																	(line			72)
*	ifnes	directive:																							If.																	(line			76)
*	ifnotdef	directive:																				If.																	(line			65)

3/25/20 as.info 440

*	immediate	character,	AArch64:										AArch64-Chars.						(line			13)
*	immediate	character,	ARM:														ARM-Chars.										(line			17)
*	immediate	character,	M680x0:											M68K-Chars.									(line			13)
*	immediate	character,	VAX:														VAX-operands.							(line				6)
*	immediate	fields,	relaxation:										Xtensa	Immediate	Relaxation.
																																																													(line				6)
*	immediate	operands,	i386:														i386-Variations.				(line			15)
*	immediate	operands,	x86-64:												i386-Variations.				(line			15)
*	imul	instruction,	i386:																i386-Notes.									(line				6)
*	imul	instruction,	x86-64:														i386-Notes.									(line				6)
*	incbin	directive:																						Incbin.													(line				6)
*	include	directive:																					Include.												(line				6)
*	include	directive	search	path:									I.																		(line				6)
*	indirect	character,	VAX:															VAX-operands.							(line				9)
*	infix	operators:																							Infix	Ops.										(line				6)
*	inhibiting	interrupts,	i386:											i386-Prefixes.						(line			36)
*	input:																																	Input	Files.								(line				6)
*	input	file	linenumbers:																Input	Files.								(line			35)
*	instruction	aliases,	s390:													s390	Aliases.							(line				6)
*	instruction	bundle:																				Bundle	directives.		(line				9)
*	instruction	expansion,	CRIS:											CRIS-Expand.								(line				6)
*	instruction	expansion,	MMIX:											MMIX-Expand.								(line				6)
*	instruction	formats,	s390:													s390	Formats.							(line				6)
*	instruction	marker,	s390:														s390	Instruction	Marker.
																																																													(line				6)
*	instruction	mnemonics,	s390:											s390	Mnemonics.					(line				6)
*	instruction	naming,	i386:														i386-Mnemonics.					(line				9)
*	instruction	naming,	x86-64:												i386-Mnemonics.					(line				9)
*	instruction	operand	modifier,	s390:				s390	Operand	Modifier.
																																																													(line				6)
*	instruction	operands,	s390:												s390	Operands.						(line				6)
*	instruction	prefixes,	i386:												i386-Prefixes.						(line				6)
*	instruction	set,	M680x0:															M68K-opcodes.							(line				6)
*	instruction	set,	M68HC11:														M68HC11-opcodes.				(line				6)
*	instruction	set,	XGATE:																XGATE-opcodes.						(line				5)
*	instruction	summary,	AVR:														AVR	Opcodes.								(line				6)
*	instruction	summary,	D10V:													D10V-Opcodes.							(line				6)
*	instruction	summary,	D30V:													D30V-Opcodes.							(line				6)
*	instruction	summary,	H8/300:											H8/300	Opcodes.					(line				6)
*	instruction	summary,	LM32:													LM32	Opcodes.							(line				6)
*	instruction	summary,	SH:															SH	Opcodes.									(line				6)
*	instruction	summary,	SH64:													SH64	Opcodes.							(line				6)
*	instruction	summary,	Z8000:												Z8000	Opcodes.						(line				6)
*	instruction	syntax,	s390:														s390	Syntax.								(line				6)
*	instructions	and	directives:											Statements.									(line			20)
*	int	directive:																									Int.																(line				6)
*	int	directive,	H8/300:																	H8/300	Directives.		(line				6)
*	int	directive,	i386:																			i386-Float.									(line			21)
*	int	directive,	TIC54X:																	TIC54X-Directives.		(line		109)
*	int	directive,	x86-64:																	i386-Float.									(line			21)
*	integer	expressions:																			Integer	Exprs.						(line				6)
*	integer,	16-byte:																						Octa.															(line				6)
*	integer,	8-byte:																							Quad.															(line				9)
*	integers:																														Integers.											(line				6)
*	integers,	16-bit:																						hword.														(line				6)
*	integers,	32-bit:																						Int.																(line				6)
*	integers,	binary:																						Integers.											(line				6)
*	integers,	decimal:																					Integers.											(line			12)
*	integers,	hexadecimal:																	Integers.											(line			15)

3/25/20 as.info 441

*	integers,	octal:																							Integers.											(line				9)
*	integers,	one	byte:																				Byte.															(line				6)
*	intel_syntax	pseudo	op,	i386:										i386-Variations.				(line				6)
*	intel_syntax	pseudo	op,	x86-64:								i386-Variations.				(line				6)
*	internal	assembler	sections:											As	Sections.								(line				6)
*	internal	directive:																				Internal.											(line				6)
*	interrupt	link	register,	ARC:										ARC-Regs.											(line			27)
*	Interrupt	Vector	Base	address,	ARC:				ARC-Regs.											(line			66)
*	invalid	input:																									Bug	Criteria.							(line			14)
*	invocation	summary:																				Overview.											(line				6)
*	IP2K	architecture	options:													IP2K-Opts.										(line				9)
*	IP2K	architecture	options	<1>:									IP2K-Opts.										(line			14)
*	IP2K	line	comment	character:											IP2K-Chars.									(line				6)
*	IP2K	line	separator:																			IP2K-Chars.									(line			14)
*	IP2K	options:																										IP2K-Opts.										(line				6)
*	IP2K	support:																										IP2K-Dependent.					(line				6)
*	irp	directive:																									Irp.																(line				6)
*	irpc	directive:																								Irpc.															(line				6)
*	ISA	options,	SH64:																					SH64	Options.							(line				6)
*	joining	text	and	data	sections:								R.																		(line				6)
*	jump	instructions,	i386:															i386-Mnemonics.					(line			58)
*	jump	instructions,	relaxation:									Xtensa	Jump	Relaxation.
																																																													(line				6)
*	jump	instructions,	x86-64:													i386-Mnemonics.					(line			58)
*	jump	optimization,	i386:															i386-Jumps.									(line				6)
*	jump	optimization,	x86-64:													i386-Jumps.									(line				6)
*	jump/call	operands,	i386:														i386-Variations.				(line			15)
*	jump/call	operands,	x86-64:												i386-Variations.				(line			15)
*	L16SI	instructions,	relaxation:								Xtensa	Immediate	Relaxation.
																																																													(line			23)
*	L16UI	instructions,	relaxation:								Xtensa	Immediate	Relaxation.
																																																													(line			23)
*	L32I	instructions,	relaxation:									Xtensa	Immediate	Relaxation.
																																																													(line			23)
*	L8UI	instructions,	relaxation:									Xtensa	Immediate	Relaxation.
																																																													(line			23)
*	label	(:):																													Statements.									(line			31)
*	label	directive,	TIC54X:															TIC54X-Directives.		(line		121)
*	labels:																																Labels.													(line				6)
*	lcomm	directive:																							Lcomm.														(line				6)
*	lcomm	directive	<1>:																			ARC	Directives.					(line				9)
*	lcomm	directive,	COFF:																	i386-Directives.				(line				6)
*	lcommon	directive,	ARC:																ARC	Directives.					(line			24)
*	ld:																																				Object.													(line			15)
*	ldouble	directive	M680x0:														M68K-Float.									(line			17)
*	ldouble	directive	M68HC11:													M68HC11-Float.						(line			17)
*	ldouble	directive	XGATE:															XGATE-Float.								(line			16)
*	ldouble	directive,	TIC54X:													TIC54X-Directives.		(line			62)
*	LDR	reg,=<expr>	pseudo	op,	AArch64:				AArch64	Opcodes.				(line				9)
*	LDR	reg,=<label>	pseudo	op,	ARM:							ARM	Opcodes.								(line			15)
*	leafproc	directive,	i960:														Directives-i960.				(line			18)
*	length	directive,	TIC54X:														TIC54X-Directives.		(line		125)
*	length	of	symbols:																					Symbol	Intro.							(line			19)
*	level	1	interrupt	link	register,	ARC:		ARC-Regs.											(line			23)
*	level	2	interrupt	link	register,	ARC:		ARC-Regs.											(line			31)
*	lflags	directive	(ignored):												Lflags.													(line				6)
*	line:																																		ARC-Chars.										(line			30)
*	line	comment	character:																Comments.											(line			19)
*	line	comment	character,	AArch64:							AArch64-Chars.						(line				6)

3/25/20 as.info 442

*	line	comment	character,	Alpha:									Alpha-Chars.								(line				6)
*	line	comment	character,	ARC:											ARC-Chars.										(line			11)
*	line	comment	character,	ARM:											ARM-Chars.										(line				6)
*	line	comment	character,	AVR:											AVR-Chars.										(line				6)
*	line	comment	character,	CR16:										CR16-Chars.									(line				6)
*	line	comment	character,	D10V:										D10V-Chars.									(line				6)
*	line	comment	character,	D30V:										D30V-Chars.									(line				6)
*	line	comment	character,	Epiphany:						Epiphany-Chars.					(line				6)
*	line	comment	character,	H8/300:								H8/300-Chars.							(line				6)
*	line	comment	character,	i386:										i386-Chars.									(line				6)
*	line	comment	character,	i860:										i860-Chars.									(line				6)
*	line	comment	character,	i960:										i960-Chars.									(line				6)
*	line	comment	character,	IA-64:									IA-64-Chars.								(line				6)
*	line	comment	character,	IP2K:										IP2K-Chars.									(line				6)
*	line	comment	character,	LM32:										LM32-Chars.									(line				6)
*	line	comment	character,	M32C:										M32C-Chars.									(line				6)
*	line	comment	character,	M680x0:								M68K-Chars.									(line				6)
*	line	comment	character,	M68HC11:							M68HC11-Syntax.					(line			17)
*	line	comment	character,	Meta:										Meta-Chars.									(line				6)
*	line	comment	character,	MicroBlaze:				MicroBlaze-Chars.			(line				6)
*	line	comment	character,	MIPS:										MIPS-Chars.									(line				6)
*	line	comment	character,	MSP	430:							MSP430-Chars.							(line				6)
*	line	comment	character,	Nios	II:							Nios	II	Chars.						(line				6)
*	line	comment	character,	NS32K:									NS32K-Chars.								(line				6)
*	line	comment	character,	PJ:												PJ-Chars.											(line				6)
*	line	comment	character,	PowerPC:							PowerPC-Chars.						(line				6)
*	line	comment	character,	RL78:										RL78-Chars.									(line				6)
*	line	comment	character,	RX:												RX-Chars.											(line				6)
*	line	comment	character,	s390:										s390	Characters.				(line				6)
*	line	comment	character,	SCORE:									SCORE-Chars.								(line				6)
*	line	comment	character,	SH:												SH-Chars.											(line				6)
*	line	comment	character,	SH64:										SH64-Chars.									(line				6)
*	line	comment	character,	Sparc:									Sparc-Chars.								(line				6)
*	line	comment	character,	TIC54X:								TIC54X-Chars.							(line				6)
*	line	comment	character,	TIC6X:									TIC6X	Syntax.							(line				6)
*	line	comment	character,	V850:										V850-Chars.									(line				6)
*	line	comment	character,	VAX:											VAX-Chars.										(line				6)
*	line	comment	character,	Visium:								Visium	Characters.		(line				6)
*	line	comment	character,	XGATE:									XGATE-Syntax.							(line			16)
*	line	comment	character,	XStormy16:					XStormy16-Chars.				(line				6)
*	line	comment	character,	Z80:											Z80-Chars.										(line				6)
*	line	comment	character,	Z8000:									Z8000-Chars.								(line				6)
*	line	comment	characters,	CRIS:									CRIS-Chars.									(line				6)
*	line	comment	characters,	MMIX:									MMIX-Chars.									(line				6)
*	line	directive:																								Line.															(line				6)
*	line	directive,	MSP	430:															MSP430	Directives.		(line			14)
*	line	numbers,	in	input	files:										Input	Files.								(line			35)
*	line	separator	character:														Statements.									(line				6)
*	line	separator	character,	Nios	II:					Nios	II	Chars.						(line				6)
*	line	separator,	AArch64:															AArch64-Chars.						(line			10)
*	line	separator,	Alpha:																	Alpha-Chars.								(line			11)
*	line	separator,	ARC:																			ARC-Chars.										(line			27)
*	line	separator,	ARM:																			ARM-Chars.										(line			14)
*	line	separator,	AVR:																			AVR-Chars.										(line			14)
*	line	separator,	CR16:																		CR16-Chars.									(line			12)
*	line	separator,	Epiphany:														Epiphany-Chars.					(line			14)
*	line	separator,	H8/300:																H8/300-Chars.							(line				8)
*	line	separator,	i386:																		i386-Chars.									(line			18)
*	line	separator,	i860:																		i860-Chars.									(line			14)

3/25/20 as.info 443

*	line	separator,	i960:																		i960-Chars.									(line			14)
*	line	separator,	IA-64:																	IA-64-Chars.								(line				8)
*	line	separator,	IP2K:																		IP2K-Chars.									(line			14)
*	line	separator,	LM32:																		LM32-Chars.									(line			12)
*	line	separator,	M32C:																		M32C-Chars.									(line			14)
*	line	separator,	M680x0:																M68K-Chars.									(line			20)
*	line	separator,	M68HC11:															M68HC11-Syntax.					(line			26)
*	line	separator,	Meta:																		Meta-Chars.									(line				8)
*	line	separator,	MicroBlaze:												MicroBlaze-Chars.			(line			14)
*	line	separator,	MIPS:																		MIPS-Chars.									(line			14)
*	line	separator,	MSP	430:															MSP430-Chars.							(line			14)
*	line	separator,	NS32K:																	NS32K-Chars.								(line			18)
*	line	separator,	PJ:																				PJ-Chars.											(line			14)
*	line	separator,	PowerPC:															PowerPC-Chars.						(line			18)
*	line	separator,	RL78:																		RL78-Chars.									(line			14)
*	line	separator,	RX:																				RX-Chars.											(line			14)
*	line	separator,	s390:																		s390	Characters.				(line			13)
*	line	separator,	SCORE:																	SCORE-Chars.								(line			14)
*	line	separator,	SH:																				SH-Chars.											(line				8)
*	line	separator,	SH64:																		SH64-Chars.									(line			13)
*	line	separator,	Sparc:																	Sparc-Chars.								(line			14)
*	line	separator,	TIC54X:																TIC54X-Chars.							(line			17)
*	line	separator,	TIC6X:																	TIC6X	Syntax.							(line			13)
*	line	separator,	V850:																		V850-Chars.									(line			13)
*	line	separator,	VAX:																			VAX-Chars.										(line			14)
*	line	separator,	Visium:																Visium	Characters.		(line			14)
*	line	separator,	XGATE:																	XGATE-Syntax.							(line			25)
*	line	separator,	XStormy16:													XStormy16-Chars.				(line			14)
*	line	separator,	Z80:																			Z80-Chars.										(line			13)
*	line	separator,	Z8000:																	Z8000-Chars.								(line			13)
*	lines	starting	with	#:																	Comments.											(line			33)
*	link	register,	ARC:																				ARC-Regs.											(line			35)
*	linker:																																Object.													(line			15)
*	linker,	and	assembler:																	Secs	Background.				(line			10)
*	linkonce	directive:																				Linkonce.											(line				6)
*	list	directive:																								List.															(line				6)
*	list	directive,	TIC54X:																TIC54X-Directives.		(line		129)
*	listing	control,	turning	off:										Nolist.													(line				6)
*	listing	control,	turning	on:											List.															(line				6)
*	listing	control:	new	page:													Eject.														(line				6)
*	listing	control:	paper	size:											Psize.														(line				6)
*	listing	control:	subtitle:													Sbttl.														(line				6)
*	listing	control:	title	line:											Title.														(line				6)
*	listings,	enabling:																				a.																		(line				6)
*	literal	directive:																					Literal	Directive.		(line				6)
*	literal	pool	entries,	s390:												s390	Literal	Pool	Entries.
																																																													(line				6)
*	literal_position	directive:												Literal	Position	Directive.
																																																													(line				6)
*	literal_prefix	directive:														Literal	Prefix	Directive.
																																																													(line				6)
*	little	endian	output,	MIPS:												Overview.											(line		809)
*	little	endian	output,	PJ:														Overview.											(line		716)
*	little-endian	output,	MIPS:												MIPS	Options.							(line			13)
*	little-endian	output,	TIC6X:											TIC6X	Options.						(line			46)
*	LM32	line	comment	character:											LM32-Chars.									(line				6)
*	LM32	line	separator:																			LM32-Chars.									(line			12)
*	LM32	modifiers:																								LM32-Modifiers.					(line				6)
*	LM32	opcode	summary:																			LM32	Opcodes.							(line				6)

3/25/20 as.info 444

*	LM32	options	(none):																			LM32	Options.							(line				6)
*	LM32	register	names:																			LM32-Regs.										(line				6)
*	LM32	support:																										LM32-Dependent.					(line				6)
*	ln	directive:																										Ln.																	(line				6)
*	lo	directive,	Nios	II:																	Nios	II	Relocations.
																																																													(line			23)
*	lo	pseudo-op,	V850:																				V850	Opcodes.							(line			22)
*	loc	directive:																									Loc.																(line				6)
*	local	common	symbols:																		Lcomm.														(line				6)
*	local	directive:																							Local.														(line				6)
*	local	labels:																										Symbol	Names.							(line			43)
*	local	symbol	names:																				Symbol	Names.							(line			30)
*	local	symbols,	retaining	in	output:				L.																		(line				6)
*	location	counter:																						Dot.																(line				6)
*	location	counter,	advancing:											Org.																(line				6)
*	location	counter,	Z80:																	Z80-Chars.										(line			15)
*	loc_mark_labels	directive:													Loc_mark_labels.				(line				6)
*	logical	file	name:																					File.															(line			13)
*	logical	line	number:																			Line.															(line				6)
*	logical	line	numbers:																		Comments.											(line			33)
*	long	directive:																								Long.															(line				6)
*	long	directive,	i386:																		i386-Float.									(line			21)
*	long	directive,	TIC54X:																TIC54X-Directives.		(line		133)
*	long	directive,	x86-64:																i386-Float.									(line			21)
*	longcall	pseudo-op,	V850:														V850	Opcodes.							(line		122)
*	longcalls	directive:																			Longcalls	Directive.
																																																													(line				6)
*	longjump	pseudo-op,	V850:														V850	Opcodes.							(line		128)
*	loop	counter,	ARC:																					ARC-Regs.											(line			41)
*	loop	directive,	TIC54X:																TIC54X-Directives.		(line		141)
*	LOOP	instructions,	alignment:										Xtensa	Automatic	Alignment.
																																																													(line				6)
*	low	directive,	M32R:																			M32R-Directives.				(line				9)
*	lp	register,	V850:																					V850-Regs.										(line			68)
*	lval:																																		Z8000	Directives.			(line			27)
*	LWP,	i386:																													i386-LWP.											(line				6)
*	LWP,	x86-64:																											i386-LWP.											(line				6)
*	M16C	architecture	option:														M32C-Opts.										(line			12)
*	M32C	architecture	option:														M32C-Opts.										(line				9)
*	M32C	line	comment	character:											M32C-Chars.									(line				6)
*	M32C	line	separator:																			M32C-Chars.									(line			14)
*	M32C	modifiers:																								M32C-Modifiers.					(line				6)
*	M32C	options:																										M32C-Opts.										(line				6)
*	M32C	support:																										M32C-Dependent.					(line				6)
*	M32R	architecture	options:													M32R-Opts.										(line				9)
*	M32R	architecture	options	<1>:									M32R-Opts.										(line			17)
*	M32R	architecture	options	<2>:									M32R-Opts.										(line			21)
*	M32R	directives:																							M32R-Directives.				(line				6)
*	M32R	options:																										M32R-Opts.										(line				6)
*	M32R	support:																										M32R-Dependent.					(line				6)
*	M32R	warnings:																									M32R-Warnings.						(line				6)
*	M680x0	addressing	modes:															M68K-Syntax.								(line			21)
*	M680x0	architecture	options:											M68K-Opts.										(line			99)
*	M680x0	branch	improvement:													M68K-Branch.								(line				6)
*	M680x0	directives:																					M68K-Directives.				(line				6)
*	M680x0	floating	point:																	M68K-Float.									(line				6)
*	M680x0	immediate	character:												M68K-Chars.									(line			13)
*	M680x0	line	comment	character:									M68K-Chars.									(line				6)
*	M680x0	line	separator:																	M68K-Chars.									(line			20)

3/25/20 as.info 445

*	M680x0	opcodes:																								M68K-opcodes.							(line				6)
*	M680x0	options:																								M68K-Opts.										(line				6)
*	M680x0	pseudo-opcodes:																	M68K-Branch.								(line				6)
*	M680x0	size	modifiers:																	M68K-Syntax.								(line				8)
*	M680x0	support:																								M68K-Dependent.					(line				6)
*	M680x0	syntax:																									M68K-Syntax.								(line				8)
*	M68HC11	addressing	modes:														M68HC11-Syntax.					(line			29)
*	M68HC11	and	M68HC12	support:											M68HC11-Dependent.		(line				6)
*	M68HC11	assembler	directive	.far:						M68HC11-Directives.	(line			20)
*	M68HC11	assembler	directive	.interrupt:	M68HC11-Directives.
																																																													(line			26)
*	M68HC11	assembler	directive	.mode:					M68HC11-Directives.	(line			16)
*	M68HC11	assembler	directive	.relax:				M68HC11-Directives.	(line			10)
*	M68HC11	assembler	directive	.xrefb:				M68HC11-Directives.	(line			31)
*	M68HC11	assembler	directives:										M68HC11-Directives.	(line				6)
*	M68HC11	branch	improvement:												M68HC11-Branch.					(line				6)
*	M68HC11	floating	point:																M68HC11-Float.						(line				6)
*	M68HC11	line	comment	character:								M68HC11-Syntax.					(line			17)
*	M68HC11	line	separator:																M68HC11-Syntax.					(line			26)
*	M68HC11	modifiers:																					M68HC11-Modifiers.		(line				6)
*	M68HC11	opcodes:																							M68HC11-opcodes.				(line				6)
*	M68HC11	options:																							M68HC11-Opts.							(line				6)
*	M68HC11	pseudo-opcodes:																M68HC11-Branch.					(line				6)
*	M68HC11	syntax:																								M68HC11-Syntax.					(line				6)
*	M68HC12	assembler	directives:										M68HC11-Directives.	(line				6)
*	mA6	command	line	option,	ARC:										ARC	Options.								(line			14)
*	mA7	command	line	option,	ARC:										ARC	Options.								(line			39)
*	machine	dependencies:																		Machine	Dependencies.
																																																													(line				6)
*	machine	directives,	AArch64:											AArch64	Directives.	(line				6)
*	machine	directives,	ARC:															ARC	Directives.					(line				6)
*	machine	directives,	ARM:															ARM	Directives.					(line				6)
*	machine	directives,	H8/300	(none):					H8/300	Directives.		(line				6)
*	machine	directives,	i860:														Directives-i860.				(line				6)
*	machine	directives,	i960:														Directives-i960.				(line				6)
*	machine	directives,	MSP	430:											MSP430	Directives.		(line				6)
*	machine	directives,	Nios	II:											Nios	II	Directives.	(line				6)
*	machine	directives,	SH:																SH	Directives.						(line				6)
*	machine	directives,	SH64:														SH64	Directives.				(line				9)
*	machine	directives,	SPARC:													Sparc-Directives.			(line				6)
*	machine	directives,	TIC54X:												TIC54X-Directives.		(line				6)
*	machine	directives,	TIC6X:													TIC6X	Directives.			(line				6)
*	machine	directives,	TILE-Gx:											TILE-Gx	Directives.	(line				6)
*	machine	directives,	TILEPro:											TILEPro	Directives.	(line				6)
*	machine	directives,	V850:														V850	Directives.				(line				6)
*	machine	directives,	VAX:															VAX-directives.					(line				6)
*	machine	directives,	x86:															i386-Directives.				(line				6)
*	machine	directives,	XStormy16:									XStormy16	Directives.
																																																													(line				6)
*	machine	independent	directives:								Pseudo	Ops.									(line				6)
*	machine	instructions	(not	covered):				Manual.													(line			14)
*	machine	relocations,	Nios	II:										Nios	II	Relocations.
																																																													(line				6)
*	machine-independent	syntax:												Syntax.													(line				6)
*	macro	directive:																							Macro.														(line			28)
*	macro	directive,	TIC54X:															TIC54X-Directives.		(line		151)
*	macros:																																Macro.														(line				6)
*	macros,	count	executed:																Macro.														(line		142)
*	Macros,	MSP	430:																							MSP430-Macros.						(line				6)

3/25/20 as.info 446

*	macros,	TIC54X:																								TIC54X-Macros.						(line				6)
*	make	rules:																												MD.																	(line				6)
*	manual,	structure	and	purpose:									Manual.													(line				6)
*	marc600	command	line	option,	ARC:						ARC	Options.								(line			14)
*	mARC601	command	line	option,	ARC:						ARC	Options.								(line			27)
*	mARC700	command	line	option,	ARC:						ARC	Options.								(line			39)
*	march	command	line	option,	Nios	II:				Nios	II	Options.				(line			28)
*	math	builtins,	TIC54X:																	TIC54X-Builtins.				(line				6)
*	Maximum	number	of	continuation	lines:		listing.												(line			34)
*	mEM	command	line	option,	ARC:										ARC	Options.								(line			42)
*	memory	references,	i386:															i386-Memory.								(line				6)
*	memory	references,	x86-64:													i386-Memory.								(line				6)
*	memory-mapped	registers,	TIC54X:							TIC54X-MMRegs.						(line				6)
*	merging	text	and	data	sections:								R.																		(line				6)
*	messages	from	assembler:															Errors.													(line				6)
*	Meta	architectures:																				Meta	Options.							(line				6)
*	Meta	line	comment	character:											Meta-Chars.									(line				6)
*	Meta	line	separator:																			Meta-Chars.									(line				8)
*	Meta	options:																										Meta	Options.							(line				6)
*	Meta	registers:																								Meta-Regs.										(line				6)
*	Meta	support:																										Meta-Dependent.					(line				6)
*	mHS	command	line	option,	ARC:										ARC	Options.								(line			64)
*	MicroBlaze	architectures:														MicroBlaze-Dependent.
																																																													(line				6)
*	MicroBlaze	directives:																	MicroBlaze	Directives.
																																																													(line				6)
*	MicroBlaze	line	comment	character:					MicroBlaze-Chars.			(line				6)
*	MicroBlaze	line	separator:													MicroBlaze-Chars.			(line			14)
*	MicroBlaze	support:																				MicroBlaze-Dependent.
																																																													(line			12)
*	minus,	permitted	arguments:												Infix	Ops.										(line			50)
*	MIPS	32-bit	microMIPS	instruction	generation	override:	MIPS	assembly	options.
																																																													(line			18)
*	MIPS	architecture	options:													MIPS	Options.							(line			29)
*	MIPS	big-endian	output:																MIPS	Options.							(line			13)
*	MIPS	CPU	override:																					MIPS	ISA.											(line			18)
*	MIPS	directives	to	override	command	line	options:	MIPS	assembly	options.
																																																													(line				6)
*	MIPS	DSP	Release	1	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.
																																																													(line			21)
*	MIPS	DSP	Release	2	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.
																																																													(line			26)
*	MIPS	DSP	Release	3	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.
																																																													(line			31)
*	MIPS	endianness:																							Overview.											(line		806)
*	MIPS	eXtended	Physical	Address	(XPA)	instruction	generation	override:	MIPS	ASE
Instruction	Generation	Overrides.
																																																													(line			57)
*	MIPS	IEEE	754	NaN	data	encoding	selection:	MIPS	NaN	Encodings.
																																																													(line				6)
*	MIPS	ISA:																														Overview.											(line		812)
*	MIPS	ISA	override:																					MIPS	ISA.											(line				6)
*	MIPS	line	comment	character:											MIPS-Chars.									(line				6)
*	MIPS	line	separator:																			MIPS-Chars.									(line			14)
*	MIPS	little-endian	output:													MIPS	Options.							(line			13)
*	MIPS	MCU	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.

3/25/20 as.info 447

*	MIPS	MCU	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.
																																																													(line			42)
*	MIPS	MDMX	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.
																																																													(line			16)
*	MIPS	MIPS-3D	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.
																																																													(line				6)
*	MIPS	MT	instruction	generation	override:	MIPS	ASE	Instruction	Generation	Overrides.
																																																													(line			37)
*	MIPS	option	stack:																					MIPS	Option	Stack.		(line				6)
*	MIPS	processor:																								MIPS-Dependent.					(line				6)
*	MIPS	SIMD	Architecture	instruction	generation	override:	MIPS	ASE	Instruction
Generation	Overrides.
																																																													(line			47)
*	MIT:																																			M68K-Syntax.								(line				6)
*	mlib	directive,	TIC54X:																TIC54X-Directives.		(line		157)
*	mlist	directive,	TIC54X:															TIC54X-Directives.		(line		162)
*	MMIX	assembler	directive	BSPEC:								MMIX-Pseudos.							(line		137)
*	MMIX	assembler	directive	BYTE:									MMIX-Pseudos.							(line		101)
*	MMIX	assembler	directive	ESPEC:								MMIX-Pseudos.							(line		137)
*	MMIX	assembler	directive	GREG:									MMIX-Pseudos.							(line			53)
*	MMIX	assembler	directive	IS:											MMIX-Pseudos.							(line			44)
*	MMIX	assembler	directive	LOC:										MMIX-Pseudos.							(line				7)
*	MMIX	assembler	directive	LOCAL:								MMIX-Pseudos.							(line			29)
*	MMIX	assembler	directive	OCTA:									MMIX-Pseudos.							(line		113)
*	MMIX	assembler	directive	PREFIX:							MMIX-Pseudos.							(line		125)
*	MMIX	assembler	directive	TETRA:								MMIX-Pseudos.							(line		113)
*	MMIX	assembler	directive	WYDE:									MMIX-Pseudos.							(line		113)
*	MMIX	assembler	directives:													MMIX-Pseudos.							(line				6)
*	MMIX	line	comment	characters:										MMIX-Chars.									(line				6)
*	MMIX	options:																										MMIX-Opts.										(line				6)
*	MMIX	pseudo-op	BSPEC:																		MMIX-Pseudos.							(line		137)
*	MMIX	pseudo-op	BYTE:																			MMIX-Pseudos.							(line		101)
*	MMIX	pseudo-op	ESPEC:																		MMIX-Pseudos.							(line		137)
*	MMIX	pseudo-op	GREG:																			MMIX-Pseudos.							(line			53)
*	MMIX	pseudo-op	IS:																					MMIX-Pseudos.							(line			44)
*	MMIX	pseudo-op	LOC:																				MMIX-Pseudos.							(line				7)
*	MMIX	pseudo-op	LOCAL:																		MMIX-Pseudos.							(line			29)
*	MMIX	pseudo-op	OCTA:																			MMIX-Pseudos.							(line		113)
*	MMIX	pseudo-op	PREFIX:																	MMIX-Pseudos.							(line		125)
*	MMIX	pseudo-op	TETRA:																		MMIX-Pseudos.							(line		113)
*	MMIX	pseudo-op	WYDE:																			MMIX-Pseudos.							(line		113)
*	MMIX	pseudo-ops:																							MMIX-Pseudos.							(line				6)
*	MMIX	register	names:																			MMIX-Regs.										(line				6)
*	MMIX	support:																										MMIX-Dependent.					(line				6)
*	mmixal	differences:																				MMIX-mmixal.								(line				6)
*	mmregs	directive,	TIC54X:														TIC54X-Directives.		(line		167)
*	mmsg	directive,	TIC54X:																TIC54X-Directives.		(line			75)
*	MMX,	i386:																													i386-SIMD.										(line				6)
*	MMX,	x86-64:																											i386-SIMD.										(line				6)
*	mnemonic	compatibility,	i386:										i386-Mnemonics.					(line			64)
*	mnemonic	suffixes,	i386:															i386-Variations.				(line			28)
*	mnemonic	suffixes,	x86-64:													i386-Variations.				(line			28)
*	mnemonics	for	opcodes,	VAX:												VAX-opcodes.								(line				6)
*	mnemonics,	AVR:																								AVR	Opcodes.								(line				6)
*	mnemonics,	D10V:																							D10V-Opcodes.							(line				6)
*	mnemonics,	D30V:																							D30V-Opcodes.							(line				6)

3/25/20 as.info 448

*	mnemonics,	H8/300:																					H8/300	Opcodes.					(line				6)
*	mnemonics,	LM32:																							LM32	Opcodes.							(line				6)
*	mnemonics,	SH:																									SH	Opcodes.									(line				6)
*	mnemonics,	SH64:																							SH64	Opcodes.							(line				6)
*	mnemonics,	Z8000:																						Z8000	Opcodes.						(line				6)
*	mnolist	directive,	TIC54X:													TIC54X-Directives.		(line		162)
*	mnps400	command	line	option,	ARC:						ARC	Options.								(line			79)
*	modifiers,	M32C:																							M32C-Modifiers.					(line				6)
*	Motorola	syntax	for	the	680x0:									M68K-Moto-Syntax.			(line				6)
*	MOVI	instructions,	relaxation:									Xtensa	Immediate	Relaxation.
																																																													(line			12)
*	MOVN,	MOVZ	and	MOVK	group	relocations,	AArch64:	AArch64-Relocations.
																																																													(line				6)
*	MOVW	and	MOVT	relocations,	ARM:								ARM-Relocations.				(line			21)
*	MRI	compatibility	mode:																M.																		(line				6)
*	mri	directive:																									MRI.																(line				6)
*	MRI	mode,	temporarily:																	MRI.																(line				6)
*	MSP	430	floating	point	(IEEE):									MSP430	Floating	Point.
																																																													(line				6)
*	MSP	430	identifiers:																			MSP430-Chars.							(line			17)
*	MSP	430	line	comment	character:								MSP430-Chars.							(line				6)
*	MSP	430	line	separator:																MSP430-Chars.							(line			14)
*	MSP	430	machine	directives:												MSP430	Directives.		(line				6)
*	MSP	430	macros:																								MSP430-Macros.						(line				6)
*	MSP	430	opcodes:																							MSP430	Opcodes.					(line				6)
*	MSP	430	options	(none):																MSP430	Options.					(line				6)
*	MSP	430	profiling	capability:										MSP430	Profiling	Capability.
																																																													(line				6)
*	MSP	430	register	names:																MSP430-Regs.								(line				6)
*	MSP	430	support:																							MSP430-Dependent.			(line				6)
*	MSP430	Assembler	Extensions:											MSP430-Ext.									(line				6)
*	mul	instruction,	i386:																	i386-Notes.									(line				6)
*	mul	instruction,	x86-64:															i386-Notes.									(line				6)
*	N32K	support:																										NS32K-Dependent.				(line				6)
*	name:																																		Z8000	Directives.			(line			18)
*	named	section:																									Section.												(line				6)
*	named	sections:																								Ld	Sections.								(line				8)
*	names,	symbol:																									Symbol	Names.							(line				6)
*	naming	object	file:																				o.																		(line				6)
*	NDS32	options:																									NDS32	Options.						(line				6)
*	NDS32	processor:																							NDS32-Dependent.				(line				6)
*	new	page,	in	listings:																	Eject.														(line				6)
*	newblock	directive,	TIC54X:												TIC54X-Directives.		(line		173)
*	newline	(\n):																										Strings.												(line			21)
*	newline,	required	at	file	end:									Statements.									(line			14)
*	Nios	II	line	comment	character:								Nios	II	Chars.						(line				6)
*	Nios	II	line	separator	character:						Nios	II	Chars.						(line				6)
*	Nios	II	machine	directives:												Nios	II	Directives.	(line				6)
*	Nios	II	machine	relocations:											Nios	II	Relocations.
																																																													(line				6)
*	Nios	II	opcodes:																							Nios	II	Opcodes.				(line				6)
*	Nios	II	options:																							Nios	II	Options.				(line				6)
*	Nios	II	support:																							NiosII-Dependent.			(line				6)
*	Nios	support:																										NiosII-Dependent.			(line				6)
*	no-absolute-literals	directive:								Absolute	Literals	Directive.
																																																													(line				6)
*	no-longcalls	directive:																Longcalls	Directive.
																																																													(line				6)
*	no-relax	command	line	option,	Nios	II:	Nios	II	Options.				(line			19)

3/25/20 as.info 449

*	no-schedule	directive:																	Schedule	Directive.	(line				6)
*	no-transform	directive:																Transform	Directive.
																																																													(line				6)
*	nolist	directive:																						Nolist.													(line				6)
*	nolist	directive,	TIC54X:														TIC54X-Directives.		(line		129)
*	NOP	pseudo	op,	ARM:																				ARM	Opcodes.								(line				9)
*	notes	for	Alpha:																							Alpha	Notes.								(line				6)
*	NS32K	line	comment	character:										NS32K-Chars.								(line				6)
*	NS32K	line	separator:																		NS32K-Chars.								(line			18)
*	null-terminated	strings:															Asciz.														(line				6)
*	number	constants:																						Numbers.												(line				6)
*	number	of	macros	executed:													Macro.														(line		142)
*	numbered	subsections:																		Sub-Sections.							(line				6)
*	numbers,	16-bit:																							hword.														(line				6)
*	numeric	values:																								Expressions.								(line				6)
*	nword	directive,	SPARC:																Sparc-Directives.			(line			20)
*	object	attributes:																					Object	Attributes.		(line				6)
*	object	file:																											Object.													(line				6)
*	object	file	format:																				Object	Formats.					(line				6)
*	object	file	name:																						o.																		(line				6)
*	object	file,	after	errors:													Z.																		(line				6)
*	obsolescent	directives:																Deprecated.									(line				6)
*	octa	directive:																								Octa.															(line				6)
*	octal	character	code	(\DDD):											Strings.												(line			30)
*	octal	integers:																								Integers.											(line				9)
*	offset	directive:																						Offset.													(line				6)
*	offset	directive,	V850:																V850	Directives.				(line				6)
*	opcode	mnemonics,	VAX:																	VAX-opcodes.								(line				6)
*	opcode	names,	TILE-Gx:																	TILE-Gx	Opcodes.				(line				6)
*	opcode	names,	TILEPro:																	TILEPro	Opcodes.				(line				6)
*	opcode	names,	Xtensa:																		Xtensa	Opcodes.					(line				6)
*	opcode	summary,	AVR:																			AVR	Opcodes.								(line				6)
*	opcode	summary,	D10V:																		D10V-Opcodes.							(line				6)
*	opcode	summary,	D30V:																		D30V-Opcodes.							(line				6)
*	opcode	summary,	H8/300:																H8/300	Opcodes.					(line				6)
*	opcode	summary,	LM32:																		LM32	Opcodes.							(line				6)
*	opcode	summary,	SH:																				SH	Opcodes.									(line				6)
*	opcode	summary,	SH64:																		SH64	Opcodes.							(line				6)
*	opcode	summary,	Z8000:																	Z8000	Opcodes.						(line				6)
*	opcodes	for	AArch64:																			AArch64	Opcodes.				(line				6)
*	opcodes	for	ARC:																							ARC	Opcodes.								(line				6)
*	opcodes	for	ARM:																							ARM	Opcodes.								(line				6)
*	opcodes	for	MSP	430:																			MSP430	Opcodes.					(line				6)
*	opcodes	for	Nios	II:																			Nios	II	Opcodes.				(line				6)
*	opcodes	for	V850:																						V850	Opcodes.							(line				6)
*	opcodes,	i860:																									Opcodes	for	i860.			(line				6)
*	opcodes,	i960:																									Opcodes	for	i960.			(line				6)
*	opcodes,	M680x0:																							M68K-opcodes.							(line				6)
*	opcodes,	M68HC11:																						M68HC11-opcodes.				(line				6)
*	operand	delimiters,	i386:														i386-Variations.				(line			15)
*	operand	delimiters,	x86-64:												i386-Variations.				(line			15)
*	operand	notation,	VAX:																	VAX-operands.							(line				6)
*	operands	in	expressions:															Arguments.										(line				6)
*	operator	precedence:																			Infix	Ops.										(line			11)
*	operators,	in	expressions:													Operators.										(line				6)
*	operators,	permitted	arguments:								Infix	Ops.										(line				6)
*	optimization,	D10V:																				Overview.											(line		579)
*	optimization,	D30V:																				Overview.											(line		584)
*	optimizations:																									Xtensa	Optimizations.

3/25/20 as.info 450

																																																													(line				6)
*	option	directive,	TIC54X:														TIC54X-Directives.		(line		177)
*	option	summary:																								Overview.											(line				6)
*	options	for	AArch64	(none):												AArch64	Options.				(line				6)
*	options	for	Alpha:																					Alpha	Options.						(line				6)
*	options	for	ARC:																							ARC	Options.								(line				6)
*	options	for	ARM	(none):																ARM	Options.								(line				6)
*	options	for	AVR	(none):																AVR	Options.								(line				6)
*	options	for	Blackfin	(none):											Blackfin	Options.			(line				6)
*	options	for	i386:																						i386-Options.							(line				6)
*	options	for	IA-64:																					IA-64	Options.						(line				6)
*	options	for	LM32	(none):															LM32	Options.							(line				6)
*	options	for	Meta:																						Meta	Options.							(line				6)
*	options	for	MSP430	(none):													MSP430	Options.					(line				6)
*	options	for	NDS32:																					NDS32	Options.						(line				6)
*	options	for	Nios	II:																			Nios	II	Options.				(line				6)
*	options	for	PDP-11:																				PDP-11-Options.					(line				6)
*	options	for	PowerPC:																			PowerPC-Opts.							(line				6)
*	options	for	s390:																						s390	Options.							(line				6)
*	options	for	SCORE:																					SCORE-Opts.									(line				6)
*	options	for	SPARC:																					Sparc-Opts.									(line				6)
*	options	for	TIC6X:																					TIC6X	Options.						(line				6)
*	options	for	V850	(none):															V850	Options.							(line				6)
*	options	for	VAX/VMS:																			VAX-Opts.											(line			42)
*	options	for	Visium:																				Visium	Options.					(line				6)
*	options	for	x86-64:																				i386-Options.							(line				6)
*	options	for	Z80:																							Z80	Options.								(line				6)
*	options,	all	versions	of	assembler:				Invoking.											(line				6)
*	options,	command	line:																	Command	Line.							(line			13)
*	options,	CRIS:																									CRIS-Opts.										(line				6)
*	options,	D10V:																									D10V-Opts.										(line				6)
*	options,	D30V:																									D30V-Opts.										(line				6)
*	options,	Epiphany:																					Epiphany	Options.			(line				6)
*	options,	H8/300:																							H8/300	Options.					(line				6)
*	options,	i960:																									Options-i960.							(line				6)
*	options,	IP2K:																									IP2K-Opts.										(line				6)
*	options,	M32C:																									M32C-Opts.										(line				6)
*	options,	M32R:																									M32R-Opts.										(line				6)
*	options,	M680x0:																							M68K-Opts.										(line				6)
*	options,	M68HC11:																						M68HC11-Opts.							(line				6)
*	options,	MMIX:																									MMIX-Opts.										(line				6)
*	options,	PJ:																											PJ	Options.									(line				6)
*	options,	RL78:																									RL78-Opts.										(line				6)
*	options,	RX:																											RX-Opts.												(line				6)
*	options,	SH:																											SH	Options.									(line				6)
*	options,	SH64:																									SH64	Options.							(line				6)
*	options,	TIC54X:																							TIC54X-Opts.								(line				6)
*	options,	XGATE:																								XGATE-Opts.									(line				6)
*	options,	Z8000:																								Z8000	Options.						(line				6)
*	org	directive:																									Org.																(line				6)
*	other	attribute,	of	a.out	symbol:						Symbol	Other.							(line				6)
*	output	file:																											Object.													(line				6)
*	output	section	padding:																no-pad-sections.				(line				6)
*	p2align	directive:																					P2align.												(line				6)
*	p2alignl	directive:																				P2align.												(line			28)
*	p2alignw	directive:																				P2align.												(line			28)
*	padding	the	location	counter:										Align.														(line				6)
*	padding	the	location	counter	given	a	power	of	two:	P2align.
																																																													(line				6)

3/25/20 as.info 451

*	padding	the	location	counter	given	number	of	bytes:	Balign.
																																																													(line				6)
*	page,	in	listings:																					Eject.														(line				6)
*	paper	size,	for	listings:														Psize.														(line				6)
*	paths	for	.include:																				I.																		(line				6)
*	patterns,	writing	in	memory:											Fill.															(line				6)
*	PDP-11	comments:																							PDP-11-Syntax.						(line			16)
*	PDP-11	floating-point	register	syntax:	PDP-11-Syntax.						(line			13)
*	PDP-11	general-purpose	register	syntax:	PDP-11-Syntax.					(line			10)
*	PDP-11	instruction	naming:													PDP-11-Mnemonics.			(line				6)
*	PDP-11	line	separator:																	PDP-11-Syntax.						(line			19)
*	PDP-11	support:																								PDP-11-Dependent.			(line				6)
*	PDP-11	syntax:																									PDP-11-Syntax.						(line				6)
*	PIC	code	generation	for	ARM:											ARM	Options.								(line		187)
*	PIC	code	generation	for	M32R:										M32R-Opts.										(line			42)
*	PIC	selection,	MIPS:																			MIPS	Options.							(line			21)
*	PJ	endianness:																									Overview.											(line		713)
*	PJ	line	comment	character:													PJ-Chars.											(line				6)
*	PJ	line	separator:																					PJ-Chars.											(line			14)
*	PJ	options:																												PJ	Options.									(line				6)
*	PJ	support:																												PJ-Dependent.							(line				6)
*	plus,	permitted	arguments:													Infix	Ops.										(line			45)
*	popsection	directive:																		PopSection.									(line				6)
*	Position-independent	code,	CRIS:							CRIS-Opts.										(line			27)
*	Position-independent	code,	symbols	in,	CRIS:	CRIS-Pic.					(line				6)
*	PowerPC	architectures:																	PowerPC-Opts.							(line				6)
*	PowerPC	directives:																				PowerPC-Pseudo.					(line				6)
*	PowerPC	line	comment	character:								PowerPC-Chars.						(line				6)
*	PowerPC	line	separator:																PowerPC-Chars.						(line			18)
*	PowerPC	options:																							PowerPC-Opts.							(line				6)
*	PowerPC	support:																							PPC-Dependent.						(line				6)
*	precedence	of	operators:															Infix	Ops.										(line			11)
*	precision,	floating	point:													Flonums.												(line				6)
*	prefix	operators:																						Prefix	Ops.									(line				6)
*	prefixes,	i386:																								i386-Prefixes.						(line				6)
*	preprocessing:																									Preprocessing.						(line				6)
*	preprocessing,	turning	on	and	off:					Preprocessing.						(line			26)
*	previous	directive:																				Previous.											(line				6)
*	primary	attributes,	COFF	symbols:						COFF	Symbols.							(line			13)
*	print	directive:																							Print.														(line				6)
*	proc	directive,	SPARC:																	Sparc-Directives.			(line			25)
*	Processor	Identification	register,	ARC:	ARC-Regs.										(line			51)
*	profiler	directive,	MSP	430:											MSP430	Directives.		(line			26)
*	profiling	capability	for	MSP	430:						MSP430	Profiling	Capability.
																																																													(line				6)
*	Program	Counter,	ARC:																		ARC-Regs.											(line			54)
*	protected	directive:																			Protected.										(line				6)
*	pseudo-op	.arch,	CRIS:																	CRIS-Pseudos.							(line			50)
*	pseudo-op	.dword,	CRIS:																CRIS-Pseudos.							(line			12)
*	pseudo-op	.syntax,	CRIS:															CRIS-Pseudos.							(line			18)
*	pseudo-op	BSPEC,	MMIX:																	MMIX-Pseudos.							(line		137)
*	pseudo-op	BYTE,	MMIX:																		MMIX-Pseudos.							(line		101)
*	pseudo-op	ESPEC,	MMIX:																	MMIX-Pseudos.							(line		137)
*	pseudo-op	GREG,	MMIX:																		MMIX-Pseudos.							(line			53)
*	pseudo-op	IS,	MMIX:																				MMIX-Pseudos.							(line			44)
*	pseudo-op	LOC,	MMIX:																			MMIX-Pseudos.							(line				7)
*	pseudo-op	LOCAL,	MMIX:																	MMIX-Pseudos.							(line			29)
*	pseudo-op	OCTA,	MMIX:																		MMIX-Pseudos.							(line		113)
*	pseudo-op	PREFIX,	MMIX:																MMIX-Pseudos.							(line		125)

3/25/20 as.info 452

*	pseudo-op	TETRA,	MMIX:																	MMIX-Pseudos.							(line		113)
*	pseudo-op	WYDE,	MMIX:																		MMIX-Pseudos.							(line		113)
*	pseudo-opcodes	for	XStormy16:										XStormy16	Opcodes.		(line				6)
*	pseudo-opcodes,	M680x0:																M68K-Branch.								(line				6)
*	pseudo-opcodes,	M68HC11:															M68HC11-Branch.					(line				6)
*	pseudo-ops	for	branch,	VAX:												VAX-branch.									(line				6)
*	pseudo-ops,	CRIS:																						CRIS-Pseudos.							(line				6)
*	pseudo-ops,	machine	independent:							Pseudo	Ops.									(line				6)
*	pseudo-ops,	MMIX:																						MMIX-Pseudos.							(line				6)
*	psize	directive:																							Psize.														(line				6)
*	PSR	bits:																														IA-64-Bits.									(line				6)
*	pstring	directive,	TIC54X:													TIC54X-Directives.		(line		206)
*	psw	register,	V850:																				V850-Regs.										(line			80)
*	purgem	directive:																						Purgem.													(line				6)
*	purpose	of	GNU	assembler:														GNU	Assembler.						(line			12)
*	pushsection	directive:																	PushSection.								(line				6)
*	quad	directive:																								Quad.															(line				6)
*	quad	directive,	i386:																		i386-Float.									(line			21)
*	quad	directive,	x86-64:																i386-Float.									(line			21)
*	real-mode	code,	i386:																		i386-16bit.									(line				6)
*	ref	directive,	TIC54X:																	TIC54X-Directives.		(line		101)
*	refsym	directive,	MSP	430:													MSP430	Directives.		(line			30)
*	register	directive,	SPARC:													Sparc-Directives.			(line			29)
*	register	name	prefix	character,	ARC:			ARC-Chars.										(line				7)
*	register	names,	AArch64:															AArch64-Regs.							(line				6)
*	register	names,	Alpha:																	Alpha-Regs.									(line				6)
*	register	names,	ARC:																			ARC-Regs.											(line				6)
*	register	names,	ARM:																			ARM-Regs.											(line				6)
*	register	names,	AVR:																			AVR-Regs.											(line				6)
*	register	names,	CRIS:																		CRIS-Regs.										(line				6)
*	register	names,	H8/300:																H8/300-Regs.								(line				6)
*	register	names,	IA-64:																	IA-64-Regs.									(line				6)
*	register	names,	LM32:																		LM32-Regs.										(line				6)
*	register	names,	MMIX:																		MMIX-Regs.										(line				6)
*	register	names,	MSP	430:															MSP430-Regs.								(line				6)
*	register	names,	Sparc:																	Sparc-Regs.									(line				6)
*	register	names,	TILE-Gx:															TILE-Gx	Registers.		(line				6)
*	register	names,	TILEPro:															TILEPro	Registers.		(line				6)
*	register	names,	V850:																		V850-Regs.										(line				6)
*	register	names,	VAX:																			VAX-operands.							(line			17)
*	register	names,	Visium:																Visium	Registers.			(line				6)
*	register	names,	Xtensa:																Xtensa	Registers.			(line				6)
*	register	names,	Z80:																			Z80-Regs.											(line				6)
*	register	naming,	s390:																	s390	Register.						(line				6)
*	register	operands,	i386:															i386-Variations.				(line			15)
*	register	operands,	x86-64:													i386-Variations.				(line			15)
*	registers,	D10V:																							D10V-Regs.										(line				6)
*	registers,	D30V:																							D30V-Regs.										(line				6)
*	registers,	i386:																							i386-Regs.										(line				6)
*	registers,	Meta:																							Meta-Regs.										(line				6)
*	registers,	SH:																									SH-Regs.												(line				6)
*	registers,	SH64:																							SH64-Regs.										(line				6)
*	registers,	TIC54X	memory-mapped:							TIC54X-MMRegs.						(line				6)
*	registers,	x86-64:																					i386-Regs.										(line				6)
*	registers,	Z8000:																						Z8000-Regs.									(line				6)
*	relax-all	command	line	option,	Nios	II:	Nios	II	Options.			(line			13)
*	relax-section	command	line	option,	Nios	II:	Nios	II	Options.
																																																													(line				6)
*	relaxation:																												Xtensa	Relaxation.		(line				6)

3/25/20 as.info 453

*	relaxation	of	ADDI	instructions:							Xtensa	Immediate	Relaxation.
																																																													(line			43)
*	relaxation	of	branch	instructions:					Xtensa	Branch	Relaxation.
																																																													(line				6)
*	relaxation	of	call	instructions:							Xtensa	Call	Relaxation.
																																																													(line				6)
*	relaxation	of	immediate	fields:								Xtensa	Immediate	Relaxation.
																																																													(line				6)
*	relaxation	of	jump	instructions:							Xtensa	Jump	Relaxation.
																																																													(line				6)
*	relaxation	of	L16SI	instructions:						Xtensa	Immediate	Relaxation.
																																																													(line			23)
*	relaxation	of	L16UI	instructions:						Xtensa	Immediate	Relaxation.
																																																													(line			23)
*	relaxation	of	L32I	instructions:							Xtensa	Immediate	Relaxation.
																																																													(line			23)
*	relaxation	of	L8UI	instructions:							Xtensa	Immediate	Relaxation.
																																																													(line			23)
*	relaxation	of	MOVI	instructions:							Xtensa	Immediate	Relaxation.
																																																													(line			12)
*	reloc	directive:																							Reloc.														(line				6)
*	relocation:																												Sections.											(line				6)
*	relocation	example:																				Ld	Sections.								(line			40)
*	relocations,	AArch64:																		AArch64-Relocations.
																																																													(line				6)
*	relocations,	Alpha:																				Alpha-Relocs.							(line				6)
*	relocations,	Sparc:																				Sparc-Relocs.							(line				6)
*	repeat	prefixes,	i386:																	i386-Prefixes.						(line			44)
*	reporting	bugs	in	assembler:											Reporting	Bugs.					(line				6)
*	rept	directive:																								Rept.															(line				6)
*	reserve	directive,	SPARC:														Sparc-Directives.			(line			39)
*	return	instructions,	i386:													i386-Variations.				(line			40)
*	return	instructions,	x86-64:											i386-Variations.				(line			40)
*	REX	prefixes,	i386:																				i386-Prefixes.						(line			46)
*	RISC-V	support:																								RISC-V-Dependent.			(line				6)
*	RL78	assembler	directives:													RL78-Directives.				(line				6)
*	RL78	line	comment	character:											RL78-Chars.									(line				6)
*	RL78	line	separator:																			RL78-Chars.									(line			14)
*	RL78	modifiers:																								RL78-Modifiers.					(line				6)
*	RL78	options:																										RL78-Opts.										(line				6)
*	RL78	support:																										RL78-Dependent.					(line				6)
*	rsect:																																	Z8000	Directives.			(line			52)
*	RX	assembler	directive	.3byte:									RX-Directives.						(line				9)
*	RX	assembler	directive	.fetchalign:				RX-Directives.						(line			13)
*	RX	assembler	directives:															RX-Directives.						(line				6)
*	RX	floating	point:																					RX-Float.											(line				6)
*	RX	line	comment	character:													RX-Chars.											(line				6)
*	RX	line	separator:																					RX-Chars.											(line			14)
*	RX	modifiers:																										RX-Modifiers.							(line				6)
*	RX	options:																												RX-Opts.												(line				6)
*	RX	support:																												RX-Dependent.							(line				6)
*	s390	floating	point:																			s390	Floating	Point.
																																																													(line				6)
*	s390	instruction	aliases:														s390	Aliases.							(line				6)
*	s390	instruction	formats:														s390	Formats.							(line				6)
*	s390	instruction	marker:															s390	Instruction	Marker.
																																																													(line				6)
*	s390	instruction	mnemonics:												s390	Mnemonics.					(line				6)
*	s390	instruction	operand	modifier:					s390	Operand	Modifier.

3/25/20 as.info 454

																																																													(line				6)
*	s390	instruction	operands:													s390	Operands.						(line				6)
*	s390	instruction	syntax:															s390	Syntax.								(line				6)
*	s390	line	comment	character:											s390	Characters.				(line				6)
*	s390	line	separator:																			s390	Characters.				(line			13)
*	s390	literal	pool	entries:													s390	Literal	Pool	Entries.
																																																													(line				6)
*	s390	options:																										s390	Options.							(line				6)
*	s390	register	naming:																		s390	Register.						(line				6)
*	s390	support:																										S/390-Dependent.				(line				6)
*	Saved	User	Stack	Pointer,	ARC:									ARC-Regs.											(line			73)
*	sblock	directive,	TIC54X:														TIC54X-Directives.		(line		180)
*	sbttl	directive:																							Sbttl.														(line				6)
*	schedule	directive:																				Schedule	Directive.	(line				6)
*	scl	directive:																									Scl.																(line				6)
*	SCORE	architectures:																			SCORE-Opts.									(line				6)
*	SCORE	directives:																						SCORE-Pseudo.							(line				6)
*	SCORE	line	comment	character:										SCORE-Chars.								(line				6)
*	SCORE	line	separator:																		SCORE-Chars.								(line			14)
*	SCORE	options:																									SCORE-Opts.									(line				6)
*	SCORE	processor:																							SCORE-Dependent.				(line				6)
*	sdaoff	pseudo-op,	V850:																V850	Opcodes.							(line			65)
*	search	path	for	.include:														I.																		(line				6)
*	sect	directive,	TIC54X:																TIC54X-Directives.		(line		186)
*	section	directive	(COFF	version):						Section.												(line			16)
*	section	directive	(ELF	version):							Section.												(line			67)
*	section	directive,	V850:															V850	Directives.				(line				9)
*	section	name	substitution:													Section.												(line			71)
*	section	override	prefixes,	i386:							i386-Prefixes.						(line			23)
*	Section	Stack:																									PopSection.									(line				6)
*	Section	Stack	<1>:																					Previous.											(line				6)
*	Section	Stack	<2>:																					PushSection.								(line				6)
*	Section	Stack	<3>:																					Section.												(line			62)
*	Section	Stack	<4>:																					SubSection.									(line				6)
*	section-relative	addressing:											Secs	Background.				(line			65)
*	sections:																														Sections.											(line				6)
*	sections	in	messages,	internal:								As	Sections.								(line				6)
*	sections,	i386:																								i386-Variations.				(line			46)
*	sections,	named:																							Ld	Sections.								(line				8)
*	sections,	x86-64:																						i386-Variations.				(line			46)
*	seg	directive,	SPARC:																		Sparc-Directives.			(line			44)
*	segm:																																		Z8000	Directives.			(line			10)
*	set	at	directive,	Nios	II:													Nios	II	Directives.	(line			35)
*	set	break	directive,	Nios	II:										Nios	II	Directives.	(line			43)
*	set	directive:																									Set.																(line				6)
*	set	directive,	Nios	II:																Nios	II	Directives.	(line			57)
*	set	directive,	TIC54X:																	TIC54X-Directives.		(line		189)
*	set	noat	directive,	Nios	II:											Nios	II	Directives.	(line			31)
*	set	nobreak	directive,	Nios	II:								Nios	II	Directives.	(line			39)
*	set	norelax	directive,	Nios	II:								Nios	II	Directives.	(line			46)
*	set	relaxall	directive,	Nios	II:							Nios	II	Directives.	(line			53)
*	set	relaxsection	directive,	Nios	II:			Nios	II	Directives.	(line			49)
*	SH	addressing	modes:																			SH-Addressing.						(line				6)
*	SH	floating	point	(IEEE):														SH	Floating	Point.		(line				6)
*	SH	line	comment	character:													SH-Chars.											(line				6)
*	SH	line	separator:																					SH-Chars.											(line				8)
*	SH	machine	directives:																	SH	Directives.						(line				6)
*	SH	opcode	summary:																					SH	Opcodes.									(line				6)
*	SH	options:																												SH	Options.									(line				6)

3/25/20 as.info 455

*	SH	registers:																										SH-Regs.												(line				6)
*	SH	support:																												SH-Dependent.							(line				6)
*	SH64	ABI	options:																						SH64	Options.							(line			25)
*	SH64	addressing	modes:																	SH64-Addressing.				(line				6)
*	SH64	ISA	options:																						SH64	Options.							(line				6)
*	SH64	line	comment	character:											SH64-Chars.									(line				6)
*	SH64	line	separator:																			SH64-Chars.									(line			13)
*	SH64	machine	directives:															SH64	Directives.				(line				9)
*	SH64	opcode	summary:																			SH64	Opcodes.							(line				6)
*	SH64	options:																										SH64	Options.							(line				6)
*	SH64	registers:																								SH64-Regs.										(line				6)
*	SH64	support:																										SH64-Dependent.					(line				6)
*	shigh	directive,	M32R:																	M32R-Directives.				(line			26)
*	short	directive:																							Short.														(line				6)
*	short	directive,	TIC54X:															TIC54X-Directives.		(line		109)
*	SIMD,	i386:																												i386-SIMD.										(line				6)
*	SIMD,	x86-64:																										i386-SIMD.										(line				6)
*	single	character	constant:													Chars.														(line				6)
*	single	directive:																						Single.													(line				6)
*	single	directive,	i386:																i386-Float.									(line			14)
*	single	directive,	x86-64:														i386-Float.									(line			14)
*	single	quote,	Z80:																					Z80-Chars.										(line			20)
*	sixteen	bit	integers:																		hword.														(line				6)
*	sixteen	byte	integer:																		Octa.															(line				6)
*	size	directive	(COFF	version):									Size.															(line			11)
*	size	directive	(ELF	version):										Size.															(line			19)
*	size	modifiers,	D10V:																		D10V-Size.										(line				6)
*	size	modifiers,	D30V:																		D30V-Size.										(line				6)
*	size	modifiers,	M680x0:																M68K-Syntax.								(line				8)
*	size	prefixes,	i386:																			i386-Prefixes.						(line			27)
*	size	suffixes,	H8/300:																	H8/300	Opcodes.					(line		160)
*	size,	translations,	Sparc:													Sparc-Size-Translations.
																																																													(line				6)
*	sizes	operands,	i386:																		i386-Variations.				(line			28)
*	sizes	operands,	x86-64:																i386-Variations.				(line			28)
*	skip	directive:																								Skip.															(line				6)
*	skip	directive,	M680x0:																M68K-Directives.				(line			19)
*	skip	directive,	SPARC:																	Sparc-Directives.			(line			48)
*	sleb128	directive:																					Sleb128.												(line				6)
*	small	data,	MIPS:																						MIPS	Small	Data.				(line				6)
*	SmartMIPS	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.
																																																													(line			11)
*	SOM	symbol	attributes:																	SOM	Symbols.								(line				6)
*	source	program:																								Input	Files.								(line				6)
*	source,	destination	operands;	i386:				i386-Variations.				(line			21)
*	source,	destination	operands;	x86-64:		i386-Variations.				(line			21)
*	sp	register:																											Xtensa	Registers.			(line				6)
*	sp	register,	V850:																					V850-Regs.										(line			12)
*	space	directive:																							Space.														(line				6)
*	space	directive,	TIC54X:															TIC54X-Directives.		(line		194)
*	space	used,	maximum	for	assembly:						statistics.									(line				6)
*	SPARC	architectures:																			Sparc-Opts.									(line				6)
*	Sparc	constants:																							Sparc-Constants.				(line				6)
*	SPARC	data	alignment:																		Sparc-Aligned-Data.	(line				6)
*	SPARC	floating	point	(IEEE):											Sparc-Float.								(line				6)
*	Sparc	line	comment	character:										Sparc-Chars.								(line				6)
*	Sparc	line	separator:																		Sparc-Chars.								(line			14)
*	SPARC	machine	directives:														Sparc-Directives.			(line				6)

3/25/20 as.info 456

*	SPARC	options:																									Sparc-Opts.									(line				6)
*	Sparc	registers:																							Sparc-Regs.									(line				6)
*	Sparc	relocations:																					Sparc-Relocs.							(line				6)
*	Sparc	size	translations:															Sparc-Size-Translations.
																																																													(line				6)
*	SPARC	support:																									Sparc-Dependent.				(line				6)
*	SPARC	syntax:																										Sparc-Aligned-Data.	(line			21)
*	special	characters,	M680x0:												M68K-Chars.									(line				6)
*	special	purpose	registers,	MSP	430:				MSP430-Regs.								(line			11)
*	sslist	directive,	TIC54X:														TIC54X-Directives.		(line		201)
*	ssnolist	directive,	TIC54X:												TIC54X-Directives.		(line		201)
*	stabd	directive:																							Stab.															(line			38)
*	stabn	directive:																							Stab.															(line			49)
*	stabs	directive:																							Stab.															(line			52)
*	stabX	directives:																						Stab.															(line				6)
*	stack	pointer,	ARC:																				ARC-Regs.											(line			20)
*	standard	assembler	sections:											Secs	Background.				(line			27)
*	standard	input,	as	input	file:									Command	Line.							(line			10)
*	statement	separator	character:									Statements.									(line				6)
*	statement	separator,	AArch64:										AArch64-Chars.						(line			10)
*	statement	separator,	Alpha:												Alpha-Chars.								(line			11)
*	statement	separator,	ARC:														ARC-Chars.										(line			27)
*	statement	separator,	ARM:														ARM-Chars.										(line			14)
*	statement	separator,	AVR:														AVR-Chars.										(line			14)
*	statement	separator,	CR16:													CR16-Chars.									(line			12)
*	statement	separator,	Epiphany:									Epiphany-Chars.					(line			14)
*	statement	separator,	H8/300:											H8/300-Chars.							(line				8)
*	statement	separator,	i386:													i386-Chars.									(line			18)
*	statement	separator,	i860:													i860-Chars.									(line			14)
*	statement	separator,	i960:													i960-Chars.									(line			14)
*	statement	separator,	IA-64:												IA-64-Chars.								(line				8)
*	statement	separator,	IP2K:													IP2K-Chars.									(line			14)
*	statement	separator,	LM32:													LM32-Chars.									(line			12)
*	statement	separator,	M32C:													M32C-Chars.									(line			14)
*	statement	separator,	M68HC11:										M68HC11-Syntax.					(line			26)
*	statement	separator,	Meta:													Meta-Chars.									(line				8)
*	statement	separator,	MicroBlaze:							MicroBlaze-Chars.			(line			14)
*	statement	separator,	MIPS:													MIPS-Chars.									(line			14)
*	statement	separator,	MSP	430:										MSP430-Chars.							(line			14)
*	statement	separator,	NS32K:												NS32K-Chars.								(line			18)
*	statement	separator,	PJ:															PJ-Chars.											(line			14)
*	statement	separator,	PowerPC:										PowerPC-Chars.						(line			18)
*	statement	separator,	RL78:													RL78-Chars.									(line			14)
*	statement	separator,	RX:															RX-Chars.											(line			14)
*	statement	separator,	s390:													s390	Characters.				(line			13)
*	statement	separator,	SCORE:												SCORE-Chars.								(line			14)
*	statement	separator,	SH:															SH-Chars.											(line				8)
*	statement	separator,	SH64:													SH64-Chars.									(line			13)
*	statement	separator,	Sparc:												Sparc-Chars.								(line			14)
*	statement	separator,	TIC54X:											TIC54X-Chars.							(line			17)
*	statement	separator,	TIC6X:												TIC6X	Syntax.							(line			13)
*	statement	separator,	V850:													V850-Chars.									(line			13)
*	statement	separator,	VAX:														VAX-Chars.										(line			14)
*	statement	separator,	Visium:											Visium	Characters.		(line			14)
*	statement	separator,	XGATE:												XGATE-Syntax.							(line			25)
*	statement	separator,	XStormy16:								XStormy16-Chars.				(line			14)
*	statement	separator,	Z80:														Z80-Chars.										(line			13)
*	statement	separator,	Z8000:												Z8000-Chars.								(line			13)
*	statements,	structure	of:														Statements.									(line				6)

3/25/20 as.info 457

*	statistics,	about	assembly:												statistics.									(line				6)
*	Status	register,	ARC:																		ARC-Regs.											(line			57)
*	STATUS32	saved	on	exception,	ARC:						ARC-Regs.											(line			82)
*	stopping	the	assembly:																	Abort.														(line				6)
*	Stored	STATUS32	register	on	entry	to	level	P0	interrupts,	ARC:	ARC-Regs.
																																																													(line			69)
*	string	constants:																						Strings.												(line				6)
*	string	directive:																						String.													(line				8)
*	string	directive	on	HPPA:														HPPA	Directives.				(line		137)
*	string	directive,	TIC54X:														TIC54X-Directives.		(line		206)
*	string	literals:																							Ascii.														(line				6)
*	string,	copying	to	object	file:								String.													(line				8)
*	string16	directive:																				String.													(line				8)
*	string16,	copying	to	object	file:						String.													(line				8)
*	string32	directive:																				String.													(line				8)
*	string32,	copying	to	object	file:						String.													(line				8)
*	string64	directive:																				String.													(line				8)
*	string64,	copying	to	object	file:						String.													(line				8)
*	string8	directive:																					String.													(line				8)
*	string8,	copying	to	object	file:							String.													(line				8)
*	struct	directive:																						Struct.													(line				6)
*	struct	directive,	TIC54X:														TIC54X-Directives.		(line		214)
*	structure	debugging,	COFF:													Tag.																(line				6)
*	sub-instruction	ordering,	D10V:								D10V-Chars.									(line			14)
*	sub-instruction	ordering,	D30V:								D30V-Chars.									(line			14)
*	sub-instructions,	D10V:																D10V-Subs.										(line				6)
*	sub-instructions,	D30V:																D30V-Subs.										(line				6)
*	subexpressions:																								Arguments.										(line			24)
*	subsection	directive:																		SubSection.									(line				6)
*	subsym	builtins,	TIC54X:															TIC54X-Macros.						(line			16)
*	subtitles	for	listings:																Sbttl.														(line				6)
*	subtraction,	permitted	arguments:						Infix	Ops.										(line			50)
*	summary	of	options:																				Overview.											(line				6)
*	support:																															HPPA-Dependent.					(line				6)
*	supporting	files,	including:											Include.												(line				6)
*	suppressing	warnings:																		W.																		(line			11)
*	sval:																																		Z8000	Directives.			(line			33)
*	symbol	attributes:																					Symbol	Attributes.		(line				6)
*	symbol	attributes,	a.out:														a.out	Symbols.						(line				6)
*	symbol	attributes,	COFF:															COFF	Symbols.							(line				6)
*	symbol	attributes,	SOM:																SOM	Symbols.								(line				6)
*	symbol	descriptor,	COFF:															Desc.															(line				6)
*	symbol	modifiers:																						AVR-Modifiers.						(line			12)
*	symbol	modifiers	<1>:																		LM32-Modifiers.					(line			12)
*	symbol	modifiers	<2>:																		M32C-Modifiers.					(line			11)
*	symbol	modifiers	<3>:																		M68HC11-Modifiers.		(line			12)
*	symbol	modifiers,	TILE-Gx:													TILE-Gx	Modifiers.		(line				6)
*	symbol	modifiers,	TILEPro:													TILEPro	Modifiers.		(line				6)
*	symbol	names:																										Symbol	Names.							(line				6)
*	symbol	names,	$	in:																				D10V-Chars.									(line			46)
*	symbol	names,	$	in	<1>:																D30V-Chars.									(line			70)
*	symbol	names,	$	in	<2>:																Meta-Chars.									(line			10)
*	symbol	names,	$	in	<3>:																SH-Chars.											(line			15)
*	symbol	names,	$	in	<4>:																SH64-Chars.									(line			15)
*	symbol	names,	local:																			Symbol	Names.							(line			30)
*	symbol	names,	temporary:															Symbol	Names.							(line			43)
*	symbol	prefix	character,	ARC:										ARC-Chars.										(line			20)
*	symbol	storage	class	(COFF):											Scl.																(line				6)
*	symbol	type:																											Symbol	Type.								(line				6)

3/25/20 as.info 458

*	symbol	type,	COFF:																					Type.															(line			11)
*	symbol	type,	ELF:																						Type.															(line			22)
*	symbol	value:																										Symbol	Value.							(line				6)
*	symbol	value,	setting:																	Set.																(line				6)
*	symbol	values,	assigning:														Setting	Symbols.				(line				6)
*	symbol	versioning:																					Symver.													(line				6)
*	symbol,	common:																								Comm.															(line				6)
*	symbol,	making	visible	to	linker:						Global.													(line				6)
*	symbolic	debuggers,	information	for:			Stab.															(line				6)
*	symbols:																															Symbols.												(line				6)
*	Symbols	in	position-independent	code,	CRIS:	CRIS-Pic.						(line				6)
*	symbols	with	uppercase,	VAX/VMS:							VAX-Opts.											(line			42)
*	symbols,	assigning	values	to:										Equ.																(line				6)
*	Symbols,	built-in,	CRIS:															CRIS-Symbols.							(line				6)
*	Symbols,	CRIS,	built-in:															CRIS-Symbols.							(line				6)
*	symbols,	local	common:																	Lcomm.														(line				6)
*	symver	directive:																						Symver.													(line				6)
*	syntax	compatibility,	i386:												i386-Variations.				(line				6)
*	syntax	compatibility,	x86-64:										i386-Variations.				(line				6)
*	syntax,	AVR:																											AVR-Modifiers.						(line				6)
*	syntax,	Blackfin:																						Blackfin	Syntax.				(line				6)
*	syntax,	D10V:																										D10V-Syntax.								(line				6)
*	syntax,	D30V:																										D30V-Syntax.								(line				6)
*	syntax,	LM32:																										LM32-Modifiers.					(line				6)
*	syntax,	M680x0:																								M68K-Syntax.								(line				8)
*	syntax,	M68HC11:																							M68HC11-Syntax.					(line				6)
*	syntax,	M68HC11	<1>:																			M68HC11-Modifiers.		(line				6)
*	syntax,	machine-independent:											Syntax.													(line				6)
*	syntax,	RL78:																										RL78-Modifiers.					(line				6)
*	syntax,	RX:																												RX-Modifiers.							(line				6)
*	syntax,	SPARC:																									Sparc-Aligned-Data.	(line			20)
*	syntax,	TILE-Gx:																							TILE-Gx	Syntax.					(line				6)
*	syntax,	TILEPro:																							TILEPro	Syntax.					(line				6)
*	syntax,	XGATE:																									XGATE-Syntax.							(line				6)
*	syntax,	Xtensa	assembler:														Xtensa	Syntax.						(line				6)
*	sysproc	directive,	i960:															Directives-i960.				(line			37)
*	tab	(\t):																														Strings.												(line			27)
*	tab	directive,	TIC54X:																	TIC54X-Directives.		(line		245)
*	tag	directive:																									Tag.																(line				6)
*	tag	directive,	TIC54X:																	TIC54X-Directives.		(line		214)
*	tag	directive,	TIC54X	<1>:													TIC54X-Directives.		(line		248)
*	TBM,	i386:																													i386-TBM.											(line				6)
*	TBM,	x86-64:																											i386-TBM.											(line				6)
*	tdaoff	pseudo-op,	V850:																V850	Opcodes.							(line			81)
*	temporary	symbol	names:																Symbol	Names.							(line			43)
*	text	and	data	sections,	joining:							R.																		(line				6)
*	text	directive:																								Text.															(line				6)
*	text	section:																										Ld	Sections.								(line				9)
*	tfloat	directive,	i386:																i386-Float.									(line			14)
*	tfloat	directive,	x86-64:														i386-Float.									(line			14)
*	Thumb	support:																									ARM-Dependent.						(line				6)
*	TIC54X	builtin	math	functions:									TIC54X-Builtins.				(line				6)
*	TIC54X	line	comment	character:									TIC54X-Chars.							(line				6)
*	TIC54X	line	separator:																	TIC54X-Chars.							(line			17)
*	TIC54X	machine	directives:													TIC54X-Directives.		(line				6)
*	TIC54X	memory-mapped	registers:								TIC54X-MMRegs.						(line				6)
*	TIC54X	options:																								TIC54X-Opts.								(line				6)
*	TIC54X	subsym	builtins:																TIC54X-Macros.						(line			16)
*	TIC54X	support:																								TIC54X-Dependent.			(line				6)

3/25/20 as.info 459

*	TIC54X-specific	macros:																TIC54X-Macros.						(line				6)
*	TIC6X	big-endian	output:															TIC6X	Options.						(line			46)
*	TIC6X	line	comment	character:										TIC6X	Syntax.							(line				6)
*	TIC6X	line	separator:																		TIC6X	Syntax.							(line			13)
*	TIC6X	little-endian	output:												TIC6X	Options.						(line			46)
*	TIC6X	machine	directives:														TIC6X	Directives.			(line				6)
*	TIC6X	options:																									TIC6X	Options.						(line				6)
*	TIC6X	support:																									TIC6X-Dependent.				(line				6)
*	TILE-Gx	machine	directives:												TILE-Gx	Directives.	(line				6)
*	TILE-Gx	modifiers:																					TILE-Gx	Modifiers.		(line				6)
*	TILE-Gx	opcode	names:																		TILE-Gx	Opcodes.				(line				6)
*	TILE-Gx	register	names:																TILE-Gx	Registers.		(line				6)
*	TILE-Gx	support:																							TILE-Gx-Dependent.		(line				6)
*	TILE-Gx	syntax:																								TILE-Gx	Syntax.					(line				6)
*	TILEPro	machine	directives:												TILEPro	Directives.	(line				6)
*	TILEPro	modifiers:																					TILEPro	Modifiers.		(line				6)
*	TILEPro	opcode	names:																		TILEPro	Opcodes.				(line				6)
*	TILEPro	register	names:																TILEPro	Registers.		(line				6)
*	TILEPro	support:																							TILEPro-Dependent.		(line				6)
*	TILEPro	syntax:																								TILEPro	Syntax.					(line				6)
*	time,	total	for	assembly:														statistics.									(line				6)
*	title	directive:																							Title.														(line				6)
*	tls_gd	directive,	Nios	II:													Nios	II	Relocations.
																																																													(line			38)
*	tls_ie	directive,	Nios	II:													Nios	II	Relocations.
																																																													(line			38)
*	tls_ldm	directive,	Nios	II:												Nios	II	Relocations.
																																																													(line			38)
*	tls_ldo	directive,	Nios	II:												Nios	II	Relocations.
																																																													(line			38)
*	tls_le	directive,	Nios	II:													Nios	II	Relocations.
																																																													(line			38)
*	TMS320C6X	support:																					TIC6X-Dependent.				(line				6)
*	tp	register,	V850:																					V850-Regs.										(line			16)
*	transform	directive:																			Transform	Directive.
																																																													(line				6)
*	trusted	compiler:																						f.																		(line				6)
*	turning	preprocessing	on	and	off:						Preprocessing.						(line			26)
*	type	directive	(COFF	version):									Type.															(line			11)
*	type	directive	(ELF	version):										Type.															(line			22)
*	type	of	a	symbol:																						Symbol	Type.								(line				6)
*	ualong	directive,	SH:																		SH	Directives.						(line				6)
*	uaquad	directive,	SH:																		SH	Directives.						(line				6)
*	uaword	directive,	SH:																		SH	Directives.						(line				6)
*	ubyte	directive,	TIC54X:															TIC54X-Directives.		(line			34)
*	uchar	directive,	TIC54X:															TIC54X-Directives.		(line			34)
*	uhalf	directive,	TIC54X:															TIC54X-Directives.		(line		109)
*	uint	directive,	TIC54X:																TIC54X-Directives.		(line		109)
*	uleb128	directive:																					Uleb128.												(line				6)
*	ulong	directive,	TIC54X:															TIC54X-Directives.		(line		133)
*	undefined	section:																					Ld	Sections.								(line			36)
*	union	directive,	TIC54X:															TIC54X-Directives.		(line		248)
*	unsegm:																																Z8000	Directives.			(line			14)
*	usect	directive,	TIC54X:															TIC54X-Directives.		(line		260)
*	ushort	directive,	TIC54X:														TIC54X-Directives.		(line		109)
*	uword	directive,	TIC54X:															TIC54X-Directives.		(line		109)
*	V850	command	line	options:													V850	Options.							(line				9)
*	V850	floating	point	(IEEE):												V850	Floating	Point.
																																																													(line				6)

3/25/20 as.info 460

*	V850	line	comment	character:											V850-Chars.									(line				6)
*	V850	line	separator:																			V850-Chars.									(line			13)
*	V850	machine	directives:															V850	Directives.				(line				6)
*	V850	opcodes:																										V850	Opcodes.							(line				6)
*	V850	options	(none):																			V850	Options.							(line				6)
*	V850	register	names:																			V850-Regs.										(line				6)
*	V850	support:																										V850-Dependent.					(line				6)
*	val	directive:																									Val.																(line				6)
*	value	attribute,	COFF:																	Val.																(line				6)
*	value	of	a	symbol:																					Symbol	Value.							(line				6)
*	var	directive,	TIC54X:																	TIC54X-Directives.		(line		270)
*	VAX	bitfields	not	supported:											VAX-no.													(line				6)
*	VAX	branch	improvement:																VAX-branch.									(line				6)
*	VAX	command-line	options	ignored:						VAX-Opts.											(line				6)
*	VAX	displacement	sizing	character:					VAX-operands.							(line			12)
*	VAX	floating	point:																				VAX-float.										(line				6)
*	VAX	immediate	character:															VAX-operands.							(line				6)
*	VAX	indirect	character:																VAX-operands.							(line				9)
*	VAX	line	comment	character:												VAX-Chars.										(line				6)
*	VAX	line	separator:																				VAX-Chars.										(line			14)
*	VAX	machine	directives:																VAX-directives.					(line				6)
*	VAX	opcode	mnemonics:																		VAX-opcodes.								(line				6)
*	VAX	operand	notation:																		VAX-operands.							(line				6)
*	VAX	register	names:																				VAX-operands.							(line			17)
*	VAX	support:																											Vax-Dependent.						(line				6)
*	Vax-11	C	compatibility:																VAX-Opts.											(line			42)
*	VAX/VMS	options:																							VAX-Opts.											(line			42)
*	version	directive:																					Version.												(line				6)
*	version	directive,	TIC54X:													TIC54X-Directives.		(line		274)
*	version	of	assembler:																		v.																		(line				6)
*	versions	of	symbols:																			Symver.													(line				6)
*	Virtualization	instruction	generation	override:	MIPS	ASE	Instruction	Generation
Overrides.
																																																													(line			52)
*	visibility:																												Hidden.													(line				6)
*	visibility	<1>:																								Internal.											(line				6)
*	visibility	<2>:																								Protected.										(line				6)
*	Visium	line	comment	character:									Visium	Characters.		(line				6)
*	Visium	line	separator:																	Visium	Characters.		(line			14)
*	Visium	options:																								Visium	Options.					(line				6)
*	Visium	registers:																						Visium	Registers.			(line				6)
*	Visium	support:																								Visium-Dependent.			(line				6)
*	VMS	(VAX)	options:																					VAX-Opts.											(line			42)
*	vtable_entry	directive:																VTableEntry.								(line				6)
*	vtable_inherit	directive:														VTableInherit.						(line				6)
*	warning	directive:																					Warning.												(line				6)
*	warning	for	altered	difference	tables:	K.																		(line				6)
*	warning	messages:																						Errors.													(line				6)
*	warnings,	causing	error:															W.																		(line			16)
*	warnings,	M32R:																								M32R-Warnings.						(line				6)
*	warnings,	suppressing:																	W.																		(line			11)
*	warnings,	switching	on:																W.																		(line			19)
*	weak	directive:																								Weak.															(line				6)
*	weakref	directive:																					Weakref.												(line				6)
*	whitespace:																												Whitespace.									(line				6)
*	whitespace,	removed	by	preprocessor:			Preprocessing.						(line				7)
*	wide	floating	point	directives,	VAX:			VAX-directives.					(line				9)
*	width	directive,	TIC54X:															TIC54X-Directives.		(line		125)
*	Width	of	continuation	lines	of	disassembly	output:	listing.

3/25/20 as.info 461

																																																													(line			21)
*	Width	of	first	line	disassembly	output:	listing.											(line			16)
*	Width	of	source	line	output:											listing.												(line			28)
*	wmsg	directive,	TIC54X:																TIC54X-Directives.		(line			75)
*	word	aligned	program	counter,	ARC:					ARC-Regs.											(line			44)
*	word	directive:																								Word.															(line				6)
*	word	directive,	H8/300:																H8/300	Directives.		(line				6)
*	word	directive,	i386:																		i386-Float.									(line			21)
*	word	directive,	Nios	II:															Nios	II	Directives.	(line			13)
*	word	directive,	SPARC:																	Sparc-Directives.			(line			51)
*	word	directive,	TIC54X:																TIC54X-Directives.		(line		109)
*	word	directive,	x86-64:																i386-Float.									(line			21)
*	writing	patterns	in	memory:												Fill.															(line				6)
*	wval:																																		Z8000	Directives.			(line			24)
*	x86	machine	directives:																i386-Directives.				(line				6)
*	x86-64	arch	directive:																	i386-Arch.										(line				6)
*	x86-64	att_syntax	pseudo	op:											i386-Variations.				(line				6)
*	x86-64	conversion	instructions:								i386-Mnemonics.					(line			39)
*	x86-64	floating	point:																	i386-Float.									(line				6)
*	x86-64	immediate	operands:													i386-Variations.				(line			15)
*	x86-64	instruction	naming:													i386-Mnemonics.					(line				9)
*	x86-64	intel_syntax	pseudo	op:									i386-Variations.				(line				6)
*	x86-64	jump	optimization:														i386-Jumps.									(line				6)
*	x86-64	jump,	call,	return:													i386-Variations.				(line			40)
*	x86-64	jump/call	operands:													i386-Variations.				(line			15)
*	x86-64	memory	references:														i386-Memory.								(line				6)
*	x86-64	options:																								i386-Options.							(line				6)
*	x86-64	register	operands:														i386-Variations.				(line			15)
*	x86-64	registers:																						i386-Regs.										(line				6)
*	x86-64	sections:																							i386-Variations.				(line			46)
*	x86-64	size	suffixes:																		i386-Variations.				(line			28)
*	x86-64	source,	destination	operands:			i386-Variations.				(line			21)
*	x86-64	support:																								i386-Dependent.					(line				6)
*	x86-64	syntax	compatibility:											i386-Variations.				(line				6)
*	xfloat	directive,	TIC54X:														TIC54X-Directives.		(line			62)
*	XGATE	addressing	modes:																XGATE-Syntax.							(line			28)
*	XGATE	assembler	directives:												XGATE-Directives.			(line				6)
*	XGATE	floating	point:																		XGATE-Float.								(line				6)
*	XGATE	line	comment	character:										XGATE-Syntax.							(line			16)
*	XGATE	line	separator:																		XGATE-Syntax.							(line			25)
*	XGATE	opcodes:																									XGATE-opcodes.						(line				6)
*	XGATE	options:																									XGATE-Opts.									(line				6)
*	XGATE	support:																									XGATE-Dependent.				(line				6)
*	XGATE	syntax:																										XGATE-Syntax.							(line				6)
*	xlong	directive,	TIC54X:															TIC54X-Directives.		(line		133)
*	XStormy16	comment	character:											XStormy16-Chars.				(line			11)
*	XStormy16	line	comment	character:						XStormy16-Chars.				(line				6)
*	XStormy16	line	separator:														XStormy16-Chars.				(line			14)
*	XStormy16	machine	directives:										XStormy16	Directives.
																																																													(line				6)
*	XStormy16	pseudo-opcodes:														XStormy16	Opcodes.		(line				6)
*	XStormy16	support:																					XSTORMY16-Dependent.
																																																													(line				6)
*	Xtensa	architecture:																			Xtensa-Dependent.			(line				6)
*	Xtensa	assembler	syntax:															Xtensa	Syntax.						(line				6)
*	Xtensa	directives:																					Xtensa	Directives.		(line				6)
*	Xtensa	opcode	names:																			Xtensa	Opcodes.					(line				6)
*	Xtensa	register	names:																	Xtensa	Registers.			(line				6)
*	xword	directive,	SPARC:																Sparc-Directives.			(line			55)

3/25/20 as.info 462

*	Z80	$:																																	Z80-Chars.										(line			15)
*	Z80	':																																	Z80-Chars.										(line			20)
*	Z80	floating	point:																				Z80	Floating	Point.	(line				6)
*	Z80	line	comment	character:												Z80-Chars.										(line				6)
*	Z80	line	separator:																				Z80-Chars.										(line			13)
*	Z80	options:																											Z80	Options.								(line				6)
*	Z80	registers:																									Z80-Regs.											(line				6)
*	Z80	support:																											Z80-Dependent.						(line				6)
*	Z80	Syntax:																												Z80	Options.								(line			40)
*	Z80,	case	sensitivity:																	Z80-Case.											(line				6)
*	Z80,	\:																																Z80-Chars.										(line			18)
*	Z80-only	directives:																			Z80	Directives.					(line				9)
*	Z800	addressing	modes:																	Z8000-Addressing.			(line				6)
*	Z8000	directives:																						Z8000	Directives.			(line				6)
*	Z8000	line	comment	character:										Z8000-Chars.								(line				6)
*	Z8000	line	separator:																		Z8000-Chars.								(line			13)
*	Z8000	opcode	summary:																		Z8000	Opcodes.						(line				6)
*	Z8000	options:																									Z8000	Options.						(line				6)
*	Z8000	registers:																							Z8000-Regs.									(line				6)
*	Z8000	support:																									Z8000-Dependent.				(line				6)
*	zdaoff	pseudo-op,	V850:																V850	Opcodes.							(line			98)
*	zero	directive:																								Zero.															(line				6)
*	zero	register,	V850:																			V850-Regs.										(line				7)
*	zero-terminated	strings:															Asciz.														(line				6)

�
Tag	Table:
Node:	Top�736
Node:	Overview�1721
Node:	Manual�40079
Node:	GNU	Assembler�41023
Node:	Object	Formats�42194
Node:	Command	Line�42646
Node:	Input	Files�43732
Node:	Object�45713
Node:	Errors�46609
Node:	Invoking�48171
Node:	a�50177
Node:	alternate�52088
Node:	D�52260
Node:	f�52493
Node:	I�53002
Node:	K�53546
Node:	L�53850
Node:	listing�54589
Node:	M�56248
Node:	MD�60647
Node:	no-pad-sections�61087
Node:	o�61462
Node:	R�61930
Node:	statistics�62960
Node:	traditional-format�63367
Node:	v�63840
Node:	W�64115
Node:	Z�65022
Node:	Syntax�65544
Node:	Preprocessing�66136
Node:	Whitespace�67700

3/25/20 as.info 463

Node:	Comments�68096
Node:	Symbol	Intro�70107
Node:	Statements�71092
Node:	Constants�73080
Node:	Characters�73711
Node:	Strings�74213
Node:	Chars�76387
Node:	Numbers�77239
Node:	Integers�77779
Node:	Bignums�78435
Node:	Flonums�78791
Node:	Sections�80535
Node:	Secs	Background�80913
Node:	Ld	Sections�85946
Node:	As	Sections�88330
Node:	Sub-Sections�89240
Node:	bss�92388
Node:	Symbols�93338
Node:	Labels�93986
Node:	Setting	Symbols�94717
Node:	Symbol	Names�95271
Node:	Dot�100738
Node:	Symbol	Attributes�101185
Node:	Symbol	Value�101918
Node:	Symbol	Type�102963
Node:	a.out	Symbols�103351
Node:	Symbol	Desc�103613
Node:	Symbol	Other�103909
Node:	COFF	Symbols�104078
Node:	SOM	Symbols�104751
Node:	Expressions�105193
Node:	Empty	Exprs�105942
Node:	Integer	Exprs�106289
Node:	Arguments�106684
Node:	Operators�107790
Node:	Prefix	Ops�108125
Node:	Infix	Ops�108452
Node:	Pseudo	Ops�110846
Node:	Abort�116492
Node:	ABORT	(COFF)�116905
Node:	Align�117113
Node:	Altmacro�119395
Node:	Ascii�120726
Node:	Asciz�121035
Node:	Balign�121280
Node:	Bundle	directives�123156
Node:	Byte�126137
Node:	CFI	directives�126396
Node:	Comm�135709
Ref:	Comm-Footnote-1�137309
Node:	Data�137671
Node:	Def�137988
Node:	Desc�138220
Node:	Dim�138720
Node:	Double�138977
Node:	Eject�139315
Node:	Else�139490
Node:	Elseif�139790
Node:	End�140084

3/25/20 as.info 464

Node:	Endef�140299
Node:	Endfunc�140476
Node:	Endif�140651
Node:	Equ�140912
Node:	Equiv�141426
Node:	Eqv�141982
Node:	Err�142346
Node:	Error�142657
Node:	Exitm�143102
Node:	Extern�143271
Node:	Fail�143532
Node:	File�143977
Node:	Fill�145306
Node:	Float�146270
Node:	Func�146612
Node:	Global�147202
Node:	Gnu_attribute�147959
Node:	Hidden�148184
Node:	hword�148770
Node:	Ident�149098
Node:	If�149672
Node:	Incbin�152733
Node:	Include�153427
Node:	Int�153978
Node:	Internal�154359
Node:	Irp�155006
Node:	Irpc�155885
Node:	Lcomm�156801
Node:	Lflags�157548
Node:	Line�157742
Node:	Linkonce�158658
Node:	List�159887
Node:	Ln�160494
Node:	Loc�160644
Node:	Loc_mark_labels�162029
Node:	Local�162513
Node:	Long�163125
Node:	Macro�163303
Node:	MRI�169234
Node:	Noaltmacro�169572
Node:	Nolist�169741
Node:	Octa�170170
Node:	Offset�170507
Node:	Org�170834
Node:	P2align�172119
Node:	PopSection�174047
Node:	Previous�174555
Node:	Print�175967
Node:	Protected�176196
Node:	Psize�176843
Node:	Purgem�177527
Node:	PushSection�177748
Node:	Quad�178492
Node:	Reloc�178946
Node:	Rept�179707
Node:	Sbttl�180121
Node:	Scl�180486
Node:	Section�180827
Ref:	Section	Name	Substitutions�182885

3/25/20 as.info 465

Node:	Set�188954
Node:	Short�190036
Node:	Single�190357
Node:	Size�190702
Node:	Skip�191368
Node:	Sleb128�191690
Node:	Space�192012
Node:	Stab�192651
Node:	String�194654
Node:	Struct�195646
Node:	SubSection�196369
Node:	Symver�196930
Node:	Tag�199324
Node:	Text�199704
Node:	Title�200024
Node:	Type�200403
Node:	Uleb128�202707
Node:	Val�203029
Node:	Version�203277
Node:	VTableEntry�203549
Node:	VTableInherit�203837
Node:	Warning�204285
Node:	Weak�204519
Node:	Weakref�205188
Node:	Word�206153
Node:	Zero�207993
Node:	Deprecated�208405
Node:	Object	Attributes�208639
Node:	GNU	Object	Attributes�210359
Node:	Defining	New	Object	Attributes�213884
Node:	Machine	Dependencies�214676
Node:	AArch64-Dependent�218633
Node:	AArch64	Options�219115
Node:	AArch64	Extensions�221749
Node:	AArch64	Syntax�224460
Node:	AArch64-Chars�224760
Node:	AArch64-Regs�225246
Node:	AArch64-Relocations�225540
Node:	AArch64	Floating	Point�226614
Node:	AArch64	Directives�226839
Node:	AArch64	Opcodes�229725
Node:	AArch64	Mapping	Symbols�230402
Node:	Alpha-Dependent�230783
Node:	Alpha	Notes�231223
Node:	Alpha	Options�231504
Node:	Alpha	Syntax�233979
Node:	Alpha-Chars�234448
Node:	Alpha-Regs�234860
Node:	Alpha-Relocs�235247
Node:	Alpha	Floating	Point�241493
Node:	Alpha	Directives�241715
Node:	Alpha	Opcodes�247242
Node:	ARC-Dependent�247537
Node:	ARC	Options�247982
Node:	ARC	Syntax�251108
Node:	ARC-Chars�251336
Node:	ARC-Regs�252458
Node:	ARC	Directives�255226
Node:	ARC	Modifiers�263276

3/25/20 as.info 466

Node:	ARC	Symbols�264286
Node:	ARC	Opcodes�264840
Node:	ARM-Dependent�265086
Node:	ARM	Options�265551
Node:	ARM	Syntax�275645
Node:	ARM-Instruction-Set�276013
Node:	ARM-Chars�277228
Node:	ARM-Regs�277939
Node:	ARM-Relocations�278148
Node:	ARM-Neon-Alignment�279834
Node:	ARM	Floating	Point�280299
Node:	ARM	Directives�280498
Ref:	arm_fnend�284938
Ref:	arm_fnstart�285257
Ref:	arm_pad�287664
Ref:	arm_save�288266
Ref:	arm_setfp�288967
Node:	ARM	Opcodes�292253
Node:	ARM	Mapping	Symbols�294340
Node:	ARM	Unwinding	Tutorial�295149
Node:	AVR-Dependent�301349
Node:	AVR	Options�301639
Node:	AVR	Syntax�307676
Node:	AVR-Chars�307963
Node:	AVR-Regs�308522
Node:	AVR-Modifiers�309103
Node:	AVR	Opcodes�311167
Node:	Blackfin-Dependent�316413
Node:	Blackfin	Options�316725
Node:	Blackfin	Syntax�317699
Node:	Blackfin	Directives�323908
Node:	CR16-Dependent�324649
Node:	CR16	Operand	Qualifiers�324949
Node:	CR16	Syntax�327658
Node:	CR16-Chars�327844
Node:	CRIS-Dependent�328381
Node:	CRIS-Opts�328727
Ref:	march-option�330412
Node:	CRIS-Expand�332231
Node:	CRIS-Symbols�333414
Node:	CRIS-Syntax�334585
Node:	CRIS-Chars�334921
Node:	CRIS-Pic�335472
Ref:	crispic�335667
Node:	CRIS-Regs�339216
Node:	CRIS-Pseudos�339633
Ref:	crisnous�340410
Node:	D10V-Dependent�341698
Node:	D10V-Opts�342049
Node:	D10V-Syntax�343018
Node:	D10V-Size�343547
Node:	D10V-Subs�344518
Node:	D10V-Chars�345553
Node:	D10V-Regs�347364
Node:	D10V-Addressing�348391
Node:	D10V-Word�349069
Node:	D10V-Float�349584
Node:	D10V-Opcodes�349895
Node:	D30V-Dependent�350288

3/25/20 as.info 467

Node:	D30V-Opts�350645
Node:	D30V-Syntax�351323
Node:	D30V-Size�351857
Node:	D30V-Subs�352830
Node:	D30V-Chars�353867
Node:	D30V-Guarded�356477
Node:	D30V-Regs�357154
Node:	D30V-Addressing�358273
Node:	D30V-Float�358935
Node:	D30V-Opcodes�359248
Node:	Epiphany-Dependent�359643
Node:	Epiphany	Options�359931
Node:	Epiphany	Syntax�360330
Node:	Epiphany-Chars�360531
Node:	H8/300-Dependent�361085
Node:	H8/300	Options�361501
Node:	H8/300	Syntax�361941
Node:	H8/300-Chars�362242
Node:	H8/300-Regs�362541
Node:	H8/300-Addressing�363460
Node:	H8/300	Floating	Point�364484
Node:	H8/300	Directives�364811
Node:	H8/300	Opcodes�365939
Node:	HPPA-Dependent�374258
Node:	HPPA	Notes�374693
Node:	HPPA	Options�375451
Node:	HPPA	Syntax�375646
Node:	HPPA	Floating	Point�376916
Node:	HPPA	Directives�377122
Node:	HPPA	Opcodes�385804
Node:	ESA/390-Dependent�386063
Node:	ESA/390	Notes�386523
Node:	ESA/390	Options�387314
Node:	ESA/390	Syntax�387524
Node:	ESA/390	Floating	Point�389697
Node:	ESA/390	Directives�389976
Node:	ESA/390	Opcodes�393266
Node:	i386-Dependent�393528
Node:	i386-Options�394855
Node:	i386-Directives�403463
Node:	i386-Syntax�404200
Node:	i386-Variations�404505
Node:	i386-Chars�407042
Node:	i386-Mnemonics�407771
Node:	i386-Regs�411134
Node:	i386-Prefixes�413964
Node:	i386-Memory�416724
Node:	i386-Jumps�419663
Node:	i386-Float�420786
Node:	i386-SIMD�422616
Node:	i386-LWP�423725
Node:	i386-BMI�424559
Node:	i386-TBM�424937
Node:	i386-16bit�425467
Node:	i386-Arch�427538
Node:	i386-Bugs�430716
Node:	i386-Notes�431467
Node:	i860-Dependent�432326
Node:	Notes-i860�432766

3/25/20 as.info 468

Node:	Options-i860�433673
Node:	Directives-i860�435033
Node:	Opcodes	for	i860�436105
Node:	Syntax	of	i860�438294
Node:	i860-Chars�438478
Node:	i960-Dependent�439037
Node:	Options-i960�439484
Node:	Floating	Point-i960�443370
Node:	Directives-i960�443638
Node:	Opcodes	for	i960�445672
Node:	callj-i960�446312
Node:	Compare-and-branch-i960�446802
Node:	Syntax	of	i960�448706
Node:	i960-Chars�448906
Node:	IA-64-Dependent�449449
Node:	IA-64	Options�449750
Node:	IA-64	Syntax�452901
Node:	IA-64-Chars�453307
Node:	IA-64-Regs�453537
Node:	IA-64-Bits�454463
Node:	IA-64-Relocs�454993
Node:	IA-64	Opcodes�455464
Node:	IP2K-Dependent�455736
Node:	IP2K-Opts�456008
Node:	IP2K-Syntax�456507
Node:	IP2K-Chars�456681
Node:	LM32-Dependent�457224
Node:	LM32	Options�457519
Node:	LM32	Syntax�458152
Node:	LM32-Regs�458448
Node:	LM32-Modifiers�459389
Node:	LM32-Chars�460769
Node:	LM32	Opcodes�461277
Node:	M32C-Dependent�461581
Node:	M32C-Opts�462087
Node:	M32C-Syntax�462506
Node:	M32C-Modifiers�462741
Node:	M32C-Chars�464533
Node:	M32R-Dependent�465099
Node:	M32R-Opts�465420
Node:	M32R-Directives�469582
Node:	M32R-Warnings�473556
Node:	M68K-Dependent�476561
Node:	M68K-Opts�477028
Node:	M68K-Syntax�484450
Node:	M68K-Moto-Syntax�486290
Node:	M68K-Float�488874
Node:	M68K-Directives�489394
Node:	M68K-opcodes�490721
Node:	M68K-Branch�490947
Node:	M68K-Chars�495142
Node:	M68HC11-Dependent�496005
Node:	M68HC11-Opts�496536
Node:	M68HC11-Syntax�500848
Node:	M68HC11-Modifiers�503642
Node:	M68HC11-Directives�505469
Node:	M68HC11-Float�506843
Node:	M68HC11-opcodes�507371
Node:	M68HC11-Branch�507553

3/25/20 as.info 469

Node:	Meta-Dependent�510003
Node:	Meta	Options�510288
Node:	Meta	Syntax�510950
Node:	Meta-Chars�511162
Node:	Meta-Regs�511462
Node:	MicroBlaze-Dependent�511738
Node:	MicroBlaze	Directives�512425
Node:	MicroBlaze	Syntax�513816
Node:	MicroBlaze-Chars�514048
Node:	MIPS-Dependent�514600
Node:	MIPS	Options�516034
Node:	MIPS	Macros�532723
Ref:	MIPS	Macros-Footnote-1�535437
Node:	MIPS	Symbol	Sizes�535580
Node:	MIPS	Small	Data�537252
Node:	MIPS	ISA�539416
Node:	MIPS	assembly	options�541200
Node:	MIPS	autoextend�542333
Node:	MIPS	insn�543067
Node:	MIPS	FP	ABIs�544348
Node:	MIPS	FP	ABI	History�544800
Node:	MIPS	FP	ABI	Variants�545560
Node:	MIPS	FP	ABI	Selection�548113
Node:	MIPS	FP	ABI	Compatibility�549176
Node:	MIPS	NaN	Encodings�549986
Node:	MIPS	Option	Stack�551949
Node:	MIPS	ASE	Instruction	Generation	Overrides�552734
Node:	MIPS	Floating-Point�555747
Node:	MIPS	Syntax�556653
Node:	MIPS-Chars�556915
Node:	MMIX-Dependent�557457
Node:	MMIX-Opts�557837
Node:	MMIX-Expand�561442
Node:	MMIX-Syntax�562754
Ref:	mmixsite�563110
Node:	MMIX-Chars�563952
Node:	MMIX-Symbols�564825
Node:	MMIX-Regs�566896
Node:	MMIX-Pseudos�567921
Ref:	MMIX-loc�568063
Ref:	MMIX-local�569144
Ref:	MMIX-is�569677
Ref:	MMIX-greg�569949
Ref:	GREG-base�570867
Ref:	MMIX-byte�572186
Ref:	MMIX-constants�572658
Ref:	MMIX-prefix�573300
Ref:	MMIX-spec�573675
Node:	MMIX-mmixal�574009
Node:	MSP430-Dependent�577504
Node:	MSP430	Options�577973
Node:	MSP430	Syntax�581153
Node:	MSP430-Macros�581469
Node:	MSP430-Chars�582199
Node:	MSP430-Regs�582914
Node:	MSP430-Ext�583475
Node:	MSP430	Floating	Point�585294
Node:	MSP430	Directives�585518
Node:	MSP430	Opcodes�586833

3/25/20 as.info 470

Node:	MSP430	Profiling	Capability�587228
Node:	NDS32-Dependent�589556
Node:	NDS32	Options�590165
Node:	NDS32	Syntax�592048
Node:	NDS32-Chars�592316
Node:	NDS32-Regs�592783
Node:	NDS32-Ops�593637
Node:	NiosII-Dependent�597234
Node:	Nios	II	Options�597653
Node:	Nios	II	Syntax�598885
Node:	Nios	II	Chars�599091
Node:	Nios	II	Relocations�599282
Node:	Nios	II	Directives�600853
Node:	Nios	II	Opcodes�602415
Node:	NS32K-Dependent�602690
Node:	NS32K	Syntax�602917
Node:	NS32K-Chars�603066
Node:	PDP-11-Dependent�603806
Node:	PDP-11-Options�604196
Node:	PDP-11-Pseudos�609255
Node:	PDP-11-Syntax�609600
Node:	PDP-11-Mnemonics�610432
Node:	PDP-11-Synthetic�610734
Node:	PJ-Dependent�610952
Node:	PJ	Options�611215
Node:	PJ	Syntax�611510
Node:	PJ-Chars�611675
Node:	PPC-Dependent�612224
Node:	PowerPC-Opts�612557
Node:	PowerPC-Pseudo�616183
Node:	PowerPC-Syntax�616804
Node:	PowerPC-Chars�616994
Node:	RL78-Dependent�617745
Node:	RL78-Opts�618147
Node:	RL78-Modifiers�618981
Node:	RL78-Directives�619760
Node:	RL78-Syntax�620364
Node:	RL78-Chars�620560
Node:	RISC-V-Dependent�621116
Node:	RISC-V-Opts�621338
Node:	RX-Dependent�621987
Node:	RX-Opts�622420
Node:	RX-Modifiers�626663
Node:	RX-Directives�627766
Node:	RX-Float�628505
Node:	RX-Syntax�629140
Node:	RX-Chars�629319
Node:	S/390-Dependent�629871
Node:	s390	Options�630690
Node:	s390	Characters�632807
Node:	s390	Syntax�633328
Node:	s390	Register�634230
Node:	s390	Mnemonics�635046
Node:	s390	Operands�638068
Node:	s390	Formats�640698
Node:	s390	Aliases�648545
Node:	s390	Operand	Modifier�652510
Node:	s390	Instruction	Marker�656313
Node:	s390	Literal	Pool	Entries�657327

3/25/20 as.info 471

Node:	s390	Directives�659260
Node:	s390	Floating	Point�664712
Node:	SCORE-Dependent�665160
Node:	SCORE-Opts�665462
Node:	SCORE-Pseudo�666749
Node:	SCORE-Syntax�668831
Node:	SCORE-Chars�669013
Node:	SH-Dependent�669571
Node:	SH	Options�669982
Node:	SH	Syntax�671033
Node:	SH-Chars�671306
Node:	SH-Regs�671849
Node:	SH-Addressing�672463
Node:	SH	Floating	Point�673371
Node:	SH	Directives�674468
Node:	SH	Opcodes�674869
Node:	SH64-Dependent�679190
Node:	SH64	Options�679552
Node:	SH64	Syntax�681343
Node:	SH64-Chars�681626
Node:	SH64-Regs�682175
Node:	SH64-Addressing�683271
Node:	SH64	Directives�684456
Node:	SH64	Opcodes�685440
Node:	Sparc-Dependent�686155
Node:	Sparc-Opts�686566
Node:	Sparc-Aligned-Data�691906
Node:	Sparc-Syntax�692738
Node:	Sparc-Chars�693312
Node:	Sparc-Regs�693875
Node:	Sparc-Constants�699723
Node:	Sparc-Relocs�704483
Node:	Sparc-Size-Translations�709601
Node:	Sparc-Float�711251
Node:	Sparc-Directives�711446
Node:	TIC54X-Dependent�713408
Node:	TIC54X-Opts�714171
Node:	TIC54X-Block�715212
Node:	TIC54X-Env�715572
Node:	TIC54X-Constants�715920
Node:	TIC54X-Subsyms�716317
Node:	TIC54X-Locals�718221
Node:	TIC54X-Builtins�718961
Node:	TIC54X-Ext�721375
Node:	TIC54X-Directives�721946
Node:	TIC54X-Macros�732854
Node:	TIC54X-MMRegs�734941
Node:	TIC54X-Syntax�735178
Node:	TIC54X-Chars�735368
Node:	TIC6X-Dependent�736059
Node:	TIC6X	Options�736362
Node:	TIC6X	Syntax�738361
Node:	TIC6X	Directives�739464
Node:	TILE-Gx-Dependent�741749
Node:	TILE-Gx	Options�742059
Node:	TILE-Gx	Syntax�742408
Node:	TILE-Gx	Opcodes�744644
Node:	TILE-Gx	Registers�744932
Node:	TILE-Gx	Modifiers�745703

3/25/20 as.info 472

Node:	TILE-Gx	Directives�750701
Node:	TILEPro-Dependent�751604
Node:	TILEPro	Options�751913
Node:	TILEPro	Syntax�752097
Node:	TILEPro	Opcodes�754333
Node:	TILEPro	Registers�754624
Node:	TILEPro	Modifiers�755394
Node:	TILEPro	Directives�760182
Node:	V850-Dependent�761085
Node:	V850	Options�761481
Node:	V850	Syntax�765759
Node:	V850-Chars�765999
Node:	V850-Regs�766543
Node:	V850	Floating	Point�768053
Node:	V850	Directives�768259
Node:	V850	Opcodes�770325
Node:	Vax-Dependent�776204
Node:	VAX-Opts�776788
Node:	VAX-float�780509
Node:	VAX-directives�781142
Node:	VAX-opcodes�782002
Node:	VAX-branch�782391
Node:	VAX-operands�784895
Node:	VAX-no�785658
Node:	VAX-Syntax�785914
Node:	VAX-Chars�786080
Node:	Visium-Dependent�786634
Node:	Visium	Options�786941
Node:	Visium	Syntax�787407
Node:	Visium	Characters�787652
Node:	Visium	Registers�788233
Node:	Visium	Opcodes�788505
Node:	XGATE-Dependent�788931
Node:	XGATE-Opts�789353
Node:	XGATE-Syntax�790342
Node:	XGATE-Directives�792423
Node:	XGATE-Float�792662
Node:	XGATE-opcodes�793159
Node:	XSTORMY16-Dependent�793271
Node:	XStormy16	Syntax�793617
Node:	XStormy16-Chars�793807
Node:	XStormy16	Directives�794420
Node:	XStormy16	Opcodes�795074
Node:	Xtensa-Dependent�796129
Node:	Xtensa	Options�796860
Node:	Xtensa	Syntax�801127
Node:	Xtensa	Opcodes�803271
Node:	Xtensa	Registers�805064
Node:	Xtensa	Optimizations�805697
Node:	Density	Instructions�806149
Node:	Xtensa	Automatic	Alignment�807251
Node:	Xtensa	Relaxation�809698
Node:	Xtensa	Branch	Relaxation�810663
Node:	Xtensa	Call	Relaxation�812035
Node:	Xtensa	Jump	Relaxation�813816
Node:	Xtensa	Immediate	Relaxation�815916
Node:	Xtensa	Directives�818491
Node:	Schedule	Directive�820199
Node:	Longcalls	Directive�820539

3/25/20 as.info 473

Node:	Transform	Directive�821083
Node:	Literal	Directive�821825
Ref:	Literal	Directive-Footnote-1�825364
Node:	Literal	Position	Directive�825506
Node:	Literal	Prefix	Directive�827205
Node:	Absolute	Literals	Directive�828103
Node:	Z80-Dependent�829410
Node:	Z80	Options�829798
Node:	Z80	Syntax�831217
Node:	Z80-Chars�831889
Node:	Z80-Regs�832740
Node:	Z80-Case�833092
Node:	Z80	Floating	Point�833537
Node:	Z80	Directives�833731
Node:	Z80	Opcodes�835356
Node:	Z8000-Dependent�836702
Node:	Z8000	Options�837638
Node:	Z8000	Syntax�837855
Node:	Z8000-Chars�838145
Node:	Z8000-Regs�838627
Node:	Z8000-Addressing�839417
Node:	Z8000	Directives�840527
Node:	Z8000	Opcodes�842136
Node:	Reporting	Bugs�852078
Node:	Bug	Criteria�852804
Node:	Bug	Reporting�853571
Node:	Acknowledgements�860215
Ref:	Acknowledgements-Footnote-1�865181
Node:	GNU	Free	Documentation	License�865207
Node:	AS	Index�890357
�
End	Tag	Table

